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Abstract
Background: Given the large number of genes purported to be prognostic for breast cancer, it
would be optimal if the genes identified are not confounded by the continuously changing systemic
therapies. The aim of this study was to discover and validate a breast cancer prognostic expression
signature for distant metastasis in untreated, early stage, lymph node-negative (N-) estrogen
receptor-positive (ER+) patients with extensive follow-up times.

Methods: 197 genes previously associated with metastasis and ER status were profiled from 142
untreated breast cancer subjects. A "metastasis score" (MS) representing fourteen differentially
expressed genes was developed and evaluated for its association with distant-metastasis-free
survival (DMFS). Categorical risk classification was established from the continuous MS and further
evaluated on an independent set of 279 untreated subjects. A third set of 45 subjects was tested
to determine the prognostic performance of the MS in tamoxifen-treated women.
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Results: A 14-gene signature was found to be significantly associated (p < 0.05) with distant
metastasis in a training set and subsequently in an independent validation set. In the validation set,
the hazard ratios (HR) of the high risk compared to low risk groups were 4.02 (95% CI 1.91–8.44)
for the endpoint of DMFS and 1.97 (95% CI 1.28 to 3.04) for overall survival after adjustment for
age, tumor size and grade. The low and high MS risk groups had 10-year estimates (95% CI) of 96%
(90–99%) and 72% (64–78%) respectively, for DMFS and 91% (84–95%) and 68% (61–75%),
respectively for overall survival. Performance characteristics of the signature in the two sets were
similar. Ki-67 labeling index (LI) was predictive for recurrent disease in the training set, but lost
significance after adjustment for the expression signature. In a study of tamoxifen-treated patients,
the HR for DMFS in high compared to low risk groups was 3.61 (95% CI 0.86–15.14).

Conclusion: The 14-gene signature is significantly associated with risk of distant metastasis. The
signature has a predominance of proliferation genes which have prognostic significance above that
of Ki-67 LI and may aid in prioritizing future mechanistic studies and therapeutic interventions.

Background
Despite considerable progress over past decades, breast can-
cer remains the most frequent major cancer and the second
most common cause of cancer-death in women, with
approximately half of new cases being estrogen-receptor pos-
itive and lymph-node negative. Recurrence at a distant site is
a key driver of mortality from breast cancer.

Hormone receptor status provides critically important
classification of outcome and clinical benefit from adju-
vant endocrine therapies. However, future progress
against breast cancer will depend, in part, on expanding
knowledge regarding novel constellations of genes
involved in the risk of micrometastatic spread and subse-
quent progression. It is optimal that, where possible, the
prognostic effects of these genes are discovered in a con-
text not confounded by the continuously changing field of
systemic therapy. The use of untreated patients for discov-
ery and validation permits unequivocal identification of
prognostic genes not confounded with response genes,
thereby permitting pathway directed therapies to be con-
sidered and allowing identification of those patients who
might avoid the morbidity of adjuvant systemic therapy
without significant risk of metastasis. For this reason, we
studied formalin-fixed, paraffin-embedded (FFPE) tissue
to identify a prognostic gene-expression signature in
women with operable, invasive breast cancer that was
estrogen receptor positive and lymph node negative and
who received no systemic therapy following surgical resec-
tion of the primary tumor.

Recently, several expression signatures have been
described for predicting distant metastatic risk for breast
cancer, and assays derived from these signatures have
shown a potential to improve prognostic accuracy, treat-
ment choice, and disease outcomes in women diagnosed
with early-stage breast cancer [1-12]. These signatures vary
in the number of genes used, the types of tissues required
(fresh frozen vs. paraffin-embedded), the technologies

employed, and the platforms used. For example, Mamm-
aPrint [1-3], a DNA microarray assay that uses frozen tis-
sue, is based on a 70-gene prognostic signature. The 21-
gene Oncotype DX test [4-6] (16 cancer-related gene sig-
nature that includes the ER, PR and HER2 genes and 5
normalization genes), and the 2-gene ratio (HOXB13/
IL17BR) test [7,8] are RT-PCR assays that use fixed tissues.
Using a single data set, Fan et al [13] compared the predic-
tions derived from 5 different gene signatures that
included the 3 noted above and found substantial agree-
ment in outcome classification in 4 out of 5 signatures
with the 2-gene ratio test being the exception.

