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Abstract

Background: IBC (Inflammatory Breast cancer) is a rare form of breast cancer with a particular
phenotype. New molecular targets are needed to improve the treatment of this rapidly fatal
disease. Given the role of NF-kB-related genes in cell proliferation, invasiveness, angiogenesis and
inflammation, we postulated that they might be deregulated in IBC.

Methods: We measured the mRNA expression levels of 60 NF-kB-related genes by using real-
time quantitative RT-PCR in a well-defined series of 35 IBCs, by comparison with 22 stage IIB and
Il non inflammatory breast cancers. Twenty-four distant metastases of breast cancer served as
"poor prognosis" breast tumor controls.

Results: Thirty-five (58%) of the 60 NF-«kB-related genes were significantly upregulated in IBC
compared with non IBC. The upregulated genes were NF-kB genes (NFKB/, RELA, IKBKG, NFKBIB,
NFKB2, REL, CHUK), apoptosis genes (MCLIL, TNFAIP3/A20, GADD45B, FASLG, MCLIS, IER3L,
TNFRSFI0B/TRAILR2), immune response genes (CD40, CD48, TNFSFI I/RANKL, TNFRSFI IA/RANK,
CCL2/MCP-1, CD40LG, ILI5, GBPI), proliferation genes (CCND2, CCND3, CSFIR, CSFI, SOD2),
tumor-promoting genes (CXCLI2, SELE, TNC, VCAMI, ICAMI, PLAU/UPA) or angiogenesis genes
(PTGS2/COX2, CXCLI/GROI). Only two of these 35 genes (PTGS2/COX2 and CXCLI/GRO l)were
also upregulated in breast cancer metastases. We identified a five-gene molecular signature that
matched patient outcomes, consisting of IL8 and VEGF plus three NF-kB-unrelated genes that we
had previously identified as prognostic markers in the same series of IBC.

Conclusion: The NF-xB pathway appears to play a major role in IBC, possibly contributing to the
unusual phenotype and aggressiveness of this form of breast cancer. Some upregulated NF-«kB-
related genes might serve as novel therapeutic targets in IBC.

Background sive breast inflammation, and an extreme tendency to
The main features distinguishing IBC (Inflammatory  metastasize. The three-year survival rate is about 40%,
Breast Cancer) from other forms of primary breast cancer =~ compared with 85% in non inflammatory breast cancer
are a unique phenotype, which includes rapidly progres-  [1]. The molecular mechanisms underlying these charac-
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teristics are largely unknown, but their identification
could help with diagnosis, patient stratification and drug
development.

We and others have described several molecular altera-
tions in IBC, such as frequent hormone receptor negativ-
ity, TP53 mutations and HER2/neu amplification [2-5]. In
vitro and in vivo studies have implicated RhoC, MUC]1, E-
cadherin and LIBC/WISP3 in the pathogenesis of IBC. The
expression of some of these genes is altered in human IBC
tumors [6]. However, none of these genetic alterations is
specific to the particular phenotype of IBC.

The advent of novel analytical methods such as DNA
microarrays has helped to identify molecular signatures
for various malignancies. In non inflammatory breast can-
cer, DNA microarray-based studies have distinguished
tumor subclasses with distinct prognoses [7,8]. Few DNA
microarray-based studies have been performed in IBC [9-
11]. One such study identified a set of 109 genes whose
expression discriminated 37 IBCs from 44 non IBCs [9].
These 109 genes, some of which were NF-kB-related, were
mainly associated with signal transduction, cell motility,
invasion, angiogenesis and local inflammatory processes.
Another genome-wide expression profiling study compar-
ing 16 IBCs with 18 non stage-matched non IBCs identi-
fied a large number of overexpressed NF-«kB-related genes
[10]. Using real-time RT-PCR, immunohistochemistry
and NF-«xB-DNA-binding assays, the same authors
recently confirmed the contribution of some of these NF-
kB-related genes in IBC [12]. In a previous study of IBC, in
which we analyzed the expression of 538 cancer genes by
using real-time RT-PCR, we also observed abnormal
expression of several NF-kB-associated genes [13].

NF-kB-regulated genes are involved in invasiveness, pro-
liferation, angiogenesis, lymphangiogenesis and inflam-
mation, and are therefore good candidates for explaining
the particular characteristics of IBC [14,15]. Increasing
evidence suggests that NF-kB-associated pathways are dys-
regulated in numerous malignancies, including breast
cancer [16-20].

