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Abstract

Background: Scientists and physicians have long noted similarities between the general behavior
of a cancerous tumor and the physiological process of wound healing. But it may be during
metastasis that the parallels between cancer and wound healing are most pronounced. And more
particularly and for the reasons detailed in this paper, any cancer remaining after the removal of a
solid tumor, whether found in micrometastatic deposits in the stroma or within the circulation,
may be heavily dependent on wound healing pathways for its further survival and proliferation.

Discussion: If cancer cells can hijack the wound healing process to facilitate their metastatic
spread and survival, then the period immediately after surgery may be a particularly vulnerable
period of time for the host, as wound healing pathways are activated and amplified after the primary
tumor is removed. Given that we often wait 30 days or more after surgical removal of the primary
tumor before initiating adjuvant chemotherapy to allow time for the wound to heal, this paper
challenges the wisdom of that clinical paradigm, providing a theoretical rationale for administering
therapy during the perioperative period.

Summary: Waiting for wound healing to occur before initiating adjuvant therapies may be
seriously compromising their effectiveness, and patients subsequently rendered incurable as a
result of this wait. Clinical trials to establish the safety and effectiveness of administering adjuvant
therapies perioperatively are needed. These therapies should target not only the residual cancer
cells, but also the wound healing pathway utilized by these cells to proliferate and metastasize.

Background lar migration [3]. Diverse and specialized cells - including

Cancer has been described as a "wound that won't heal'
[1], and general similarities between the behavior of a
cancerous tumor and wound healing have been recog-
nized for over a century [2]. Normal wound healing is an
adaptive process that requires the integration of multiple
distinct cellular behaviors, including cell-cell dissociation;
cellular proliferation and migration; angiogenesis; matrix
degradation and synthesis; and cell survival during the
anchorage independent conditions associated with cellu-

epithelial cells, fibroblasts, endothelial cells, inflamma-
tory cells, and bone marrow derived progenitor cells -
orchestrate this complex process in a temporally coordi-
nated pattern to repair damaged tissue [3]. They commu-
nicate with each other through a myriad of cytokines,
chemokines and growth factors that act in both a para-
crine and autocrine manner and that are predictably
released after tissue damage and during the three distinct
phases of the wound healing process [4-6].
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The first phase of wound healing occurs immediately after
tissue injury and lasts for approximately 3 days. This is the
period of hemostasis and inflammation. Tissue injury
leads to platelet activation and the triggering of the coag-
ulation cascade, resulting in the release/formation of var-
ious inflammatory mediators such as platelet activating
factor, thrombin, and histamine[6]. Inflammatory media-
tors trigger arteriolar vasodilation and an increase in
microvascular permeability and they activate the expres-
sion of endothelial and inflammatory cell surface adhe-
sive molecules such as the selectins and the integrins,
which enhance the ability of circulating inflammatory
cells and platelets to overcome circulatory shear forces
and bind to the microvasculature [6-10].

Bone marrow derived haematopoetic and mesenchymal
progenitor cells migrate to sites of injury in response to
tissue damage [11-13], as do a host of circulating inflam-
matory cells such as neutrophils and monocytes [3,6].
Both bone marrow derived progenitor cells and inflam-
matory cells release reactive oxygen intermediates and
proteases critical to matrix degradation and tissue inva-
sion by these cells [6,14], and bone marrow derived pro-
genitor cells can synthesize the collagens critical to early
wound matrix formation [15]. In response to tissue injury
inflammatory cells such as neutrophils and macrophages
secrete a wide variety of cytokines such as IL-1 and TNF-a,
whose pleiotropic effects include endothelial activation
and a procoagulant state marked by the increased expres-
sion of endothelial adhesion molecules, the upregulation
of leukocyte cytokine expression, and the proliferation of
fibroblasts [3-6].