Given the large number of genes purported to be prognos-
tic for breast cancer, we selected a subset of these genes to
analyze on patients with N-, ER+ tumors. Our study is
notable for the a) absence of systemic treatment, b) broad
and representative breast cancer population tested, and c)
long periods of follow-up. By combining genes primarily
from the 70-gene signature, the 21-gene panel and from
those reported by Dai et al [14] and West et al [15], we
sought to find markers that could be further validated in
untreated and treated study populations. In this report, we
present a 14-gene signature that is associated with risk of
distant metastasis. The signature was derived from
untreated women, has been validated in an independent
sample set of untreated women and was additionally eval-
uated in a sample set of tamoxifen-treated women. The
gene-expression profile can be carried out with routinely
fixed tissue on existing real-time PCR instruments for
widespread testing and may permit more effective selec-
tion of conventional therapeutic anti-cancer agents, alone
or in combination, for clinical trials.

Methods
Patients
Training set of untreated patients
The training set was derived from a cohort of 393 subjects
accrued from 1975 to 1986 at the California Pacific Med-
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ical Center (CPMC) with a diagnosis of lymph node-neg-
ative T1 and T2 breast cancer. The primary study
investigated the prognostic utility of tumor grade and Ki-
67 labeling index in N- breast cancer. The patient popula-
tion was largely untreated by systemic adjuvant therapy.
All patients were followed for a minimum of 8 years or
until death with a median follow-up time of 14.8 years.
Tumors were classified according to WHO guidelines [16]
and histological grade established using the modified
Bloom and Richardson method [17]. The ER status of
patient samples was determined by ESR1 ligand-binding
methods. The use of patient material and data for this
study has been approved by the institutional medical eth-
ics committee.

We profiled 315 patients from whom sufficient amounts
of amplifiable mRNA were extracted from formalin-fixed,
paraffin-embedded tissues. Since ER status was missing
for a large number of subjects (114 samples or 36%), we
chose to reanalyze and standardize the ER results using
mRNA measurements. Of the 315 patients, 106 subjects
were excluded either because they received systemic ther-
apy (N = 12) or because they were found to be ER-negative
(N = 90) or both (N = 4), and 67 subjects met the inclu-
sion criteria but were missing relapse clinical information,
leaving 142 patients for further analysis.

Validation set of untreated patients
A retrospective search of the Breast Tissue and Data Bank
at Guy's Hospital was made to identify an analogous
cohort of patients diagnosed with primary breast cancer
and who had definitive local therapy (breast conservation
therapy or mastectomy) but without additional adjuvant
systemic treatment. The study group was restricted to
women diagnosed between 1975 and 2001, with a clinical
tumor size of 3 cm or less, pathologically uninvolved aux-
iliary lymph nodes, ER+ tumor and with more than 5
years follow-up or recurrence or death prior to 5 years.
Tumors were classified according to WHO guidelines [16]
and histological grade established using the modified
Bloom and Richardson method [17]. ER status on this
group of patients had been determined using the standard
IHC assay but we chose to reanalyze and standardize the
ER results using mRNA measurements to be consistent
with the training set (see Additional file 1 for concordance
of ER status by IHC and RT-PCR). The standard Dako Her-
cepTest method was used for scoring and defining posi-
tive/negative status. HER2 IHC testing was carried out on
a Biogenex i6000 autostainer using Dako A0485 HER2
antibody (diluted 1:1000) with detection by Envision/
HRP kit (Dako K5007). Cases with a HER2 score of 2+ or
greater considered positive and 1+ or 0, negative.

A total of 415 patients were identified who also had suffi-
cient FFPE tissue available for RNA extraction. From this

group there was sufficient quantity and quality of mRNA
to profile tumors from 303 patients. A further 24 cases
were excluded from the study: 4 patients had bilateral
breast cancer prior to distant metastasis, 6 had a missing
gene expression value, 9 tumors proved to be ER-negative
upon re-assessment using the mRNA expression assay, 3
were node positive and 2 were male patients. Thus, in
total 279 patients were included in the analyses. The
median follow-up time of the 279 patients was 15.6 years.
The use of patient material and data for this study has
been approved by Guy's Research Ethics Committee (04/
Q0704/137).