To confirm the role of NF-kB target genes in IBC tumori-
genesis, we focused on 60 key genes involved in the NF-
kB pathway [14,15,21]. We chose real-time quantitative
RT-PCR to measure the expression levels of these 60 genes
in a well-characterized series of 35 human IBC samples
relative to a series of 22 non IBC tumors and 24 distant
metastases of breast cancer ("poor prognosis" controls).

Methods

Patients and samples

The IBC samples were surgical biopsy specimens obtained
from 35 women treated at Saint-Louis Hospital, Paris,
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France, between 1988 and 1995. IBC was diagnosed on
the basis of rapidly progressive signs such as localized or
generalized induration, redness and edema of the breast
(stage T4d in the 1977 UICC classification). The 35 IBCs
were also classified using a staging system named 'Poussee
Evolutive' (PEV) developed by Gustave-Roussy investiga-
tors in an attempt to refine prognostication in IBC. This
staging system takes into consideration aggressiveness of
the tumor and signs of inflammation [22]. Using this sys-
tem, both PEV2 and PEV3 are consistent with IBC. In 13
patients the entire affected breast was inflammatory (stage
PEV3), while in 22 patients the inflammation was local-
ized (stage PEV2).

All biopsies were performed before treatment, and infil-
trating carcinoma was documented histologically in every
case. All the patients underwent first-line high-dose
anthracycline-based chemotherapy followed by local
treatment. At the time of this analysis, 26 patients had
relapsed and 9 remained disease-free. Each patient gave
written informed consent. The Local Ethical Committee
approved this study.

As "non IBC" controls, we used specimens of 22 non
inflammatory locally advanced breast cancers (LABCs), of
which 6 were stage IIb and 16 were non inflammatory
stage III. These 22 non IBC controls were all high-grade
invasive ductal carcinomas (Scarff-Bloom-Richardson his-
topathological grade I11). The mRNA levels of the 60 genes
in IBCs were expressed relative to those in non IBCs.

As "poor prognosis breast tumor controls" we used biop-
sies of 24 distant metastases (10 liver, 7 lung, 4 skin, 2
ovary and 1 stomach) of non IBCs distinct from the 22
"non IBC" controls.

The tumor samples were flash-frozen in liquid nitrogen
and stored at -80°C until RNA extraction. Only tumor
samples containing more than 70% of tumor cells were
used.

Real-time RT-PCR

The theoretical and practical aspects of real-time quantita-
tive RT-PCR using the ABI Prism 7700 Sequence Detection
System (Perkin-Elmer Applied Biosystems) have been
described in detail elsewhere [13].

The precise amount of total RNA added to each reaction
mix (based on optical density) and its quality (i.e. lack of
extensive degradation) are both difficult to assess. We
therefore also quantified transcripts of two endogenous
RNA control genes involved in two cellular metabolic
pathways,  namely  TBP (Genbank  accession
NM_003194), which encodes the TATA box-binding pro-
tein (a component of the DNA-binding protein complex
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TFIID), and RPLPO (NM_001002), which encodes human
acidic ribosomal phosphoprotein PO. The results for each
sample were normalized on the basis of the correspond-
ing TBP (or RPLPO) mRNA content. We selected TBP as an
endogenous control because its transcripts are moderately
abundant, and because there are no known TBP retrop-
seudogenes. [Retropseudogenes lead to co-amplification
of contaminating genomic DNA and thus interfere with
RT-PCR, despite the use of primers in separate exons.| We
also selected RPLPO because its transcripts are more abun-
dant than those of TBP, and because this gene (better
known as 36B4) is widely used as an endogenous control
for northern blot analysis. Results, expressed as N-fold dif-
ferences in target gene expression relative to the TBP (or
RPLPO) gene, and termed "Ntarget", were determined as
Ntarget = 24Ctsample where the ACt (cycle threshold) value
of the sample was determined by subtracting the average
Ctvalue of the target gene from the average Ct value of the
TBP (or RPLPO) gene.

The Ntarget values of the samples were subsequently nor-
malized such that the median of the non IBC Ntarget val-
ues was 1.

Primers for TBP, RPLP0 and the 60 target genes (see Table
1) were chosen with the assistance of the Oligo 5.0 com-
puter program (National Biosciences, Plymouth, MN).

We searched the dbEST and nr databases to confirm the
total gene specificity of the nucleotide sequences chosen
as primers, and the absence of single nucleotide polymor-
phisms. In particular, the primer pairs were selected to be
unique relative to the sequences of closely related family
member genes or of the corresponding retropseudogenes.
To avoid amplification of contaminating genomic DNA,
one of the two primers was placed at the junction between
two exons, if possible. In general, amplicons were
between 60 and 120 nucleotides long. Gel electrophoresis
was used to verify the specificity of PCR amplicons.