The growth factors released during this initial phase of
inflammation trigger a cascade of additional growth factor
release, initiating the second or proliferative phase start-
ing 3 days after wounding and lasting for approximately
10 days. This phase is characterized by the further prolif-
eration of migratory epithelial cells, endothelial cells, and
fibroblasts, and the continued synthesis of a collagen rich
matrix [3-6]. The last phase is the remodeling phase, a
period of time in which the wound matrix matures and
strengthens even further, and this phase occurs from days
8-12 onwards [3]. Note that many of the most important
and critical aspects of the wound healing process are com-
pleted within one to two weeks after tissue injury.

Intriguing parallels between hematogenous cancer cell
metastasis and the normal wound healing process have
been recently discovered. After injecting mice with Lewis
lung carcinoma cells or B 16 melanoma cells, Kaplan et al
[16] found that tumor derived growth factors were able to
choreograph the formation of specific cellular cluster sites
or "premetastatic niches" where tumor cells could success-
fully metastasize to and develop into viable tumors. This
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premetastatic niche can be imagined as a scaffold upon
which circulating cancer cells can adhere to and prolifer-
ate upon, or a nascent version of the mature tumor
stroma. Bone marrow derived haematopoietic progenitor
cells played a critical role in the formation of this niche,
and their appearance at the sites of future metastases pre-
ceded the subsequent arrival of the circulating cancer cells
and endothelial progenitor cells to these sites. The growth
factors secreted by the circulating cancer cells triggered the
rapid formation of these niches, and by day 14 after tumor
cell implantation these cellular clusters could be visual-
ized, with the subsequent development of viable
micrometastases at these sites by day 23 [16].

The complex cellular behaviors involved in forming these
pre-metastatic niches paralleled in some important
respects the events that occur during the normal wound
healing process. For example, bone marrow derived pro-
genitor cells, known to migrate to sites of tissue injury
during the wound healing process, left the bone marrow
and helped to initiate the premetastatic niche in response
to tumor derived factors [16]. Activated fibroblasts prolif-
erated at these niches prior to the arrival of the bone mar-
row derived progenitors, and similar to their role during
wound healing, synthesized the collagens and
fibronectins critical to the binding and subsequent prolif-
eration of circulating bone marrow derived progenitors
[17] and inflammatory cells [18]. Furthermore, MMP 9
(matrix metalloprotein) expression was upregulated at
these niches in concert with the appearance of the bone
marrow derived progenitor cells [16], an upregulation
noted to occur during the normal wound healing
response and also facilitated by bone marrow derived pro-
genitor cells [3,6,14]. Perhaps not surprisingly the time
course in which some of these complex events occurred
after tumor cell implantation was similar to the course of
events that occur after tissue injury and during the initial
inflammatory and proliferative phases of wound healing
[3]. For example, fibronectin expression was increased at
the sites of future metastasis by day 3 after tumor cell
implantation; and resident stromal like fibroblasts prolif-
erated at these niches in concert with the enhanced
fibronectin expression by the first week after tumor inoc-
ulation [16].

The cancer derived signals activating this integrated
response have not been clearly defined, but the precisely
choreographed hijacking by circulating cancer cells of
what appears in many respects to be a normal wound
healing response to facilitate its own survival and meta-
static spread is remarkable. This is perhaps not too surpris-
ing, as natural selection rarely reinvents the wheel,
utilizing instead pre-existing biological patterns to solve
new problems. Interestingly, the prompt administration
of the monoclonal antibody bevacizumab, which targets
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vascular endothelial growth factor and is a potent inhibi-
tor of the normal wound healing response, prevented the
development of these premetastatic niches and cancer
metastases in this study [16].

Discussion

Primary tumor removal activates the wound healing
response and enhances the proliferation and survival of
residual cancer cells

Surgical removal of the primary tumor and regional
spread of the disease in the form of lymph node removal
will trigger the first step of the wound healing process sim-
ply as a result of tissue injury. Ideally, any cancer remain-
ing after a thorough surgical extirpation of clinically
obvious disease will be within microspheres of metastatic
deposits or the circulation. Circulating tumor cells must
overcome shear forces imposed by the flow of blood and
adhere to the microvasculature of a target tissue to survive
and proliferate [19]. Immediately after surgery this proc-
ess, relatively inefficient under normal circumstances
[20], should be enhanced given an increase in vascular
permeability and the enhanced expression of cell surface
adhesive molecules such as the integrins and the selectins
associated with the acute inflammatory response [6-10].