Tamoxifen-treated patient study
A cohort of 45, N-, T1, ER+ patients who had received
tamoxifen therapy and underwent surgery between 1990
and 1999 from the University of Muenster, Germany was
used. The median follow-up time of the 45 patients was
5.8 years. The use of patient material and data for this
study has been approved by the institutional medical eth-
ics committee.

Endpoints
We chose time from surgery to distant metastasis, also
referred to as distant metastasis-free survival (DMFS), as the
primary endpoint. Subjects were considered to have an event
at the time of diagnosis of distant metastases or were cen-
sored at the earliest occurring date of contra-lateral recur-
rence, death without recurrence or last follow-up. The
definition of DMFS endpoint, its events and censoring rules
were aligned with those adopted by the National Surgical
Adjuvant Breast and Bowel Project (NSABP) for the prognos-
tic molecular marker studies [4]. We also analyzed the end-
point of overall survival (OS), which was defined as time
from surgery to death from any cause.

Sample processing
Five 10 μm sections of each paraffin block were used for
RNA extraction. A macrodissection on the samples was
performed to isolate RNA from the cancer cell areas which
had been marked by a pathologist on a guide slide. Total
RNA was extracted from the FFPE tissue sections using a
modified commercially available isolation kit (Zymo
Research, Orange, CA). Briefly, the FFPE section slides
were deparaffinized in xylene, washed consecutively with
100%, 90%, and 70% ethanol, air dried at room temper-
ature and the tissues transferred to a tube. Following
digestion with proteinase K for 18 to 24 hours at 55°C,
the samples were spun down and the supernatants trans-
ferred to new tubes. A mixture of 100% ethanol and
extraction buffer was added to the supernatant and loaded
onto Zymo-Spin II Columns. The columns were treated
with a series of washes that include a DNase treatment
step. Total RNA was eluted with TE buffer that was heated
to 65°C.
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Determination of amplifiable RNA
The quality of the RNA extracted from formalin fixed tis-
sues varies and depends on a variety of factors, including
the fixation process used, age of the samples, and storage
conditions. Additionally, the use of formaldehyde can
cause extensive cross linking of tissue components. In
many cases, only a small fraction of the recovered RNA
can be amplified by RT-PCR. To determine the amount of
amplifiable RNA, we quantified the expression level of an
endogenous gene, NUP214, in each sample by comparing
it to a serially diluted Universal Human Reference RNA
standard (Stratagene, La Jolla, CA). Approximately 0.5 ng
of amplifiable RNA was used to profile each gene.

Gene selection
We selected 197 candidate genes (see Additional file 2)
from the published literature that include the prognosis
genes reported by van't Veer et al [1] and Dai et al [14], the
gene signature for response in tamoxifen treated women
reported by Paik et al (8), and the ER status genes reported
by West et al [15]. In addition, three endogenous "house-
keeping" genes (NUP214, PPIG, and SLU7) were included
and used to normalize expression levels of the other genes
(see Additional file 3).

Message enrichment
The amount of PCR-amplifiable RNA from the training set
was insufficient to profile all 197 genes. Consequently,
RNAs from the training set were enriched by pre-amplifi-
cation with the MessageAmpII aRNA amplification kit
(Ambion, Austin, TX) whereas RNAs in the validation sets
were used directly. To assess the effect of the enrichment,
we profiled and compared the14 genes using 50 paired
enriched and unenriched samples from the training set.
Good correlation (R2 = 0.9931) was observed between the
metastasis scores generated with the enriched vs. unen-
riched samples (see Additional file 4).

Gene expression profiling
A single-step RT-PCR with SYBR® Green was used for gene
expression profiling essentially as previously described
[18]. The assays were performed on the Prism 7900 Real-
Time PCR system using the following thermocycling
parameters: 50°C for 2 minutes; 95°C for 1 minute; 60°C
for 30 minutes; 95°C for 15 seconds and 60°C for 30 sec-
onds for 42 cycles. A Universal Human Reference RNA
control was amplified with the appropriate candidate
gene for each run. All assays were performed in duplicate.
PCR primers were designed to amplify all known splice-
variants, and the size of the PCR product was designed to
be shorter than 150 bp to accommodate degraded RNA in
archived FFPE samples.