For each primer pair we performed no-template control
(NTC) and no-reverse-transcriptase control (RT-negative)
assays, which produced negligible signals (usually > 40 in
Ct values), suggesting that primer-dimer formation and
genomic DNA contamination effects were negligible.

The RNA extraction, cDNA synthesis and PCR conditions
have been described in detail elsewhere [13].

Statistical analysis

As the mRNA levels did not fit a Gaussian distribution, (a)
the mRNA levels in each subgroup of samples were char-
acterized by their median and range rather than their
mean and coefficient of variation, and (b) relationships
between the molecular markers and clinical and histolog-
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ical parameters were tested with the non parametric
Mann-Whitney U test [23].

Hierarchical clustering was done with GeneANOVA soft-
ware [24].

Results

mRNA expression of the 60 NF-xB-associated genes,
ESRI/ERa and MKI67 in 35 IBCs and 22 non IBCs

The expression level of the 60 genes was determined indi-
vidually in 35 IBCs and 22 non IBCs. Very low levels of
target gene mRNA, that were detectable but not reliably
quantifiable by real-time quantitative RT-PCR (Ct > 32),
were observed for 4 (7%) of the 60 genes (IL1A, IL6,
IL12B, and CSF2).

Thirty-five of the remaining 56 genes were significantly
upregulated in the 35 IBCs relative to the 22 non IBCs (p
< 0.05; Table 2). Only one gene, BIRC4/XIAP, was signifi-
cantly down-regulated in the IBCs.

The 35 upregulated genes included NF-xB genes (NFKB1,
RELA, IKBKG, NFKBIB, NFKB2, REL, CHUK) and NF-xB-
regulated genes involved in apoptosis (MCL1L, TNFAIP3/
A20, GADD45B, FASLG, MCLI1S, IER3L, TNFRSF10B/
TRAILR2), immune response (CD40, CD48, TNFSF11/
RANKL, TNFRSF11A/RANK, CCL2/MCP-1, CD40LG, IL15,
GBP1), proliferation (CCND2, CCND3, CSFIR, CSF1,
SOD?2), tumor progression (CXCL12, SELE, TNC, VCAM1,
ICAM1, PLAU/UPA) or angiogenesis (PTGS2/COX2,
CXCL1/GRO1).

The expression of most of the 35 genes that were upregu-
lated in IBCs was similar in the metastases and the 22 non
IBCs (Table 2). Only two (PTGS2/COX2 and CXCL1/
GRO1) of these 35 genes were also upregulated in the
metastases relative to the 22 non IBCs (Table 2). It is note-
worthy that these two genes correspond to the two angio-
genesis genes that were significantly upregulated in the 35
IBCs. Finally, six genes (CSF1R, CD48, IKBKG, CD40LG,
CSF1, and REL) were slightly down-regulated in the
metastases relative to the non IBCs (Table 2).

In the same set of 35 IBCs and 22 non IBCs we also exam-
ined the expression of the ESR1/ER« gene and the MKI67
gene, the latter encoding the proliferation-related antigen
Ki-67. ESR1/ERa and MKI67 expression was similar in the
IBCs and non IBCs, indicating that NF-kB gene upregula-
tion in IBCs occurs in a proliferation- and ERa-independ-
ent fashion (Table 2).

