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Abstract

Background: Gastric cancer is the third most common malignancy affecting the general
population worldwide. Aberrant activation of KRAS is a key factor in the development of many
types of tumor, however, oncogenic mutations of KRAS are infrequent in gastric cancer. We have
developed a novel quantitative method of analysis of DNA copy number, termed digital genome
scanning (DGS), which is based on the enumeration of short restriction fragments, and does not
involve PCR or hybridization. In the current study, we used DGS to survey copy-number
alterations in gastric cancer cells.

Methods: DGS of gastric cancer cell lines was performed using the sequences of 5000 to 15000
restriction fragments. We screened 20 gastric cancer cell lines and 86 primary gastric tumors for
KRAS amplification by quantitative PCR, and investigated KRAS amplification at the DNA, mRNA
and protein levels by mutational analysis, real-time PCR, immunoblot analysis, GTP-RAS pull-down
assay and immunohistochemical analysis. The effect of KRAS knock-down on the activation of p44/
42 MAP kinase and AKT and on cell growth were examined by immunoblot and colorimetric assay,
respectively.
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Results: DGS analysis of the HSC45 gastric cancer cell line revealed the amplification of a 500-kb
region on chromosome 12p12.1, which contains the KRAS gene locus. Amplification of the KRAS
locus was detected in 15% (3/20) of gastric cancer cell lines (8—18-fold amplification) and 4.7% (4/
86) of primary gastric tumors (8-50-fold amplification). KRAS mutations were identified in two of
the three cell lines in which KRAS was amplified, but were not detected in any of the primary
tumors. Overexpression of KRAS protein correlated directly with increased KRAS copy number-.
The level of GTP-bound KRAS was elevated following serum stimulation in cells with amplified
wild-type KRAS, but not in cells with amplified mutant KRAS. Knock-down of KRAS in gastric cancer
cells that carried amplified wild-type KRAS resulted in the inhibition of cell growth and suppression
of p44/42 MAP kinase and AKT activity.

Conclusion: Our study highlights the utility of DGS for identification of copy-number alterations.
Using DGS, we identified KRAS as a gene that is amplified in human gastric cancer. We
demonstrated that gene amplification likely forms the molecular basis of overactivation of KRAS in
gastric cancer. Additional studies using a larger cohort of gastric cancer specimens are required to
determine the diagnostic and therapeutic implications of KRAS amplification and overexpression.

http://www.biomedcentral.com/1471-2407/9/198

Background

Gastric cancer is the third most common malignancy
affecting the general population worldwide [1]. Specific
genetic changes have been reported in gastric cancer,
including the amplifications of KSAM, MET and ERBB2,
and mutations in p53, APC, and CDH1 [2]. While gain-of-
function mutations of KRAS are some of the most com-
monly observed genetic alterations in a variety of tumors,
including pancreatic (60%), biliary tract (33%) and colon
(32%) [3], these mutations are infrequent in gastric cancer
(2-7%) [4-7]. In general, RAS mutations associated with
tumorigenesis "lock" RAS in an active GTP-bound state.
GTP-RAS binds to a number of effector proteins to stimu-
late downstream signaling pathways, among which the
RAF-MAP kinase cascade and the phosphatidylinositol 3-
kinase (PI3K)-AKT pathways of cell growth and oncogen-
esis are the best characterized |3]. Prolonged activation of
RAS can also occur through mechanisms that do not
involve mutations in RAS. For example, reduced expres-
sion of let-7 microRNAs, which suppresses RAS by target-
ing the 3'untranslated region of RAS mRNAs, is often
associated with a higher RAS protein level in tumors [8].
To date, the molecular mechanisms of oncogenic activa-
tion of RAS in gastric cancer have not been fully eluci-
dated.

Amplification of genomic sequences containing genes
that are critical for cell growth is one of the primary mech-
anisms of activation of oncogenes in cancer, and is often
associated with tumor progression, poor prognosis and/or
drug resistance [9]. Of the numerous methods currently
available for detecting copy number alterations genome-
wide, the current gold standard is the array CGH method
(aCGH). Over the past few years, the resolution of aCGH
has improved rapidly through the use of oligonucleotide
probes, and has surpassed that of aCGH using standard
BAC probes [10]. However, aCGH is also susceptible to

the inherent noise of hybridization-based intensity meas-
urements, as the signal quality is affected by repetitive
sequences and is dependent on probe quality [11]. In fact,
optimization of probe design has been a major challenge
in the development of tiling arrays [12,13].

Digital karyotyping (DK) was developed by Wang et al.
[14], and is not limited by the inherent problems of array
techniques. DK involves the digital enumeration of short
fragments of genomic DNA (termed tags), providing a
quantitative measurement of DNA copy number through
tag density analysis along each chromosome. DK has been
applied successfully to a variety of tumor types to detect
copy-number alterations, including the amplification of
TYMS, RSF1 and OTX2, and deletion of MKK4 and dys-
trophin [15-19]. Despite the efficiency of DK, it is techni-
cally challenging for broad applications, because it
involves PCR amplification and the generation of tags of
21-base pairs (bp) in length to precisely represent the
chromosome location of interest.

We report here the development of a novel method,
termed DGS, for the quantitative analysis of copy number
variation, which is based on the tag-counting concept of
DK, but uses a simplified process of tag preparation. DGS
of gastric cancer cell lines detected the amplification of the
KRAS locus on chromosome 12p12.1. Our results provide
a molecular basis for the overactivation of KRAS, and sug-
gest that the activation of KRAS downstream signaling
events may promote gastric cancer cell proliferation.