The relative changes in gene expression were calculated by
the ΔΔCt method [19]. The expression of each of the genes

was first normalized to three endogenous control (HSK)
genes then further normalized to a calibrator, reference
RNA pool (Universal human reference RNA, Stratagene,
La Jolla, CA). The ΔΔCt values of 197 genes which gave
acceptable expression levels were used for statistical anal-
yses. In the validation set, we only profiled 3 normaliza-
tion genes and the 14 cancer-related genes that were
selected in the training set for the prognostic signature,
and ESR1 gene for ER status determination.

Estrogen receptor status by expression analysis
After developing an ER mRNA cutoff for estrogen receptor
status on separate samples (Iverson et al, J Mol Diagn, in
press) and demonstrating a high concordance with IHC
determination in the training and validation sample sets,
we chose to use ER expression as criteria for ER status for
consistency between sample sets (see Additional file 1).

Ki-67 Labeling Index (LI) in training set
The MIB-1 monoclonal antibody to Ki-67 (AMAC, Inc,
Westbrook, ME) was used at 1:200 dilution in PBS. Fol-
lowing standard preparation of slides, staining was visual-
ized using biotinylated anti-mouse (Vector Laboratories)
and Strepavidin-horseradish peroxidase (Zymed Labora-
tories); DAB was used as the chromogen, and hematoxy-
lin as the counterstain. The invasive cancer on a slide was
reviewed for immunoreactivity. The slide was first
scanned using a 10× objective, and regions with high labe-
ling chosen for counting at high power (40×). The Ki-67
LI was calculated as the fraction of positively stained
nuclei in at least 1000 invasive cancer cells from multiple
high power fields. Tumors above the median labeling
index were categorized as high Ki-67; those below the
median labeling index, as low Ki-67.

Statistical analyses
For gene selection in the training set, the expression levels
of each gene were standardized to have mean zero and
variance of one, and missing values were imputed using a
nearest neighbor algorithm [20]. We used the semi-super-
vised principal component (SPC) method [21,22] availa-
ble in the PAM software package [23] with a Cox
regression model [24] for time to distant metastasis to
each gene. The genes were ranked by their univariate Cox
scores. The first principal component of the genes that
reached a certain threshold of the univariate Cox score
was computed and applied in a Cox model with the prin-
cipal component as a single variable. Internal cross-vali-
dation was used to determine the optimal threshold to
select genes to optimize the Cox score with the principal
component of the expression of the selected genes. With
this procedure, 37 genes were selected from the training
set. The number of genes included in the prognosticator
was further reduced by a regression of the supervised prin-
cipal component on the expression values of the 37 genes
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(see Additional file 5) while imposing a constraint on the
size of the regression coefficients. This procedure, known
as the Lasso [25], resulted in a linear combination of the
expression values of 14 genes (the remaining gene coeffi-
cients were effectively shrunk to zero) that provided a
good approximation of the supervised principal compo-
nent. For simplification, since the regression coefficients
of the 14 genes were of similar magnitude (see Additional
file 6), a summary score was calculated as the sum of the
14 ΔΔCT measurements for each subject, and since lower
values of the score were associated with higher probability
of metastasis, the final metastasis score (MS) for each sub-
ject is defined as the negative of the summary score. The
creation of the MS is described in the Additional file 7.