The mRNA levels reported in Table 2 (calculated as
described in Materials and Methods) show the abundance
of the target relative to the endogenous control (TBP),
used to normalize the starting amount and quality of total
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Gene symbols Alternate Gene name Chromosome Genbank accession
symbols location number
NFKB genes (n=11)
NFKBI Nuclear factor of kappa light polypeptide gene 4q24 NM_003998
enhancer in B-cells | (p105)
NFKB2 Nuclear factor of kappa light polypeptide gene 10q24 NM_002502
enhancer in B-cells 2 (p49/p100)
REL v-rel reticuloendotheliosis viral oncogene homolog 2pl3-pl2 NM_002908
RELA NFKB3 v-rel reticuloendotheliosis viral oncogene homolog A 11ql3 NM_021975
(p65)
RELB v-rel reticuloendotheliosis viral oncogene homolog B 19q13.32 NM_006509
CHUK IKBKA Conserved helix-loop-helix ubiquitous kinase 10q24-q25 NM 001278
IKBKB Inhibitor of kappa light polypeptide gene enhancerin ~ 8pl 1.2 NM 001556
B-cells, kinase beta
IKBKG Inhibitor of kappa light polypeptide gene enhancer in ~ Xq28 NM_003639
B-cells, kinase gamma
NLK Nemo like kinase 17ql1.2 NM 016231
NFKBIA Nuclear factor of kappa light polypeptide gene 14q13 NM_020529
enhancer in B-cells inhibitor, alpha
NFKBIB Nuclear factor of kappa light polypeptide gene 19q13.1 NM_1001716
enhancer in B-cells inhibitor, beta
Apoptosis (n = 12)
BCL2AI BFLI/AI Baculoviral IAP repeat-containing 2 15q24.3 NM_004049
GADD45B Growth arrest and DNA-damage-inducible, beta 19p13.3 NM_015675
TNFRSFI10B TRAILR2, Tumor necrosis factor receptor superfamily, member  8p22-p21 NM_003842
DR5 10b
FASLG FASL, Fas ligand (TNF superfamily, member 6) 1923 NM_000639
TNFSFé6
BIRC4 XIAP Baculoviral IAP repeat-containing 4 Xq25 NM_001167
TNFAIP3 A20 Tumor necrosis factor, alpha-induced protein 3 6q23 NM_006290
TRAF2 TNF receptor-associated factor 2 9q34 NM 021138
IER3S Immediate early response 3, large transcript 6p21.3 NM 003897
IER3L Immediate early response 3, short transcript 6p21.3 NM_052815
BIRC2 c-IAPI Baculoviral AP repeat-containing 2 11922 NM_ 001166
MCLIS Myeloid cell leukemia sequence | (BCL2-related), Iq21 NM_ 182763
short transcript
MCLIL Myeloid cell leukemia sequence | (BCL2-related), Iq2l NM 021960
large transcript
Immune response (n = 15)
ILIA Interleukin 1, alpha 2ql4 NM 000575
ILIB Interleukin |, beta 2ql4 NM 000576
IL6 Interleukin 6 (interferon, beta 2) 7p21 NM_000600
ILI2B Interleukin |12B (natural killer cell stimulatory factor 2, 5q31.1-q33.1 NM_002187
cytotoxic lymphocyte maturation factor 2, p40)
ILI5 Interleukin 15 4q31 NM_000585
CCL2 MCP-1 Chemokine (C-C motif) ligand 2 17q11.2-q21.1 NM_002982
CCRS Chemokine (C-C motif) receptor 5 3p2l NM_000579
TNFRSFI 1A RANK Tumor necrosis factor receptor superfamily, member  18q22.1 NM_003839
I 1a, activator of NFKB
TNFSFI 1 RANKL Tumor necrosis factor (ligand) superfamily, member 13ql14 NM_ 003701
I
TNF Tumor necrosis factor (TNF superfamily, member 2)  6p21.3 NM_000594
IRF7 Interferon regulatory factor 7 I1pl5.5 NM 001572
GBPI Guanylate binding protein |, interferon-inducible, 1p22.2 NM_002053
67kDa
CD40 CDA40 antigen (TNF receptor superfamily member 5)  20q12-ql3.1 NM 001250
CD40LG CDA40 ligand (TNF superfamily, member 5, hyper-IgM  Xq26 NM_000074
syndrome)
CD48 CD48 molecule 1q21.3-q22 NM 001778
Cell Proliferation (n = 8)
CSFI Colony stimulating factor | (macrophage) Ip21-pl3 NM_000757
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CSFIR Colony stimulating factor | receptor, formerly 5933-q35 NM_005211
McDonough feline sarcoma viral (v-fms) oncogene
homolog

CSF2 Colony stimulating factor 2 (granulocyte-macrophage) 5q31.1 NM_000758

CCNDI Cyclin DI (PRADI: parathyroid adenomatosis 1) I1ql3 NM 053056

CCND2 Cyclin D2 12p13 NM_001759

CCND3 Cyclin D3 6p21.3 NM_001760

CCNGlI Cyclin GI 5q32-q34 NM_004060

SOD2 Mn-SOD Superoxide dismutase 2, mitochondrial 6q25.3 NM_000636

Tumor progression (n = 10)

MMP9 Matrix metalloproteinase 9 (gelatinase B, 92 kDa type  20ql 1.2-ql3.1 NM_ 004994
IV collagenase)

MMPI | Matrix metalloproteinase || (stromelysin 3) 22ql1.23 NM_005931

PLAU UPA Plasminogen activator, urokinase 10q24 NM 002658

CTSB Cathepsin B 8p22 NM_ 001908

CXCR4 Chemokine (C-X-C motif) receptor 4 2q21 NM_003467

CXCLI2 SDFI Chemokine (C-X-C motif) ligand 12 (stromal cell- 10gl 1.1 NM_000609
derived factor 1)