Activation of platelets and the coagulation pathway in
response to tissue injury may also facilitate residual cancer
cell metastasis, in particular, hematogenous metastasis.
The binding of activated platelets to tumor cells has been
shown to hinder natural killer cell mediated elimination
of circulating tumor cells [21], and the destruction of cir-
culating platelets with antiplatelet antibodies significantly
reduces metastatic potential in several murine tumor
models [22]. Activated platelets can significantly enhance
the ability of circulating cancer cells to bind to the micro-
vasculature [23], and platelet activation can trigger the
release of platelet derived growth factors that stimulate
cancer cell growth, angiogenesis, and the increased expres-
sion of cell surface adhesive molecules that can facilitate
the microvascular arrest of circulating cancer cells [24,25].

Cancer cells not only can bind to activated platelets, they
can also bind to a variety of coagulation factors that are
released in large amounts during the initial inflammatory
phase of wound healing, including fibrinogen, fibrin, tis-
sue factor, and thrombin [26]. Cancer cell binding to
coagulation factors and activated platelets can create a
tumor cell embolus, limiting immune mediated recogni-
tion of the cancer cell [21] and facilitating cancer cell
arrest in capillary beds and subsequent tissue extravasa-
tion [27]. Cancer cells not only can bind to the coagula-
tion factors released in large amounts during the acute
inflammatory phase of wound healing, they can synthe-
size many of these procoagulants themselves and activate
the coagulation cascade [28], stimulating angiogenesis
[29] and the formation of tumor stroma [30].
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That the triggering of the coagulation cascade and platelet
activation can facilitate cancer cell metastasis is not simply
a theoretical consideration. Inhibition of tissue factor and
thrombin significantly reduces hematogenous metastases
in animal models [31]; and fibrinogen, released in large
amounts during the initial phase of wound healing as
result of the activation of the coagulation cascade, has
been shown to be critically important to the ability of cir-
culating cancer cells to metastasize, perhaps by enhancing
their ability to adhere to the microvasculature [32]. What
is perhaps even more disturbing is that the binding of acti-
vated platelets to the endothelium has been shown to tar-
get the recruitment of bone marrow derived progenitor
cells through the release of the chemokine stromal
derived factor or SDF-1 [33]. This potent molecule is not
only chemotactic for the bone marrow derived haemat-
opoietic progenitor cells shown to be critical to the devel-
opment of the premetastatic niche [16], but also for
cancer cells that often express the cognate receptor for
SDF-1, CXCR4 [34].

The inflammatory and coagulation pathways activated by
tissue injury will also, much like a domino effect, trigger
the release of the growth factors characteristic of the pro-
liferative phase of wound healing, including epidermal
growth factor (EGF), fibroblast growth factor (FGF), plate-
let derived growth factor (PDGF), vascular endothelial
growth factor (VEGF), and hepatocyte growth factor
(HGF) [3-5]. These growth factors can augment the prolif-
eration of residual cancer cells, fibroblasts, and endothe-
lial cells, and some, such as HGF, facilitate the anchorage
independent survival of circulating cancer cells [35,36]
and are chemotactic for bone marrow derived progenitor
cells [11]. Proliferating fibroblasts trigger the synthesis of
the collagens that form the tumor stroma [3], and prolif-
erating endothelial cells and activated platelets stimulate
angiogenesis [3,6] and the binding of circulating inflam-
matory cells to the microvasculature through the upregu-
lation of selectin expression [37].