Methods

Cell lines and tissues

The cell lines analyzed in the current study are listed in
Additional file 1. The HSC and SH101P4 cell lines were
established by Kazuyoshi Yanagihara [20]; all others were
obtained from American Type Culture Collection or the
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Japanese Collection of Research Bioresources (Tokyo,
Japan). All cell lines were cultured in the recommended
media. For serum stimulation, cells were incubated in
media that lacked serum for 24 hours (h), and then either
unstimulated, or stimulated for 1 h with media contain-
ing 10% fetal calf serum (FCS). Primary gastric cancer
specimens were obtained from the Department of Sur-
gery, Keiyukai Sapporo Hospital, with informed consent
from each patient. Genomic DNA was extracted using the
phenol-chloroform method, followed by RNase treat-
ment. Total RNA was extracted using Trizol (Invitrogen,
Carlsbad, CA, USA), according to the manufacturer's
instructions. Genomic DNA of normal peripheral blood
leukocytes (Biochain, Hayward, CA, USA) and total RNA
from normal gastric mucosa from healthy individuals
(Biochain and Invitrogen) were purchased. Primary gas-
tric cancers were classified using clinicopathological fea-
tures, as shown in Additional file 2, according to the
PTNM classification scheme (5th edition, 1997) [21] and
the Lauren's classification system [22]. KRAS-amplifica-
tion status according to age was compared using the Stu-
dent t test; according to grade, pT status, pN status, and
disease stage using the Mann-Whitney U test; and accord-
ing to gender, histology and pM status using the Fisher
exact test. All tests were 2-tailed, and a P value of < 0.05
was considered statistically significant.

Digital genome scanning

Briefly, 40 pg of genomic DNA were subjected to restric-
tion enzyme digestion using Mbol (Takara, Tokyo, Japan)
and then separated by electrophoresis on a 3% Nusieve
GTG agarose gel. Short fragments (30-60 bp, termed real
tags) were electroeluted, concatenated and subcloned into
BamHI-digested pBluescript II KS+ (Stratagene, La Jolla,
CA) using Mighty Mix DNA ligation solution (Takara).
Escherichia coli DH10B were transformed with the recom-
binant plasmids, the transformants were pooled and the
plasmid DNA was purified to generate the 1st library.
Concatemers of real tags were excised by Spel/Pst] diges-
tion from the 1st library, and fragments in the range of
140 to 800 bp were electroeluted, concatenated and sub-
cloned into pBluescript II KS+ to generate the 2nd library.
Second library plasmids containing concatemers of Spel/
Pstl fragments were sequenced using an ABI3130 Genetic
Analyzer (Applied Biosystems, Foster City, CA, USA),
according to manufacturer's instructions. Unique real tags
were mapped to human chromosome sequences, and tag
density, defined as the ratio of real tags to virtual tags over
moving windows, was calculated to detect abnormalities
in DNA content using threshold values defined by DGS
simulations. Tag positions and tag density ratios were vis-
ualized using Custom Tracks and Genome Graphs from
the University of California, Santa Cruz (UCSC) genome
browser (Mar. 2006 freeze, hg18) [23-25]. The detailed
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protocols for DGS, virtual tag characterization and in silico
simulations are available in Additional file 3.

Quantitative real-time PCR

Relative DNA copy number was determined by quantita-
tive real-time PCR using a SYBR Green PCR Master Mix
(Applied Biosystems) and the ABI PRISM 7000 (Applied
Biosystems). DNA content per haploid genome was nor-
malized to that of a repetitive element, Line-1, and calcu-
lated by the comparative CT (AACT) relative
quantification method using the formula 2V - Nline)-(Xt -
Xline), where N, is the threshold cycle number observed for
an experimental primer in normal leukocyte DNA, Ny,,,, is
the threshold cycle number observed for the Line-1
primer in normal leukocyte DNA, Xt is the average thresh-
old cycle number observed for the experimental primer in
cancer cell DNA, and Xj;,, is the average threshold cycle
number observed for the Line-1 primer in cancer cell DNA
[14]. Genomic amplification was defined as a greater than
4-fold increase in DNA content. The primer sequences for
each locus are available in Additional file 4. The allelic
proportion of mutant KRAS (G12V, ggt—gTt) was deter-
mined by employing a modified real-time PCR procedure
according to Itabashi et al [26]. The detailed protocol is
available in Additional file 3. cDNA was prepared using
SuperScript III reverse transcriptase (RT, Invitrogen), and
the mRNA level of each gene was determined by real-time
RT-PCR using the TagMan Gene Expression Assay
(Applied Biosystems). Relative mRNA levels were calcu-
lated by the comparative CT method using GAPDH as an
endogenous control. The primer/probe sets used are
shown in Additional file 5.

Fluorescence in situ hybridization (FISH)

BAC:s that contained the KRAS locus (RP11-636P12) and
chromosome 12q24.2 (RP11-91M21) were labeled with
Cy3 and Cy5, respectively, and then incubated with slides
prepared with interphase and metaphase chromosomes.
Nuclei were counter-stained with 4',6-diamino-2-phe-
nylindole (DAPI), and slides were analyzed using a fluo-
rescence microscope (Leica CW-4000).

Mutational analysis of KRAS and PIK3CA

Amplified genomic fragments were either sequenced
directly, or subcloned using the TOPO TA-cloning kit
(Invitrogen) and then sequenced. At least ten clones from
two independent PCR assays per locus were sequenced
using M 13 Forward and Reverse primers (Invitrogen). The
sequences of the primers used for amplification of KRAS
(exons 1 and 2) and PIK3CA (exons 9 and 20) are shown
in Additional file 6.