Differences in patient characteristics were assessed with
the Wilcoxon rank-sum or Kruskal-Wallis test for continu-
ous or ordinal measures and with the chi-square test for
discrete measures. Cox proportional hazards models were
used to estimate hazard ratios and Wald tests of the coef-
ficients from these models were used to assess statistical
significance of the variables. The MS was modeled both as
a continuous variable as well as in discrete groups of high
(≥ -23.5) and low (< -23.5) risk, the cut-point of which
was determined as the median MS in the training set.
Other covariates included in the multivariable Cox mod-
els included years of age (at surgery), tumor size (cm), his-
tologic grade of tumor. HER2 status had also been
ascertained on the validation set using the FDA approved
scoring method. These data were used as a covariate for an
additional multivariable model in the validation set. Esti-
mates of distant metastasis free and overall survival for the
high and low MS groups were calculated with the method
of Kaplan and Meier [26] and confidence intervals for
point estimates of survival were calculated using the com-
plementary log-log transformation [27]. The probability
of distant metastasis in 5 years and 10 years for individual
patients was calculated from the survivor function as esti-
mated by an accelerated failure time model including the
continuous MS as the independent variable and assuming
the event times have a Weibull distribution [28]. Statisti-
cal analysis was performed with PAM [23], SAS software
version 9.1 [29] and R software version 2.4.1 [30].

Time dependent receiver operator characteristic (ROC)
curves and area under the curve (AUC) to predict distant
metastases within 5 years and 10 years and death within
10 years were estimated using the method described by
Heagerty [31] with nearest neighbor estimation of the
bivariate distribution of time and continuous MS [32].
Sensitivity and specificity were estimated for each time of
interest using the cut-point defining high and low MS risk
groups. Approximate 95% confidence intervals for the
various diagnostic summary measures were calculated
based on the standard errors estimated from 500 boot-

strap samples [33]. Ten year risk estimates for relapse and
mortality based on the Adjuvant! Online calculator [34]
were obtained for the patients in the untreated validation
set and subsequently used to plot the 10-year time
dependent ROC curves for visual comparison with the
ROC curves based upon the MS.

Results
Patient characteristics
In order to obtain representative community-based
untreated samples we chose a N- and ER + cohort design
from similar hospital settings from US and UK. The char-
acteristics of the subjects included in the training and val-
idation sets are presented in Table 1. The patients in the
training set were older and had a higher proportion low
grade and small tumors than the patients in the validation
set. In addition, subjects in the untreated validation set
were followed for a longer period of time (median = 15.6
years) than those in the training set (median = 8.7 years)
and the treated validation set (median = 6.3 years).

To assess potential selection bias in the training set we
compared the selected 142 patients to 67 patients who
met the entry criteria but were not included because of
missing clinical information. No significant differences
were found between the included and excluded subjects
with respect to age (median = 64.0 and 63.7 respectively;
p = 0.51) or tumor size (median = 1.28 cm and 1.23 cm
respectively; p = 0.39). However, tumor grade tended to
be higher among the included subjects than the excluded
subjects (47% and 32% with ≥ Grade 2 tumors respec-
tively; p = 0.02) (see Additional file 8). Similarly, in the
untreated validation set we compared the selected 279
patients to 118 patients who met the entry criteria but
were not included due to insufficient RNA (n = 112) or
missing RNA expression values (n = 6) for one or more of
the 14 signature genes. No significant differences between
included and excluded patients were found with respect to
age (median = 56.4 and 55.6 respectively, p = 0.47), or
tumor grade (71% and 78% with Grade 2 tumors respec-
tively, p = 0.18) (see Additional file 8). Although median
tumor size was 2 cm for both included and excluded
patients, a test comparing the distributions of ordered
ranks for the two groups indicated a significant difference
(p = 0.02). Upon further inspection, we found a some-
what larger proportion of patients with tumor size greater
than 2 cm among the included patients than among the
excluded patients (40% vs. 31% respectively).

Association of the 14-gene signature with DMFS and 
overall survival in the training set from CPMC
The median MS in the training set was -23.5 and ranged
from -72.8 to 16.8. The MS performed well in the training
set which is expected given that the outcome of subjects in
this sample set was used to select the genes. Each unit
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increase in the MS was associated with a 4.2% increase (p
= 0.0001) in risk of distant metastasis and a 2.4% increase
(p = 0.003) in risk of death. The hazard ratio (HR), after
adjusting for age, tumor size and tumor grade, comparing
subjects above the median MS to subjects below the
median MS was 3.2 (95% CI 1.27 to 7.87; p-value =
0.014) for risk of distant metastasis (Table 2) and 2.0
(95% CI 1.05 to 3.83; p-value = 0.036) for risk of death
(Table 3). However, since these estimates of risk are likely
biased due to the selection of genes from this same train-
ing set we next tested the MS in an independent validation
set.