The surgical removal of the primary tumor will not only
trigger the wound healing response and an environment
conducive to the metastatic spread of any residual cancer
cells, it may well promote their hematogenous dissemina-
tion. Surgical manipulation of the primary tumor is associ-
ated with the shedding of tumor cells into the circulation in
animal studies and an increase in metastatic proliferation
[38,39]. In human beings, surgical removal of the primary
tumor has been found to be associated with the seeding of
cancer cells into the circulation in a number of different
cancers, including lung [40,41], colorectal [42], breast
[43,44], esophageal [45], prostate [46], gastric [47], and
pancreatic cancer [48]. The presence of circulating cancer
cells intraoperatively and during the perioperative period
has been shown to be adversely correlated with both risk
for relapse [49] and survival [40-42,50].
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The presence of circulating cancer cells prior to surgical
removal of the primary tumor has also been observed
[51,52], but for the reasons discussed above the metastatic
potential of circulating cancer cells is probably enhanced
significantly after surgery given their enhanced ability to
bind to the microvasculature as a result of the inflamma-
tory events triggered by tissue injury as well as the often
observed increase in their numbers during the periopera-
tive period. And as described above in Kaplan's work [16],
growth factors derived from circulating cancer cells were
able to activate the molecular pathways critical to the for-
mation of the "premetastatic niche."

Although it is clear that surgical wounding will activate
the wound healing process and the release of inflamma-
tory mediators and procoagulants that should theoreti-
cally stimulate the proliferation, survival and metastatic
potential of residual cancer cells, there is evidence that pri-
mary tumor removal can also stimulate the proliferation
of residual cancer cells via pathways independent of those
triggered by surgical wounding alone. Important work
done by Fisher and his colleagues over twenty years ago
demonstrated that after the removal of a variety of differ-
ent primary tumors in animals a growth factor was pre-
dictably upregulated in serum, causing residual cancer
cells to convert from a non-cycling to a cycling phase,
resulting in significant reductions in tumor doubling
times and increased growth rates of distant metastases
[53]. The cancer cells responding to this growth factor
were thought to be a subpopulation of the total number
of cancer cells remaining, as multiple injections of post-
operative serum did not add to the observed increase in
proliferation [54]. The increase in the proliferation of
residual cancer cells was initially detected 24 hours after
removal of the primary tumor, peaking at approximately
48-72 hours and lasting for several days [53,54]. The sig-
nificant augmentation in proliferation noted by Fisher did
not occur unless the primary tumor was removed, as sham
surgery (amputation of a non-tumor bearing limb) failed
to result in a significant increase in the proliferation of
residual tumor cells [54].

How is this response triggered by primary tumor removal?
There are multiple theories about this, and they need not
be mutually exclusive. Primary tumor removal may
change the predominant growth factor expression pattern
in the host in such a way as to favor residual cancer cell
proliferation. For example, Li and colleagues suggest that
the increase in the proliferation of residual cancer cells
after primary tumor removal results from reduced concen-
trations of circulating angiostatin [55]. Others have sug-
gested that the immunosuppressive effects induced by
surgical trauma could allow residual cancer cell prolifera-
tion [56]. But as discussed above in Fisher's work, sham
surgery by itself did not result in a significant augmenta-
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tion in the growth of residual cancer cells - the primary
tumor had to be removed.

Another mechanism could be conceptualized by merging
the findings of Kaplan [16] with the empirical observation
that surgical removal of the primary tumor is often associ-
ated with the seeding of cancer cells into the blood. Such
an event should theoretically set in motion the pathway
uncovered by Kaplan's work, the pathway that it is being
argued here is simply a triggering of the normal wound
healing response. (Does this response require a critical
mass of circulating tumor cells to be activated? And if so,
what is that number?) Regardless of etiology, the impor-
tant findings of Fisher showing that primary tumor
removal is invariably associated with an increase in the
proliferation of residual cancer cells suggests that this
response is an adaptive mechanism utilized by residual
cancer cells to survive, and it may also be a response that
can be most effectively targeted when it is activated - the
perioperative period