Immunoblot analysis
Cells were lysed in Lysis buffer containing 20 mM Tris-
HCI (pH7.5) buffer, 150 mM NaCl, 1 mM EDTA, 1% Tri-
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ton X, 10% glycerol, 10 mM NaF, 1 mM sodium vanadate,
50 mM B-glycerophosphate, 1 mM phenylmethansulfo-
nyl fluoride, 1 mM dithiothreitol, and a protease inhibitor
cocktail (Roche, Mannheim, Germany). Proteins were
separated by SDS-PAGE and electroblotted onto an
Immobilon-P membrane (Millipore, Billerica, MA, USA).
The membranes were analyzed by immunoblot using the
following antibodies, as indicated: mouse monoclonal
anti-KRAS, -NRAS, and -HRAS antibodies (sc-30, sc-31,
and sc-29, respectively, Santa Cruz Biotechnology, Santa
Cruz, CA, USA); anti-actin antibody (Millipore); rabbit
polyclonal anti-p44/42 MAP kinase, -phosho-p44/42
MAP kinase (Thr202/Tyr204), -Akt and -phospho-Akt
(Ser473) antisera (Cell Signaling Technology, Danvers,
MA, USA).

GTP-RAS pull-down assay

The activation of RAS was detected using an EZ-Detect Ras
Activation Kit (Pierce, Rockford, IL, USA). Briefly, cell
lysate (500 pg) was incubated with immobilized Raf1 Ras-
binding domain fused to glutathione S-transferase (GST-
Raf1-RBD). Precipitates were washed 3 times, and bound
proteins were eluted by boiling for 5 minutes (min). Pro-
teins were resolved on a 12% polyacrylamide gel, trans-
ferred to an Immobilon-P membrane, and subjected to
immunoblot analysis using anti-KRAS, -NRAS, or -HRAS
antibodies.

RNA interference

A custom-designed KRAS siRNA (5-AGAGUGCCUU-
GACGAUACAAdTAT-3"), targeting a region of KRAS that is
not associated with known oncogenic mutations, was syn-
thesized by Dharmacon (Lafayette, Co, USA). siRNAs tar-
geting LRMP, LYRM5 and CASC1 were purchased from
Ambion (No0.144181, 284911 and 147715). A universal
non-targeting siRNA (non-specific control VII, Dhar-
macon) was used as a negative control. In each experi-
ment, 5 x 100 cells were transfected with 7.5 pul of 20 uM
siRNA by electroporation (Amaxa, Cologne, Germany)
using Nucleofector kit V or T, according to the manufac-
turer's instructions.

Cell proliferation assay

Following transfection with siRNAs, the gastric cancer cell
lines HSC45, MKN1, AGS and NUGC4 were seeded in 96-
well plates at a density of 8000 cells/100 pl in standard
medium containing 10% FCS. Cell number at 48, 72 and
96 h post-transfection was determined indirectly by color-
imetric assay using Cell Counting Kit-8 solution
(Dojindo, Kumamoto, Japan). The assay is based on the
reduction of a tetrazolium salt ([2-(2-methoxy-nitrophe-
nyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2-tetrazo-
lium, monosodium salt], WST-8) and is used as a measure
of live cells. The absorbance of each well at 450 nm was
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measured using a microplate reader (Model 680, Bio-Rad,
Hercules, CA, USA).

Flow cytometry

Flow cytometry was carried out as described previously
[27]. Briefly, adherent and detached cells were harvested,
fixed in 90% cold ethanol, treated with RNase A (500
units/ml), and then stained with propidium iodide (50
pg/ml). For each sample, 30000 events were analyzed
using the cell cycle analysis platform of FlowJo program
(Tree Star, Ashland, OR, USA).

Immunohistochemistry

Formalin-fixed, paraffin-embedded sections of gastric
tumors were deparaffinized, hydrated, and then treated
with peroxidase blocking solution (3% H,O, in Metha-
nol). Sections were autoclaved at 105°C for 10 min in tar-
get retrieval solution (Dako, Glostrup, Denmark).
Sections were incubated with a mouse anti-KRAS anti-
body (1:100 dilution; Santa Cruz Biotechnology) for 1 h
at room temperature, and immunoreactivity was detected
using ENVISION-Plus reagents (Dako).

Results

Digital genome scanning and characterization of virtual
tags in silico

Digital genome scanning (DGS) is a method of quantitat-
ing gene copy number by enumerating short genomic
DNA fragments (termed real tags) that are generated
experimentally by Mbol endonuclease digestion (Figure
1a). To eliminate the complicated steps involved in tag
preparation, we computationally characterized the short
DNA fragments that are produced by single restriction
enzyme digestion with Mbol, which recognizes the 4-bp
sequence GATC. In silico digestion of the human genome
by Mbol produced approximately 1.6 million restriction
fragments (termed virtual tags) in the range of 20-130 bp
(Additional file 7a). Nucleotide sequence analysis
revealed that approximately 65% of the virtual tags con-
tained repetitive sequences, as defined in the public data-
base of repeat elements (Additional file 7a). Importantly,
sequence matching to the human genome database
revealed that approximately 85% of the virtual tags
mapped uniquely to precise chromosomal locations
(Additional file 7b, c). Even if the virtual tags include
repetitive sequences in part, approximately 80% of the
repetitive tags turned out to be unique. The average dis-
tance between two unique virtual tags of 30 to 60 bp in
length was 7.6 kb, the median distance was 4.5 kb and
97.8% of intervals were shorter than 30 kb (Additional
file 7d). Similar tag interval characteristics were observed
for virtual tags the range of 70 to 100 bp (average distance,
7.9 kb; median distance, 4.8 kb; 97.4% were shorter than
30 kb), and 100 to 130 bp (average distance, 7.9 kb;
median distance, 4.9 kb; 97.4% were shorter than 30 kb
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(Additional file 7e, f). Furthermore, the density of unique
virtual tags was nearly equal in each chromosome (Addi-
tional file 7g). These in silico findings suggested that the
majority of short Mbol tags would be informative for DGS.