Validation of the 14-gene prognostic signature in samples 
from Guy's Hospital
The MS was also associated with DMFS (p < 0.0001) and
overall survival (p = 0.0004) when tested in the validation
sample set from Guy's Hospital. Each unit increase of the
MS resulted in an estimated 4.9% (95% CI 1.03 to 1.07)
increase in risk of DMFS and a 2.4% (95% CI 1.01 to
1.04) increase in risk of death. Applying the identical cut-
point (< -23.5 vs. ≥ -23.5) as used in the training set
resulted in 107 patients designated as low risk and 172 as
high risk. In univariate analysis, the HR for the high risk
group compared to the low risk group was 4.71 (95% CI
2.33 to 9.51, p < 0.0001) for DMFS (Table 2) and 2.26
(95% CI 1.51 to 3.38, p < 0.0001) for overall survival
(Table 3). After adjustment for age, tumor size and tumor
grade in Cox multivariate analysis the HR for the high ver-
sus low risk group were 4.02 (95% CI 1.91 to 8.44, p =
0.0002) and 1.97 (95% CI 1.28 to 3.04, p = 0.002) for
DMFS (Table 2) and overall survival (Table 3), respec-
tively. Among subjects in the high risk group, the esti-
mated rates of DMFS were 83% (95% CI 76 to 88%) at
five and 72% (95% CI 64 to 78%) at ten years of follow-
up as compared to rates of 98% (95% CI 93 to 100%) and
96% (95% CI 90 to 99%) at five and ten years respectively
among subjects in the low risk group (Figure 1). Rates of
overall survival were 91% (95% CI 85 to 94%) at five
years and 68% (95 CI 61% to 75%) at ten years among
high risk subjects compared to 98% (95% CI 93 to 100%)
and 91% (95% CI 84 to 95%) at five and ten years respec-
tively among low risk subjects (Figure 1). The HR for the
high versus low risk group did not differ significantly (p >
0.05) by age group (≤ 55, > 55) or by tumor grade (1, 2 or
3) for either the DMFS or overall survival endpoints. The
HR for the endpoint of overall survival was 3.52 (95% CI
1.83 to 6.75) in subjects with tumor diameters of 2 cm or
less compared to 1.23 (95% CI 0.70 to 2.17) in subjects
with tumor diameters larger than 2 cm and this difference
in hazard ratios was significant (p-value for interaction =
0.012). A similar trend, though not significant (p-value
for interaction = 0.14), was seen for the endpoint of DMFS
where the HR was 7.59 (95% CI 2.07 to 27.8) in subjects
with small tumors (≤ 2 cm) and 2.53 (95% CI 1.05 to
6.12) in subjects with larger tumors (> 2 cm). The risk esti-
mates of the high versus low risk group remained signifi-
cant (p = 0.0002 for DMFS; p = 0.002 for overall survival)
and were essentially unchanged (HR = 4.16 for DMFS; HR
= 2.05 for overall survival) in additional multivariate
models that included HER2 expression as a covariate
although large changes would be unexpected due to the
small number of HER2 positive subjects (N = 19).

MS as a continuous predictor of probability of distant-
metastasis-free survival
While the threshold for determining the high and low risk
groups based on the median value of the MS in the train-
ing set resulted in significant differences in DMFS esti-

Table 1: Clinical and pathological characteristics of patients from 
the training and validation sets

Training Validation
Characteristics n = 142 n = 279

n (%) n (%)

Age
<40 9 (6.4) 20 (7.2)
40 – 49 18 (12.8) 74 (26.5)
50 – 59 28 (19.9) 77 (27.6)
60 – 69 48 (34.0) 73 (26.2)
≥ 70 38 (27.0) 35 (12.5)
Missing 1 0
Median 64 yrs (SD 12.6) 55 yrs (SD 11.7)
Min. – Max. 31 – 89 yrs 29 – 87 yrs