ICAMI Intercellular adhesion molecule | (CD54), human 19p13.3-pl13.2 NM_000201
rhinovirus receptor

VCAMI Vascular cell adhesion molecule | 1p32-p31 NM 001078

SELE ELAMI Selectin E (endothelial adhesion molecule |) 1922-q25 NM_000450

TNC HXB Tenascin C (hexabrachion) 9q33 NM_002160

Angiogenesis (n = 4)

IL8 Interleukin 8 4ql3-q21 NM_000584

CXCLI GROI Chemokine (C-X-C motif) ligand | (melanoma growth  4q21 NM_001511
stimulating activity, alpha)

VEGF VEGFA Vascular endothelial growth factor 6pl2 NM_003376

PTGS2 COX2 Prostaglandin-endoperoxide synthetase 2 1925.2-q25.3 NM_000963

RNA. Similar results were obtained with a second endog-
enous control, RPLPO (data not shown).

Identification of a gene expression signature
discriminating IBCs from non IBCs

Hierarchical clustering analysis was used to group the 28
most strongly upregulated genes (p < 0.01) on the basis of
similarity in the pattern with which their expression var-
ied over the 57 tumors (IBCs and non IBCs). The 28 genes
were thus divided into six groups (Figure 1).

We then selected six "master genes", namely TNFAIP3/
A20, SELE, COX2, CXCL12, CCND3, and IER3L, corre-
sponding to the most discriminatory genes in each group
(based on the p values, cf. Table 2). Hierarchical clustering
of the 35 IBC and 22 non IBC samples, based on the
expression of these six master genes (see dendrogram in
Figure 2) identified two groups of tumor samples, with
96.3% (26/27) of IBCs clustered in one group and 30%
(9/30) in the second group (p = 0.0000003). The signa-
ture correctly classified 26 of 35 IBCs (74% sensitivity)
and 21 of 22 non IBCs (95% specificity).

mRNA expression of the 56 candidate genes according to
IBC relapse status

Twenty-six (74%) of the 35 patients with IBC relapsed, a
proportion in keeping with published data [25]. Compar-
ison of the median mRNA levels of the 56 candidate genes

between patients who relapsed (n = 26) and patients who
did not relapse (n = 9) identified two genes -VEGF (p =
0.048) and IL8 (p = 0.042)- with lower expression in
patients who relapsed.

In the same series of IBCs, we had previously identified a
three-gene expression profile based on MYCN, EREG, and
SHH (genes not involved in the NF-«xB pathway) which
discriminated cases with poor, intermediate and good
outcome [13].

Hierarchical clustering analysis of the 35 IBCs based on a
five-gene signature including the three previously identi-
fied genes (MYCN, EREG, and SHH) and the two genes
identified here (VEGF and IL8) subdivided the patients
into three groups with significantly different outcomes (p
= 0.009; Figure 3): two groups of patients had very poor
outcomes (respectively 100% and 88.9% relapsed),
whereas 50% of the patients in the third group were free
of relapse at the time of this analysis

Discussion

IBC is a poorly understood disease with a dismal progno-
sis. Diagnosis is based on variously appreciated clinical
signs, and prognostic factors are sorely needed. Despite
multimodality treatments, the overall outcome of IBC is
almost as grim as that of metastatic breast cancer [25,26].
Identification of a molecular signature might help to
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http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_000963
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Table 2: List of the significantly dysregulated NF-KB-related genes in IBCs relative to non IBCs