DGS simulation in silico

The ability of DGS to detect genome-wide changes is
based on genome characteristics, such as the copy number
and the size of the alteration, and the number of real tags
obtained from sequence analysis. To predict the size of
alteration that could reliably be detected, given a fixed
number of computationally sampled tags, we used Monte
Carlo simulation to calculate a positive predictive value
(PPV), which is the probability that a detected alteration
represents a true alteration. For example, we found that an

analysis of 5000 tags could reliably detect a 10-fold ampli-
fication of 500 kb, a homozygous deletion of 7.5 Mb, or a
single copy loss of a 30 Mb region, but could not detect a
subchromosomal gain smaller than 30 Mb (Additional
file 8). Both the sensitivity and specificity of detecting
these types of alteration were >99% in cases with high
PPVs (>90%), which indicated that neither was a limiting
factor in this analysis (data not shown).

Preparation of real tags from human genomic DNA

For DGS of the gastric cancer cell lines HSC45 and MKNT1,
we prepared libraries of real tags from genomic DNA, as
shown in Figure 1a. The Mbol-digested genomic DNA was
size-fractionated (30-60 bp) and subjected to concate-
merization, followed by construction of a 2nd library,

Page 5 of 16

(page number not for citation purposes)



BMC Cancer 2009, 9:198

which contained approximately 10 real tags per clone
(Figure 1b). Nucleotide sequence analysis of the real tags
revealed that 85.8% mapped to unique positions, which
was consistent with our characterization of virtual tags

(Figure 1c).

Amplifications on chromosome 12p in HSC45 gastric
cancer cells

The genome-wide tag density profile of HSC45 cells was
determined using a total of 5,462 unique real tags. To
achieve high resolution and sensitivity with the experi-
mental data, we used window sizes of 1000 and 2100 vir-
tual tags (approximately 2300 kb and 4700 kb) for the
analysis of amplifications and deletions, respectively. The
tag density ratio was calculated as the sum of real tags
divided by the average number of real tags in same-sized
windows throughout the genome, in which the normal
tag density ratio was defined as 1.0. We identified distinct
subchromosomal regions of increased tag density at
8q24.21, 12p12.1 and 12p13.33, and decreased tag den-
sity at 9p21.3 and the long arm of chromosome 18 (Fig-
ure 2, Additional file 9a-d). The regions of increased tag
density (12p12.1, 12p13.33 and 8q24.21) contained
KRAS, CACNAI1C (calcium channel, voltage-dependent, 1
type, alpha-1c subunit) and MYC loci, respectively. South-
ern blot analysis confirmed that KRAS and MYC were
amplified in HSC45 cells (Additional file 9e). Each quan-
titated copy-number change as determined from quantita-
tive real-time PCR (qPCR) of genomic DNA was
remarkably similar to that estimated by DGS when the
window size for tag density analysis was matched to the
size of each alteration (Additional file 9a-d). These results
suggest that tag density analysis by DGS could be used to
perform copy number analysis throughout the human
genome.

Amplification of KRAS in gastric cancer cell lines

Analysis of 26 loci within and immediately flanking chro-
mosome 12p12.1 in HSC45 cells by qPCR demonstrated
that a region of approximately 500 kb, which included the
KRAS gene locus, was amplified (8-fold amplification,
Figure 3a). Genomic qPCR screening detected KRAS
amplification in two additional gastric cancer cell lines,
SH101P4 (18-fold) and MKN1 (13-fold) (Figure 3a),
whereas we did not detect amplification of greater than 4-
fold in 17 other gastric cancer cell lines, or in 10 colon
cancer and 11 pancreatic cancer cell lines (listed in Addi-
tional file 1, data not shown). DGS also detected amplifi-
cation of the KRAS locus in MKN1 cells (Additional file
10). The neighboring genes of KRAS in the minimal
amplicon were LRMP (lymphoid-restricted membrane
protein), CASC1 (cancer susceptibility candidate 1) and
LYRMS5 (LYR motif containing 5). BCAT1 (branched chain
aminotransferase 1, cytosolic) was also amplified in
SH101P4 and MKNT1 cells, but not in HSC45 cells. We
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confirmed that CACNA1C was amplified in HSC45 cells,
but not in the other gastric, colon, or pancreatic cancer cell
lines using genomic qPCR analysis (Additional file 9b;
data not shown). Neither NRAS, HRAS nor BRAF amplifi-
cations were detected in the above cancer cell lines by
genomic qPCR analysis (data not shown). The amplifica-
tion of KRAS was also verified by dual color FISH analysis,
in which the KRAS amplicon was evident as a homogene-
ously-stained region in HSC45, SH101P4 and MKN1 cells
(Figure 3b).

Sequence analysis of KRAS (Additional file 11a) showed
that both HSC45 and SH101P4 cells harbored a mutation
in codon 12 that resulted in a single amino acid substitu-
tion in KRAS (ggt—glt, G12V), whereas MKN1 cells
lacked KRAS mutations. The presence of KRAS mutations
in AGS (G12D), SNU1 (G12D), DLD1 (G13D) and
HCT116 (G13D) cells has been reported previously
[28,29]. Of the ten PCR-clones of KRAS from HSC45 and
SH101P4 cells that were subjected to mutational analysis,
eight and three, respectively, harbored mutations in
codon 12. Furthermore, genomic real-time PCR analysis
using probes that were specific to wild-type and mutant
KRAS alleles (Additional file 11b) also revealed that
HSC45 and SH101P4 cells contain different proportions
of the mutant allele (80% and 50%, respectively). Overall,
these results indicated that amplification of a mutant
KRAS allele also occurs in HSC45 and SH101P4 cells.