Tumor diameter
≤ 2 cm 126 (94.0) 168 (60.2)
> 2 cm 8 (6.0) 111 (39.8)
Missing 8 0
Median 1.2 cm (SD 0.50) 2 cm (SD 0.85)
Min. – Max. 0.3 – 2.9 cm 0.0* – 3.0 cm

Tumor grade
Grade 1 74 (53.2) 60 (21.5)
Grade 2 61 (43.9) 166 (59.5)
Grade 3 4 (2.9) 53 (19.0)
Missing 3 0

Stage
I 126 (94.0) 168 (60.2)
IIA 8 (6.0) 111 (39.8)
Missing 8 0

HER2
Negative na 251 (93.0)
Positive na 19 (7.0)
Missing 9

Surgery
Breast conserving na 112 (40.1)
Mastectomy na 167 (59.9)

Radiotherapy
Yes na 115 (39.7)
No na 175 (60.3)

Distant recurrence
Yes 31 (21.8) 71 (25.5)
No 111 (78.2) 208 (74.6)

Death of all cause
Yes 56 (39.4) 134 (48.0)
No 86 (60.6) 145 (52.0)

Median follow up 8.7 yrs 15.6 yrs

*tumors were impalpable
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mates for these groups in the validation set, the risk for
individual patients may be of a more continuous nature.
Figure 2 shows the estimated probabilities of DMFS at 5
and 10 years based on a parametric regression model of
the event times among the validation set subjects. Using
this model, the 5 and 10 year probabilities of DMFS are
94.7% and 90.2% respectively for subjects with MS scores
equal to the 25th percentile in the validation set (MS = -
27.4), 91.7% and 84.8% respectively for subjects with MS
score equal to the median (MS = -17.3) and 88.0% and
78.5% respectively for subjects with MS score equal to the
75th percentile (MS = -9.1).

Diagnostic accuracy and predictive values
The sensitivity and specificity of the MS high and low risk
groups to predict distant metastases were 96% (95% CI 89
to 100%) and 43% (95% CI 37 to 49%) respectively at 5
years and 93% (95% CI 87 to 100%) and 46% (95% CI
39 to 53%) respectively at 10 years. Sensitivity and specif-
icity of the MS risk groups to predict death from any cause
at 10 years were 84% (95% CI 75 to 94%) and 45% (95%
CI 39 to 52%) respectively.

ROC curves of continuous MS to predict distant metasta-
sis within 5 years and 10 years had AUC (95% CI) of 0.74

Table 2: Univariate and multivariate Cox proportional analyses of distant-metastasis-free survival

Univariate analysis Multivariate analysis

Study Variable Hazard ratio
(95% CI)

p-value Hazard ratio
(95% CI)

p-value

Training set
(untreated set)

14-gene signature 4.34 (1.86–10.1) 0.001 3.16 (1.27–7.87) 0.014

Age 1.00 (0.97–1.03) 0.853 1.00 (0.97–1.03) 0.956
Tumor size 1.91 (1.00–3.63) 0.050 1.41 (0.68–2.91) 0.353

Grade 2 2.21 (1.05–4.70) 0.038 1.45 (0.65–3.22) 0.360
Grade 3 1.72 (0.22–13.3) 0.604 0.72 (0.09–6.00) 0.759

Validation set
(untreated set)

14-gene signature 4.71 (2.33–9.51) <0.0001 4.02 (1.91–8.44) 0.0002

Age 1.03 (1.00–1.05) 0.024 1.02 (0.99–1.04) 0.193
Tumor size 1.75 (1.25–2.46) 0.001 1.37 (0.95–2.00) 0.092

Grade 2 2.43 (1.10–5.40) 0.029 1.25 (0.55–2.87) 0.592
Grade 3 3.01 (1.23–7.39) 0.016 1.11 (0.43–2.87) 0.833

Tam-treated set 14-gene signature 3.61 (0.86–15.1) 0.079 3.50 (0.58–21.2) 0.172
Age 1.04 (0.98–1.10) 0.241 1.06 (0.98–1.14) 0.166

Tumor grade 1.50 (0.50–4.49) 0.468 NA NA

Table 3: Univariate and multivariate Cox proportional analyses of overall survival

Univariate analysis Multivariate analysis

Study Variable Hazard ratio
(95% CI)

p-value Hazard ratio
(95% CI)

p-value

Training set
(untreated set)