GENES non IBC (n = 22) IBC (n = 35) pb Metastases (n = 24) pc
Upregulated genes in IBC
CXCLI2 1,0 (0,3-8,1)2 6,2 (0,3-1) 0,0000048 1,5 (0,1-20,1) 0,2 (NS)
PTGS2/COX2 1,0 (0,2-28,7) 8,1 (0,2-62,6) 0,000013 8,9 (0,1-397,2) 0,000018
CCND2 1,0 (0,24,8) 2,8 (0,5-15,3) 0,000025 0,7 (0,1-15,3) 0,14 (NS)
MCLIL 1,0 (0,5-7,8) 2 (0,6-5,8) 0,000035 1,1 (0,2-4,7) 0,74 (NS)
TNFAIP3/A20 1,0 (0,4-2,7) 2,6 (0,3-12,8) 0,000042 0,9 (0,2-9,1) 0,83 (NS)
GADD45B 1,0 (0,1-12,4) 2,9 (0,1-7,3) 0,000059 1,1 (0,2-7,5) 0,19 (NS)
FASLG 1,0 (0,1-2,5) 1,8 (0,3-5,6) 0,00011 0,7 (0,1-7,2) 0,28 (NS)
CXCLIIGROI 1,0 (0,1-108,7) 5,8 (0,2-73,4) 0,00016 5,3 (0,1-149,2) 0,0026
MCLIS 1,0 (0,3-3,1) 2,5 (0,5-9,2) 0,00018 1,4 (0,3-7,0) 0,12 (NS)
NFKBI 1,0 (0,4-11,1) 2,1 (0,2-8,0) 0,00025 0,8 (0,2-2,9) 0,92 (NS)
CCND3 1,0 (0,5-3,5) 1,5 (0,7-24,4) 0,00038 0,8 (0,3-3,3) 0,22 (NS)
SELE 1,0 (0,1-3,5) 3,4 (0,2-212,0) 0,00053 0,7 (0,0-21,7) 0,15 (NS)
TNC 1,0 (0,1-30,3) 2,9 (0,3-33,4) 0,00051 0,8 (0,1-16,2) 0,29 (NS)
VCAMI 1,0 (0,4-4,0) 2,1 (0,9-16,3) 0,00051 1,1 (0,1-7,0) 0,92 (NS)
CD40 1,0 (0,3-4,0) 2,7 (0,2-48,0) 0,00076 0,7 (0,1-9,6) 0,07 (NS)
CSFIR 1,0 (0,2-3,8) 2,1 (0,3-25,4) 0,0012 0,6 (0,1-3,1) 0,028
Ccb48 1,0 (0,06-8,39) 3,07 (0,05-46,98) 0,0017 0,54 (0,02-6,41) 0,036
TNFSF I | /RANKL 1,0 (0,10-6,0) 4,2 (0,3-358,3) 0,0019 0,9 (0,1-19,1) 0,86 (NS)
IER3L 1,0 (0,1-4,8) 2,7 (0,2-19,2) 0,0022 1,1 (0,1-27,6) 0,80 (NS)
TNFRSF I IA/RANK 1,0 (0,2-3,4) 1,7 (0,1-30,1) 0,003 1,2 (0,1-14,2) 0,66 (NS)
RELA 1,0 (0,3-4,5) 1,3 (0,6-4,5) 0,0031 0,9 (0,3-2,3) 0,65 (NS)
CCL2/IMCP-1 1,0 (0,2-3,6) 2,1 (0,5-8,0) 0,0039 1,4 (0,1-10,5) 0,21 (NS)
IKBKG 1,0 (0,4-10,2) 1,4 (0,6-5,2) 0,0057 0,7 (0,2-3,7) 0,039
TNFRSF10B/TRAILR2 1,0 (0,2-2,8) 1,4 (0,3-5,2) 0,0067 1,1 (0,1-12,3) 0,76 (NS)
NFKBIB 1,0 (0,5-6,7) 1,6 (0,4-7,0) 0,0074 0,8 (0,3-5,3) 0,58 (NS)
ICAM| 1,0 (0,24,3) 1,9 (0,2-19,0) 0,0083 0,9 (0,1-28,1) 0,38 (NS)
CD40LG 1,0 (0,1-5,0) 2,6 (0,1-30,3) 0,0096 0,7 (0,1-3,1) 0,03
CSFI 1,0 (0,1-3,9) 1,8 (0,3-11,7) 0,0096 0,6 (0,1-2,9) 0,044
PLAU/UPA 1,0 (0,2-16,2) 2,0 (0,4-17,6) 0,011 0,7 (0,1-18,7) 0,21 (NS)
NFKB2 1,0 (0,3-3,2) 1,4 (0,4-10,8) 0,018 0,6 (0,2-4,7) 0,07(NS)
ILI5 1,0 (0,00-7,08) 1,72 (0,12-9,67) 0,021 1,40 (0,06-8,48) 0,20 (NS)
GBPI 1,0 (0,17-3,71) 1,35 (0,34-7,06) 0,032 0,78 (0,13-9,64) 0,99 (NS)
REL 1,0 (0,3-3,3) 1,4 (0,2-6,6) 0,039 0,5 (0,2-1,5) 0,002
SOD2 1,0 (0,43-3,89) 1,34 (0,26-7,96) 0,042 1,16 (0,40-4,01) 0,38 (NS)
CHUK 1,0 (0,4-2,4) 1,1 (0,54,6) 0,048 0,7 (0,2-2,1) 0,25 (NS)
Downregulated gene in IBC
BIRC4/XIAP 1,0 (0,2—4,0) 0,6 (0,1-1,7) 0,026 0,9 (0,2-15,0) 0,56 (NS)
MKI67 1,0 (0,4-2,8) 1,1 (0,2-9,4) 0,37 (NS) 1,1 (0,1-1327,8) 0,46 (NS)
ESRI/ERa 1,0 (0,0-23,2) 0,2 (0,0-7,9) 0,070 (NS) 0,1 (0,0-163,5) 0,13 (NS)