Clinical trials evaluating perioperative chemotherapy

The empirical observations of Fisher, as well as some
mathematical arguments discussed below [57], prompted
clinical trials evaluating the effectiveness of administering
chemotherapy perioperatively. These trials have been lim-
ited and have yielded conflicting results. In a randomized
prospective trial in patients with breast cancer, Nissen-
Meyer and colleagues compared the effects of periopera-
tive cyclophosphamide with the same treatment adminis-
tered three weeks after surgery. They found that both
recurrence and mortality were significantly lower in the
patients receiving the perioperative treatment [58]. Simi-
larly, Sertoli and colleagues found that a single periopera-
tive cycle of cyclophosphamide, fluorouracil, and
epidoxorubicin yielded a statistically significant difference
in relapse free survival in ER- patients, with no effect in
hormonally positive patients [59]. An important follow-
up study confirmed the initial results noted by Nissen-
Meyer [60]. But in contrast to these findings, a large trial
in patients with early stage breast cancer did not find a sta-
tistically significant improvement in survival utilizing
cyclophosphamide perioperatively [61].

What are we to make of these disparate findings? Given
the very limited trials to date it remains an unanswered
question as to whether perioperative chemotherapy treat-
ment is more effective than chemotherapy started only
after the surgical wound has healed. It is important to note
that adjuvant chemotherapy of any kind has only been
confirmed to be effective over the last fifteen years [62-
64], and historically there has been real doubt whether
chemotherapy was of any benefit in the adjuvant setting.
But despite the fairly recent and very real success of chem-
otherapy in improving cure rates in the adjuvant setting,
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its ineffectiveness in the cure of metastatic cancer sustains
the pervasive nihilism that persists towards the disease,
perhaps limiting our ability to see what is possible with
the increasingly effective treatments now available to us.

Theoretical rationale for targeting residual cancer
perioperatively

Conceptually there are two ways of thinking why adjuvant
treatments should be more effective when administered
during the perioperative period rather than waiting 30
days or more after surgery. One is based on the kinetics of
cancer cell growth; the other on what I would describe as
the kinetics of the formation of the cellular infrastructure
necessary to support residual cancer cell survival and pro-
liferation. I shall take each of these concepts in turn.

The theoretical rationale for the increased effectiveness of
treating cancer perioperatively on the basis of cancer
kinetics is derived from the empirical observations of
Fisher and a few fundamental mathematical arguments.
Goldie and Coldman argued that delays in starting ther-
apy after surgical resection of the primary tumor result in
an increase in resistant tumor cells, and that the lowest
number of resistant tumor cells should be present imme-
diately after surgical debulking of the cancer and during
the perioperative period [57]. Gompertzian growth curves
applied to the kinetics of tumor growth predict that
microfoci of cancer deposits (the situation presumed to
exist after surgical removal of the primary tumor) will
grow rapidly owing to a higher percentage of cells in the
growth phase [65]. Given that rapidly cycling tumors are
often very sensitive to chemotherapy agents [66], and the
rare metastatic solid cancers curable with chemotherapy
have high rates of proliferation and sensitivity to chemo-
therapeutic agents [67], there are indeed good arguments
based strictly on kinetics for why the perioperative admin-
istration of chemotherapy should prove more effective.
Moreover, it is intuitive that for any finite log kill ratio one
can achieve with therapy, tumor eradication or cure is
more likely when the number of cells that have to be erad-
icated is less than the log kill ratio of the therapy used.
(The longer one waits before initiating therapy, given the
survival of residual cancer cells that are proliferating, the
greater is the number of cells that have to be eradicated to
effect cure.)