We next investigated the levels of KRAS mRNA in KRAS-
amplified gastric cancer cells by quantitative real-time RT-
PCR (qRT-PCR) (Figure 3c). The levels of KRAS mRNA
correlated significantly with KRAS copy number. The
neighboring genes LYRM5 and CASC1, which localized to
the minimal amplicon, were also expressed at higher lev-
els in cells with amplification as compared to cells with-
out amplification (Figure 3c). Interestingly, LRMP was
down-regulated in cancer cells as compared to normal
stomach cells. Immunoblot analysis of RAS proteins (Fig-
ure 4a) revealed that the expression of KRAS was increased
in KRAS-amplified gastric cancer cells (HSC45, SH101P4
and MKN1), while neither NRAS nor HRAS were highly
expressed (Figure 4a; data not shown). Although the
expression of let-7c and let-7g microRNAs has been
reported to regulate RAS expression [8], we found little
correlation of expression of these microRNAs with KRAS
protein levels (Additional file 12), which suggested that
KRAS overexpression in gastric cancer cell lines is due pri-
marily to genomic amplification of KRAS.

Activation of downstream signaling in KRAS-amplified
gastric cancer cells

To investigate KRAS activity in gastric cancer cells, we ana-
lyzed the amount of GTP-KRAS in cells using an in vitro
pull-down assay. There was a higher amount of GTP-KRAS
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Detection of increased copy number on chromosomes 8q and 12p by DGS in HSC45 gastric cancer cells. (a) A
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on the y-axis indicate fold-changes in tag density relative to the average tag density of the whole genome, and represent DNA
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in HSC45 and SH101P4 cells, which carried amplified
mutant KRAS, than in MKN1 cells, in which the level of
GTP-KRAS was comparable to AGS cells, which carried
non-amplified mutant KRAS (Figure 4b). Serum stimula-
tion had little effect on the level of GTP-KRAS in HSC45
cells, but resulted in a dramatic elevation of GTP-KRAS in
MKNT1 cells (Figure 4¢). As expected, this data was consist-
ent with constitutively active mutant KRAS overexpression
due to amplification, and it suggested that overexpression

of wild-type KRAS may also promote oncogenic proper-
ties when cells are exposed to external stimuli.

To gain further insight into the role of overexpressed KRAS
in cancer cell growth, we analyzed the activation of p44/
42 MAP kinase and AKT (Figure 4d), which are pivotal
molecules in the MAP kinase cascade and PI3K signaling
pathways that are downstream of KRAS [3,30]. Under nor-
mal culture conditions (Figure 4d, lanes indicated as
"N"), basal phosphorylation of p44/42 was increased in
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Gene amplification of KRAS in gastric cancer cells. (a) Quantitative genomic PCR analysis of the KRAS locus at 12p12.1
in HSCA45 cells. Discrete amplifications at 12p12.1 in two other gastric cancer cell lines were also detected (SHI101P4 and
MKN ). DNA copy number relative to normal diploid leukocyte DNA was plotted against chromosomal nucleotide position
(in megabases). The positions of refseq genes in the corresponding regions are shown in the bottom map. The minimum ampli-
fication region common to all 3 gastric cancer cell lines is represented by the orange-colored bar. (b) Metaphase (left)- and
interphase (right)-FISH analysis of the amplified KRAS locus in gastric cancer cell lines. The KRAS-specific probe is in yellow, and
the control probe, specific for the long arm of chromosome 12, is in red. Tetraploidy in HSC45 and triploidy in SH101P4 and
MKNI cells were observed. (c) Quantitative real-time RT-PCR analysis of KRAS mRNA expression in gastric cancer cells with
12p12.1 amplification. Expression analysis of genes (KRAS, LRMP, CASCI and LYRM5) located within the minimal amplicon, and
BCAT I, which flanks the minimal amplicon, was performed using real-time RT-PCR. Expression levels were normalized to
GAPDH mRNA, and are depicted as a color gradient, relative to normal stomach. The gene amplification and mutation (codon
12 or 13) status of KRAS for each sample is summarized in the right two columns. Filled circles indicate the presence of ampli-
fication or mutation of KRAS, and open circles indicate no amplification or no mutation of KRAS.
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Figure 4

Overexpression of KRAS, and differential activation of KRAS, p44/42 MAP kinase and AKT in KRAS-amplified
gastric cancer cells. (a) Inmunoblot analysis of the expression levels of KRAS and NRAS in cancer cells. Actin expression
was analyzed as a loading control. (b) The basal level of GTP-KRAS was markedly high in gastric cancer cells with amplified
mutant KRAS (HSC45 and SH101P4). Total lysate (500 Lig) was subjected to a GTP-RAS pull-down assay, and GTP-KRAS and
GTP-NRAS were detected by immunoblot using anti-KRAS and anti-NRAS antibodies, respectively. Total cell lysate (50 ng)
was analyzed in parallel to determine the level of expression of KRAS and NRAS in cells. (c¢) GTP-KRAS was elevated after
serum stimulation in MKN cells. Cells were cultured in regular medium containing 10% FCS (N), serum-starved for 24 h (-) or
serum-starved then stimulated with 10% FCS for | h (+). Total cell lysate was subjected to a GTP-KRAS pull-down assay. (d)
Activation of p44/42 MAP kinase and AKT in serum-starved or -stimulated gastric cancer cells. Total cell lysate was analyzed as
described for figure c. The phosphorylation of p44/42 MAP kinase and AKT was detected by immunoblot using anti-phospho-
specific antibodies. In each panel, the status of gene amplification and mutation (codon 12) of KRAS in each cell line is indicated.