2 Median (range) of gene mRNA levels
b Mann-Whitney U test: IBC vs non IBC
€ Mann-Whitney U test: Metastases vs non IBC

improve the diagnosis, as well as the prognostication and
targeted therapy of IBC. The specific molecular alterations
underlying IBC are largely unknown, owing to the rarity
of the disease together with diagnostic uncertainties and
the small size of diagnostic samples, which may have hin-
dered past molecular studies. Moreover, previous molecu-
lar studies often grouped IBCs together with non
inflammatory LABCs, whereas IBC was recently shown to
be distinct from other forms of LABC, probably with dif-
ferent underlying molecular alterations [27,28].

Two major lines of evidence implicate NF-xB-associated
pathways in IBC. First, NF-kB target genes are involved in
the principal processes that are dysregulated at the clinical
and molecular level in IBC, such as inflammation, prolif-
eration and invasiveness [14,15]. Second, recent DNA
microarrays studies of IBC have shown abnormal expres-
sion of some NF-kB target genes [9,10].

Real-time quantitative RT-PCR is complementary to

c¢DNA microarray technology for tumor molecular profil-
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Figure |

Dendrogram of the 28 most strongly upregulated genes (p < 0.01) constructed using hierarchical clustering,
according to the gene profiling of the 57 IBCs and non IBCs. The 28 genes were categorized into 6 groups. The 6 most
strongly upregulated genes (named master gene) within each group are indicated on the right (TNFAIP3/A20, SELE, COX2,

CXCL12, CCND3, IER3L). 22 Mann-Whitney U Test (see table 2).

ing, being quantitative and also far more precise and
reproducible. Moreover, RT-PCR is useful for analyzing
weakly expressed genes, such as COX2, CXCL1/GRO1,
TNFSF11/RANKL and CD40LG in the present study.

By using RT-PCR to compare the mRNA levels of 538 can-
cer genes in the same series of IBCs and non IBCs, we pre-
viously showed the upregulation of genes that mainly
encoded AP1 transcription factors, but also some NF-«xB
target genes like COX2 and VEGF [13]. As the list of NF-
kB-associated genes of interest was very incomplete in this
previous study, we thoroughly scrutinized the literature
on NF-«B for the present study [14,15,21]. A set of 60
major NFKB-related genes was selected for this analysis
(Table 1).

The very high proportion (58%) of upregulated NF-kB-
associated genes in our series of IBC was not entirely unex-
pected, given the functional roles of these genes in inva-
siveness, angiogenesis, inflammation, cell proliferation
and survival. In their DNA microarray study, van Laere et
al also observed a noteworthy proportion of overex-
pressed NF-kB target genes [10]. More recently, the same
authors confirmed the involvement of some of these
genes in IBC [12]. In particular, they validated by quanti-
tative real-time RT-PCR the overexpression of 7 NF-«kB-tar-
get genes (VCAM1, CCR5, SOD2, CTSB, IRF7, GBP1, and
CD48) previously detected by them using cDNA microar-
rays [10,12]. We tested these seven genes in our series;
VCAM1, CD48, GBP1 and SOD2 also showed a moder-
ately significant overexpression in IBC relative to the non
IBCs, whereas CCR5, IRF7 and CTSB did not (Table 2).
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Figure 2

Dendrogram of the 35 IBCs and the 22 non IBC samples, constructed using hierarchical clustering, according to the expression
of 6 genes, i.e. TNFAIP3/A20, SELE, COX2, CXCLI2, CCND3, and IER3L. This analysis revealed two groups of tumors with 96,3%
(26/27) of IBCs clustered in one group and 30% (9/30) in the second group.
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Figure 3

Dendrogram of 26 IBCs who relapsed (R) and 9 who did not relapse (circled) constructed by hierarchical clustering, according
to MYCN/EREG/SHH/IL8/VEGF expression. The percentage of patients who relapsed are indicated on the right.

One very interesting finding here is that the gene expres-
sion profile of 24 distant breast metastases was quite dif-
ferent from that of the 35 IBCs, as all the NF-«kB-associated
genes were expressed at similar levels in the 24 metastatic
samples and the 22 non IBCs (except for the two angio-
genesis-related genes PTGS2/COX2 and CXCL1/GRO1).
This further supports a strong specific link between NF-kB
gene activation and the IBC phenotype.