The importance of starting therapy quickly to avoid being
overwhelmed by a pathogenic multiplicative process is
already known in infectious disease management. For
example, one of the most important determinants of sur-
vival in sepsis is the prompt administration of effective
antibiotics [68]. Similarly, early administration of effec-
tive antiviral therapy to macaques after exposure to SIV (a
primate model of HIV) has been shown to reduce signifi-
cantly the risk of acquiring subsequent infection, while
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delays in initiating therapy are correspondingly less effec-
tive [69]. This basic science information has been trans-
lated into the treatment of individuals exposed to HIV.
Prompt treatment with effective antivirals after percutane-
ous exposure to HIV significantly reduces the risk of sub-
sequent infection [70]. Although the growth kinetics of a
rapidly replicating virus such as HIV are more rapid than
even the most aggressive of cancers, and the disease proc-
esses are different with different challenges, conceptually
they present a similar problem: Both are associated with
the inexorable increase of the cancer cell or pathogen over
time, with a correspondingly increased difficulty in eradi-
cation the later effective therapy is initiated. In fact, treat-
ment timing may be even more important in the case of
cancer given our inability to cure most solid cancers once
they have spread much beyond the primary tumor.

Despite the sound theoretical rationale for the periopera-
tive treatment of cancer on the basis of the kinetics of
residual cancer cell growth, it may be by targeting the
wound healing pathway and the formation of the cellular
infrastructure essential to residual cancer cell survival and
proliferation where perioperative treatment might prove
most beneficial. Based upon the wound healing pathway
described above the following events are occurring during
the 30 days or more that we now wait before starting adju-
vant therapy: angiogenesis; residual tumor cell and
fibroblast cell proliferation; collagen, thrombin, and
fibrinogen deposition and matrix formation; upregula-
tion of cell surface molecules such as the integrins and the
selectins enhancing circulating cancer cell adherence to
the microvasculature; and bone marrow derived progeni-
tor and endothelial cell migration to potential future met-
astatic sites and the formation there of "premetastatic
niches."

The biological requirements integral to the survival of a
cancer cell are likely very different when it is embedded
within a mature tumor microenvironment - composed of
stromal fibroblasts, myofibroblasts, and mature matrix —
than when it is pushed into the circulation or within
immature micrometastatic deposits. Cancer cells within a
mature tumor microenvironment are more likely to be
resistant to our chemotherapies for multiple reasons, both
conceptual and empirical. One reason is based strictly on
biophysical constraints imposed by volume and surface
area, as cancer therapies are not likely to reach cancer cells
within dense primary tumor stroma as easily as they
would if those cells were within nascent tumor microen-
vironments [71]. And once a cancer cell is safely embed-
ded within the tumor stroma it becomes significantly
more resistant to medical treatments. For example, cancer
cell adherence to the matrix substrata composed of colla-
gen and fibronectin is associated with cancer cell survival
and resistance to drug therapy in multiple cancers [72,73].
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Disrupting the wound healing process during the periop-
erative period may also improve our ability to eradicate
residual cancer stem cells. Recent discoveries suggest that
many tumors are composed of a heterogenous population
of cancer cells with a subpopulation of cancer stem cells
critical to the survival of the tumor and more resistant to
chemotherapy [74]. (Are the residual cancer cells noted by
Fisher to proliferate after primary tumor removal more
likely to be cancer stem cells?). If we can disrupt the
wound healing process and the production of the cellular
architecture necessary for residual cancer cell survival and
proliferation during the perioperative period, it should
theoretically enhance our ability to eradicate residual can-
cer stem cells, regardless of their sensitivity to chemother-

apy.

Back to the future: Targeting cancer perioperatively

The limited trials to date testing the effectiveness of treat-
ing cancer perioperatively have been evaluated almost
exclusively utilizing chemotherapeutic agents alone. But
not only do we have a better selection of chemotherapeu-
tic agents today than when the perioperative trials dis-
cussed above were conducted, we also have highly
effective targeted agents that are capable of disrupting var-
ious components of the wound-healing pathway, includ-
ing angiogenesis [75]. These therapies have already
proven effective in treating metastatic cancer and prolong-
ing survival [76]. But their true value is likely to be found
in the adjuvant setting, and in particular, during the peri-
operative period and the time when wound healing path-
ways can be effectively disrupted before residual cancer
cells are able to establish new micrometastatic deposits.