+, presence; -, absence.

KRAS-amplified cells (HSC45, MKN1, and SH101P4) as
compared to NUGC4 gastric cancer cells, in which there is
neither amplification nor mutation of KRAS. While the
phosphorylation of p44/42 was modestly increased in
MKN1 cells after serum stimulation, the effect of serum
stimulation on HSC45 and SH101P4 cells was minimal,
which indicated that p44/42 is constitutively active in the
latter two cell lines.

To investigate the biological significance of KRAS amplifi-
cation in gastric cancer, we used small interfering RNA

(siRNA) to knock-down the expression of KRAS or KRAS
neighboring genes in four gastric cancer cell lines, HSC45
(carrying amplification and mutation of KRAS), MKN1
(amplification but no mutation of KRAS), AGS (mutation
but no amplification of KRAS) and NUGC4 (no amplifi-
cation or mutation of KRAS). Knock-down of KRAS and
three neighboring genes was verified by qRT-PCR (Addi-
tional file 13) and KRAS immunoblot analysis (Figure
5a). While the knock-down of KRAS in HSC45 and MKN1
cells caused a marked reduction in phosphorylation of
p44/42, knock-down of neighboring genes had no effect
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(Figure 5a, b). Phosphorylation of p44/42 was reduced in
KRAS knock-down AGS cells, but not in NUGC4 cells.
These results indicated that KRAS amplification is associ-
ated with both transient and constitutive activation of
p44/42 MAP kinase.

Basal phosphorylation of AKT was detected under normal
culture conditions, and was increased after serum stimu-
lation of MKN1 and AGS cells (Figure 4d). Nucleotide
sequence analysis revealed a single nucleotide mutation at
codon 545 of PIK3CA in MKN1 and AGS cells (E545K and
E545A, respectively, Additional file 11c), which suggested

http://www.biomedcentral.com/1471-2407/9/198

that AKT is potentially activated in these cells through
mutational activation of PIK3CA. However, in MKN1
cells, phosphorylation of AKT was reduced by KRAS
knock-down under both the normal culture condition as
well as after serum stimulation (Figure 5b), which sug-
gested that the overexpression of wild-type KRAS might
also be involved in enhancing the activation of AKT.

Growth inhibition of gastric cancer cells with amplification
at 12p12.1 by the downregulation of KRAS

Among the four genes that localized to the minimal
amplicon at 12p12.1, the knock-down of KRAS caused a
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Figure 5

Suppression of downstream signaling and cell growth in KRAS-amplified gastric cancer cells by siRNA-medi-
ated knock-down of KRAS. Cells were transfected with siRNA targeting KRAS, LRMP, CASC| or LYRMS, or a non-targeting
siRNA as a negative control. (a) KRAS knock-down suppressed the phosphorylation of p44/42 in KRAS-amplified cells. Protein
levels of KRAS and activated p44/42 48 h post-transfection were determined by immunoblot using anti-KRAS and anti-phos-
pho-p44/42 antibodies. The status of gene amplification and mutation (codon 12) of KRAS in each cell line is indicated. +, pres-
ence; -, absence. (b) KRAS knock-down suppressed the phosphorylation of p44/42 MAP kinase and AKT in MKNI cells.
Twenty-four h after siRNA transfection, MKN cells were cultured for an additional 24 h in regular medium (Nontreated),
serum-starved for 24 h (Starved) or serum-starved then stimulated with 10% FCS for | h (+Serum). The activation of p44/42
and AKT was determined by immunoblot using phospho-specific antibodies. (c) Suppression of cell growth in KRAS-amplified
cells by KRAS knock-down. Cells were transfected with siRNA, and cell number at the indicated time points after transfection
was determined indirectly by WST-8 colorimetric assay. Data is presented as percent decrease in cell number as compared to
cells transfected with control siRNA at each time point, and represents the means and SD for triplicate cultures. Statistical
analysis was performed using the unpaired t-test. *, P < 0.005 relative to the siRNA control. Data is representative of two inde-
pendent assays. (d) KRAS knock-down decreased the fraction of HSC45 and AGS cells in S-phase. Cells were analyzed by flow
cytometry 48 h post-transfection. Data is representative of two independent assays.
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significant inhibition of cell growth in HSC45, MKN1 and
AGS cells (Figure 5¢, P < 0.005, t-test), whereas knock-
down of the other three genes had no effect. There was lit-
tle growth inhibition observed in NUGC4 cells, in which
KRAS is neither amplified nor mutated. These results sug-
gested that KRAS is the driver gene responsible for the pro-
motion of proliferation of cancer cells harboring 12p12.1
amplification, and the other three genes are likely to be
passenger genes on the amplicon. KRAS knock-down
HSC45 and AGS cells exhibited a reduced accumulation
of S-phase cells (Figure 5d), whereas KRAS knock-down
had no effect on S-phase accumulation in MKN1 cells.
Taken together, these results suggested that the amplifica-
tion of KRAS is involved in the promotion of cancer cell
growth through the activation of the p44/42 MAP kinase
pathway, and in part through activation of the AKT path-
way.