CXCL12, COX2, CCND2, MCLI1L, TNFAIP3/A20, and
GADD45B were the most strongly deregulated genes in
our series of IBC. CXCL12 and its receptor CXCR4 play
major roles in embryogenesis, homeostasis and inflam-
mation. They are also key regulators of carcinogenesis, act-
ing through a wide range of mechanisms such as increased
survival and proliferation of cancer cells, angiogenesis and
chemoinvasion [29]. Many studies have now validated
the concept that this receptor-ligand pair strongly influ-
ences metastasis, in particular by directing the migration

of cancer cells to sites of metastasis. The role of COX2 in
mammary oncogenesis is also well established, and clini-
cal trials of COX2 inhibitors like celecoxib are ongoing in
breast cancer [30]. However, COX2 was also upregulated
in the breast-cancer metastases and was thus not specifi-
cally dysregulated in IBC, contrary to most of the other
NF-kB-associated genes tested here (Table 2). We
observed an overexpression of three anti-apoptotic genes:
i.e. MCL1L, TNFAIP3/A20, and GADD45B. Van Laere et al.
also observed elevated GADD45B expression in IBC sam-
ples [10]. The activation of NF-kB-dependent anti-apop-
totic genes may promote IBC tumorigenesis, as it has been
shown in other inflammation-associated tumor types
[31]. However, what matters in IBC is probably not the
overexpression of a particular NF-xB-associated gene but
rather the activation of the entire NF-xB pathway.

We think that one of the best ways to identify specific
molecular alterations in IBC is to use "stage-matched"
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non inflammatory breast tumors as controls, and to
strictly select patients with IBC. This approach can point
out genes that are specifically associated with the IBC phe-
notype rather than with a poor prognosis in general.
Applying these criteria, we identified a six-gene signature
(TNFAIP3/A20, SELE, COX2, CXCL12, CCND3, IER3L)
discriminating IBC from non IBC. However, nine IBCs
were misclassified as non IBCs, even though they did not
differ from the other 26 IBCs in terms of patient age, his-
tological grade, hormone receptor status, PEV classifica-
tion or prognosis (data not shown). The 6-gene signature
was tested on an independent series of 37 IBCs and 44
non IBCs studied using cDNA microarrays [9]. Two genes
(CCND3 and SELE) significantly discriminated the 37 IBC
from the 44 non IBCs (p = 0,01; Bertucci F, personal data).
The other four genes (TNFAIP3/A20, COX2, CXCL12, and
IER3L) were not expressed at significant levels (> 2 x back-
ground signal in at least 50% of all tumor samples).
Unfortunately, we could not test the signature at the pro-
tein level because no more paired paraffin-embedded
tumor samples were available for immunohistochemistry
(IHC) analysis. It will be important to perform the IHC on
an independent prospective series of IBC samples.

Contrary to some DNA anomalies that we have previously
observed in IBC by means of allelic imbalance analysis,
we found no significant difference here in NF-kB-associ-
ated gene expression levels between PEV2 tumors (local-
ized inflammation) and PEV3 tumors (extensive
inflammation and poorer prognosis than PEV2 tumors)
[32]. In particular, our previous study showed that 17q21
deletion was more frequent in PEV3 tumors. However,
none of the genes found to be upregulated in the present
study is located in this region. Finally, it should be borne
in mind that several genes may be altered in all IBCs while
others are specifically altered in certain IBC subtypes.

We also examined the prognostic significance of NF-kB-
associated genes in IBC. Although the statistical signifi-
cance was weak, we found that lower VEGF and IL8
expression was associated with relapse. This is surprising,
as both genes promote angiogenesis. Furthermore, a five-
gene expression profile with VEGF, IL8 and the three
genes (MYCN, SHH, and EREG) that we previously
showed to be associated with outcome in the same series
of IBCs [13] clearly delineated two subgroups of IBC with
high (near 100%) and low (50%) relapse rates (Figure 3).

Conclusion

These results demonstrate that the NF-«B pathway plays a
major role in IBC. Activation of NF-kB-associated genes
appears to contribute to the IBC phenotype and may
prove to be of prognostic significance. Furthermore,
upregulated NF-kB-related genes might serve as novel
therapeutic targets in IBC. It is noteworthy that several NF-

http://www.biomedcentral.com/1471-2407/8/41

kB inhibitors are known to have antitumoral activity in
breast cancer [33,34] and that one has been shown to halt
the growth of IBC xenografts, either alone or in combina-
tion with an anthracycline [35,36].
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