The critical importance of platelet activation and the trig-
gering of the coagulation pathway in the pathophysiology
of cardiovascular disease has spurred research that has
developed effective drugs interfering with various stages of
this process. But more and more experimental evidence
suggests that platelet activation and the triggering of the
coagulation cascade may also be very important in the
pathophysiology of cancer, particularly, in facilitating the
hematogenous spread of cancer. Given the abundance of
medicines that target platelets and vaious components of
the coagulation cascade now available, we can design
rational clinical trials that could utilize some of these
agents immediately after the primary tumor has been
removed. For example, the use of heparin, both unfrac-
tionated and low molecular weight heparin, has been
shown to hinder the binding of activated platelets to
tumor cells [77]. Something as simple as starting cancer
patients on anticoagulation with heparin after the primary
tumor has been removed may improve cure rates in a wide
variety of solid malignancies. And there is increasing
experimental evidence that by targeting certain integrin
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receptors important in platelet activation an effective dis-
ruption of tumor cell-platelet interactions can be achieved
[78].

Just as combination chemotherapy in general has proven
more effective in treating cancer than single agents, it
might be wise to employ multiple agents targeting various
components of the wound healing and inflammatory
pathway to target cancer perioperatively. Therapeutic
agents are already in development that target acute
inflammatory mediators such as TNF-a or IL-1 [79], and
their use immediately after surgery might be able to dis-
rupt the subsequent growth factor release essential to
residual cancer cell survival and proliferation. The SDF-1/
CXCR-4 axis facilitates the directed migration not only of
cancer cells but also the bone marrow derived progenitors
implicated in the development of the premetastatic niche
[80]. This critical communication pathway could also be
targeted, perhaps most effectively during the perioperative
period and before residual circulating cancer cells and
cancer stem cells can establish new micrometastatic
deposits.

I have said nothing about how treating cancer by targeting
wound healing pathways perioperatively might impede
surgical wound healing. Although this issue is non-trivial,
it is difficult to imagine that it should be an obstacle
impossible to overcome with aggressive monitoring and
using effective artificial wound closure techniques. One
could test the safety of targeting the systemic wound heal-
ing response by administering one or more of the agents
discussed above perioperatively in animals subjected to
surgical procedures mimicking the morbidity associated
with primary tumor removal. Although surgical wound
healing might well be delayed, and some complications
result, I suspect that most animals would survive these
treatments and return to normal health after being admin-
istered some of the compounds discussed above.

It is critically important to remember that persons who
undergo surgery to remove a cancerous tumor are at grave
risk of dying from cancer, and we must not allow the cur-
rent clinical focus on wound healing to blind us to this
vital consideration. This is particularly true since residual
cancer cells may be utilizing the wound healing pathway
to facilitate their survival and metastasis, and clinically
documented metastatic cancer is almost always a death
sentence. It may be during the perioperative period and
well before the surgical wound heals where our best
opportunity to eradicate any residual cancer lies. Clinical
trials are urgently needed to test the safety and efficacy of
perioperative cancer treatments that not only target the
cancer cell but the wound healing pathway utilized by the
cancer cell to proliferate and metastasize.
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Summary

1. New discoveries have revealed important parallels
between wound healing and metastasis, and cancer
cells may rely on these pathways to survive and metas-
tasize.

2. Primary tumor removal activates wound healing
pathways as a result of the surgical trauma, the
removal of the primary tumor, and the seeding of can-
cer cells into the circulation.

3. These pathways are activated immediately after sur-
gery, with the peak increase in the proliferation of
residual cancer cells occurring within 24-72 hours
after primary tumor removal.

4. Allowing wound healing to occur before initiating
therapy may be facilitating metastatic spread of the
cancer and compromising the subsequent effective-
ness of that therapy.

5. Clinical trials are needed to test the safety and effi-
cacy of administering adjuvant therapies periopera-
tively that target both residual cancer cells as well as
the wound healing pathways utilized by the cancer to
metastasize.
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