Amplification of wild-type KRAS in primary gastric cancer
To determine the role of KRAS in primary gastric cancer,
we used qPCR to analyze KRAS amplification in genomic
DNA derived from primary gastric cancer specimens. We
screened 86 specimens, and found amplification of the
KRAS locus (8-50-fold) in four of them (4.7%) (Figure
6a). Furthermore, mutations were not detected in KRAS or
PIK3CA (exon 9 and 20) in these four tumors by nucle-
otide sequencing analysis of the PCR products or clones of
the PCR products (data not shown). With the exception of
tumor C, histopathology of the tumors indicated that they
were generally of the diffuse-type, according to the Lau-
ren's classification system [22], and there were no signifi-
cant differences in clinicopathological features between
KRAS-amplification-positive and -negative tumors (Addi-
tional file 2). Immunohistochemical analysis specifically
detected KRAS in cancer cells (tumor D, Figure 6b),
whereas the expression of KRAS in adjacent noncancerous
cells was below the level of detection. Gene amplification
coincided with intense KRAS immunoreactivity in the
same tumor samples, which suggested that gene amplifi-
cation results in the overexpression of the KRAS in pri-
mary gastric cancer.

Discussion

In this report, we described a novel method, termed DGS,
of detecting copy number alterations in the human
genome, which is based on the analysis of short fragments
of genomic DNA generated by restriction enzyme diges-
tion. Although DGS is modeled on the basic concept of
DK, we developed a modified tag preparation technique
that involves single restriction enzyme digestion without
PCR to minimize complex handling regimes and poten-
tial biases generated by PCR. Our relatively small-scale
sequencing of approximately 5000 tags successfully
detected discrete 500-kb amplifications of KRAS and
CACNAIC in HSC45 cells, which were not previously

http://www.biomedcentral.com/1471-2407/9/198

reported in an independent experiment using BAC-based
aCGH analysis [31].

To date, however, this DGS method has some limitations
as compared to DK and other methods. First, the resolu-
tion of DGS using short Mbol tags is lower than DK due to
the difference of the theoretical number of virtual tags
produced by restriction digestion. The number of virtual
tags in our analysis (approximately 394,000 virtual tags in
the range of 30 to 60 bp) was less than that of DK (approx-
imately 731,000 tags) [14]. Thus, while the current pilot
study demonstrates the feasibility of using DGS to esti-
mate copy number using a simplified tag preparation
method, additional studies are needed, using different or
combinations of restriction enzymes to produce more
short tags, to improve the resolution of DGS. Second,
DGS method has several limitations involved in labor,
cost, and amount of material: (a) this method needs the
generation of two rounds of plasmid libraries and the
propagation of plasmid libraries, (b) this method costs
higher than microarray platform and DK, (c) a large
amount of starting material DNA is required.

Recently, the use of single nucleotide polymorphism
(SNP) arrays for the detection of allele-specific copy-
number alterations at high resolution using 906,600 SNP
probes has been reported [32]. Because DGS and DK do
not rely on pre-designed probes, they are "open" platform
techniques. For example, DK could be used to explore
exogenous pathogenic DNA in infectious or neoplastic
states [14]. However, tag-counting methods, including
DGS and DK, have similar limitations. First, they gener-
ally do not estimate allele-specific copy number, which
SNP array analysis does. Second, the number of sequence
reads, which is to say, the depth of sequencing, affects the
sensitivity and the resolution of tag density profiles. The
results of simulated DGS indicated that DGS using deep
sequencing will have a higher level of sensitivity in detect-
ing subtle copy-number alterations. However, even in
reports of successful DK [14-17], the depth of sequencing
was less than 0.3 (when the theoretical number of unique
virtual tags was defined as 1.0), partly due to practical lim-
itations, such as the low through-put rate and labor inten-
sive methods required when using standard sequencers
[33]. In the next step of improving DGS, DGS should be
combined with the next-generation sequencing technolo-
gies [34]. The recent introduction of instruments capable
of sequence millions of nucleotides in a single run is
changing the landscape of human genetics. By applying
next-generation sequencing technologies to DGS, it
should be possible to simplify the protocol and improve
efficiency and resolution by bypassing the multi-step
process of tag concatemerization, as well as conserve start-
ing genomic DNA. With some next-generation sequenc-
ers, tag preparation by restriction digestion might generate
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Amplification of KRAS in primary gastric cancer. (a) Quantitative PCR analysis of genomic DNA from primary gastric
cancer specimens was carried out using primers specific for regions within and flanking the KRAS locus. DNA copy number rel-
ative to normal diploid leukocyte DNA is plotted onto the corresponding chromosomal nucleotide position in megabases. (b)
KRAS is preferentially expressed in gastric cancer cells with KRAS amplification. Hematoxylin-Eosin staining (left) and immuno-
histochemical staining with an anti-KRAS antibody (right) of gastric cancer tissue (tumor D). Upper panels: poorly-differenti-
ated adenocarcinoma cells with submucosal invasion. Lower panels: adenocarcinoma cells adjacent to normal pyloric glands.
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more reproducible DNA fragmentation than current ran-
dom-shearing approaches [35,36].

Gene amplification of KRAS with or without mutation has
been described in a limited number of cases, including
lung, gastric, pancreatic and rectal cancers [37-40]. More
recently, aCGH analysis of various primary tumors,
including lung, colorectal, pancreatic and gastric cancers,
gliomas and testicular germ cell tumors, also detected
amplification of chromosome 12p [41-46]. In this report,
we provided evidence that, while rare in colon and pan-
creatic cancers, the incidence of KRAS gene amplification
(greater than 4-fold) is increased in gastric cancer, and is
responsible for KRAS activation.

Using MKNT1 cells as a model system, we investigated the
mechanism by which KRAS amplification contributes to
the growth of primary gastric cancers that lack mutations
in KRAS. Immunoblot analysis and knock-down of KRAS
in cells provided evidence that KRAS gene amplification
results in KRAS activation in the absence of mutation. To
our knowledge, this is the first report to demonstrate a
potential relationship between gene amplification of
endogenous wild-type KRAS, activation of KRAS signaling
pathways, and cell growth in gastric cancer. In general, less
than 10% of wild-type and over 50% of mutant RAS is in
the GTP-bound state in cells [47,48]. Therefore, it is likely
that amplification of endogenous wild-type KRAS cou-
pled overexpression in the MKNT1 cells induces a biologi-
cal effect that is similar to the effect of single-mutant
alleles of KRAS. We also found that while serum stimula-
tion induced the activation of overexpressed KRAS and
p44/42 in MKNT1 cells, in cells that harbored amplified
mutant KRAS, KRAS and p44/42 were constitutively acti-
vated. Thus, amplified wild-type KRAS might provide a
growth advantage to cancer cells, not only by upregulating
the basal cell growth, but also by conferring adaptability
to changes in the environment, such as availability of
growth factors and nutrients. Further studies will be
needed to investigate potential functional connections for
these correlations.

The KRAS gene status of tumors is currently of great inter-
est, because KRAS mutations are linked to the response to
anti-epidermal growth factor receptor (EGFR) therapies.
Panitumumab and cetuximab are antibody-based drugs
that inhibit EGFR, and are currently used in the treatment
of colorectal cancer [49]. However, several groups have
reported that KRAS mutations are significantly associated
with lack of response to cetuximab or panitumumab in
patients with advanced, chemotherapy-refractive colorec-
tal cancer [50,51]. In gastric cancer, EGFR is a promising
target since it is frequently overexpressed [52,53], and
clinical trials of cetuximab in the treatment of gastric can-
cer are ongoing [54,55]. Our results showing that overex-
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pressed wild-type KRAS is involved in the activation of
downstream signaling pathways that govern cell prolifer-
ation indicate that the amplification of KRAS might be of
clinical significance in predicting response to cetuximab
or to panitumumab in gastric cancer. Prospective studies
are needed to determine the efficacy of patient-specific
EGFR-targeted therapy based on KRAS amplification and
mutation status.

Conclusion

We demonstrated that DGS is an efficient method of iden-
tifying DNA copy-number alterations. Using DGS, we
investigated the role of KRAS gene amplification in the
overactivation of KRAS in gastric cancer. Future studies
using a larger cohort of gastric cancer specimens are
needed to elucidate the clinical, diagnostic and therapeu-
tic significance of KRAS amplification and overexpression.
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MYC-specific probes.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2407-9-198-89.pdf]

Additional file 10

Amplification of the chromosomal region from 12p12.1 to 12p11.22,
which includes the KRAS locus, was detected in MKN1 gastric cancer
cells by DGS. (a) Whole-genome profile of the tag density ratio (deter-
mined using a window of 1000 virtual tags) of MKN1 cells. (b) Whole-
chromosome view of the tag density ratio (using a window of 3000 virtual
tags) of chromosome 12. Unique real tags are indicated as black vertical
bars in squish mode, and unique virtual tags are indicated in blue (60 bp
or shorter) or light blue (longer than 60 bp) bars in dense mode. The posi-
tion of the KRAS locus is indicated at the bottom.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2407-9-198-S10.pdf]

Additional file 11

Missense mutations of KRAS and PIK3CA, and amplified mutant
alleles of KRAS in gastric cancer cells. (a) Mutation of codon 12 of
KRAS in HSC45, SH101P4 and AGS cells. Sequence chromatograms of
KRAS missense mutations were generated by nucleotide sequencing of
PCR products directly, or sequencing of PCR clones. Mutated codons are
underlined. Representative results from PCR clones are shown. (b) Ampli-
fied mutant alleles of KRAS in HSC45 and SH101P4 cells. The allelic
proportion of mutant KRAS (G12V, ggt—gTt) was analyzed by duplex
real-time PCR using mutant (gTt) and wild-type (ggt) allele-specific
probes labeled by FAM and VIC, respectively. Serial dilutions of vectors for
mutant (M) or wild-type (W) KRAS were mixed at the indicated ratios,
and then used as standards. The fluorescence intensity of the two different
dyes is presented as a two-dimensional plot. (c) Mutations of codon 545
of PIK3CA in MKN1 and AGS cells. Mutated codons are underlined.
Representative results from cloned PCR products are shown.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2407-9-198-811.pdf]

Additional file 12

Expression of the microRNAs let7-c and let7-g in gastric cancer cells
that overexpress KRAS. Semiquantitative RT-PCR analysis of microR-
NAs was carried out using small RNAs derived from the indicated cell
lines. The expression levels of let7-a, U6 and hsa-miR-24 were analyzed
as controls. Reaction products were analyzed by 3.0% Nusieve agarose gel
electrophoresis.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2407-9-198-S12.pdf]
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Additional file 13

Gene expression in siRNA knock-down cells. Gastric cancer cell lines
were transfected with siRNAs for KRAS, LRMP, CASC1, LYRMS5, or a
universal non-targeting siRNA as a negative control. Cells were cultured
for 48 h and then total RNA was isolated. mRNA expression of KRAS (a)
and LRMP, CASC1 and LYRM5 (b) in each cell line was determined by
GqRT-PCR. The expression of each gene was normalized to that of GAPDH
and normal stomach mRNA. Non, nontransfected cells. Data represents

the means and SD of three independent experiments.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2407-9-198-S13.pdf]
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