14-gene signature 2.48 (1.42–4.32) 0.001 2.00 (1.05–3.83) 0.036

Age 1.08 (1.05–1.11) <0.0001 1.08 (1.05–1.11) <.0001
Tumor size 1.42 (0.85–2.39) 0.181 1.00 (0.56–1.78) 0.994

Grade 2 1.41 (0.83–2.40) 0.210 1.44 (0.80–2.59) 0.223
Grade 3 0.80 (0.11–5.93) 0.830 1.15 (0.15–9.08) 0.897

Validation set
(untreated set)

14-gene signature 2.26 (1.51–3.38) <0.0001 1.97 (1.28–3.04) 0.002

Age 1.06 (1.05–1.08) <0.0001 1.06 (1.04–1.08) <.0001
Tumor size 1.61 (1.27–2.03) <0.0001 1.07 (0.84–1.38) 0.571

Grade 2 2.42 (1.35–4.34) 0.003 1.47 (0.80–2.70) 0.218
Grade 3 2.95 (1.54–5.63) 0.001 1.32 (0.65–2.66) 0.442
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Kaplan-Meier analysis for distant-metastasis-free survival (DMFS) and overall survival (OS)Figure 1
Kaplan-Meier analysis for distant-metastasis-free survival (DMFS) and overall survival (OS). a) DMFS of training 
set, b) OS of training set, c) DMFS of validation set, d) OS of validation set, e) DMFS of tamoxifen-treated set.

(a)            (b) 

Low
Hi

 (c)                                                                     (d) 

          
                              (e)

Patients at risk
 risk

gh risk
71 60 23 7
71               45                  9                  3

HR = 4.34 (1.86-10.1)
P value = 0.0007

0.00

0.20

0.40

0.60

0.80

1.00

0 5 10 15 20
Years

P
ro

ba
bi

lit
y 

of
 D

M
F

S
Low risk

High risk

Patients at risk
Low risk
High risk

71 63 25 7
71               55                 13                 5

HR = 2.48 (1.42-4.32)
P value = 0.0014

0.00

0.20

0.40

0.60

0.80

1.00

0 5 10 15 20
Years

P
ro

ba
bi

lit
y 

of
 O

S Low risk

High risk

Patients at risk
 risk

gh risk
71 60 23 7
71               45                  9                  3

HR = 4.34 (1.86-10.1)
P value = 0.0007

Low
Hi

0.00

0.20

0.40

0.60

0.80

1.00

0 5 10 15 20
Years

P
ro

ba
bi

lit
y 

of
 D

M
F

S
Low risk

High risk

Patients at risk
 risk

gh risk
71 60 23 7
71               45                  9                  3

Patients at risk
 risk

gh risk
71 60 23 7
71               45                  9                  3

HR = 4.34 (1.86-10.1)
P value = 0.0007

LowLow
HiHi

0.00

0.20

0.40

0.60

0.80

1.00

0 5 10 15 20
Years

P
ro

ba
bi

lit
y 

of
 D

M
F

S
Low risk

High risk

Patients at risk
Low risk
High risk

71 63 25 7
71               55                 13                 5

HR = 2.48 (1.42-4.32)
P value = 0.0014

0.00

0.20

0.40

0.60

0.80

1.00

0 5 10 15 20
Years

P
ro

ba
bi

lit
y 

of
 O

S Low risk

High risk

Patients at risk
Low risk
High risk

71 63 25 7
71               55                 13                 5

Patients at risk
Low risk
High risk

71 63 25 7
71               55                 13                 5

HR = 2.48 (1.42-4.32)
P value = 0.0014

0.00

0.20

0.40

0.60

0.80

1.00

0 5 10 15 20
Years

P
ro

ba
bi

lit
y 

of
 O

S Low risk

High risk

0.00

0.20

0.40

0.60

0.80

1.00

0 5 10 15 20 25 30
Years

P
ro

ba
bi

lit
y 

of
 O

S

Patients at risk
Low risk
High risk

107 105         88          60         18           6
172       154       113          85         41         14

HR = 2.26 (1.51-3.38
P value <0.0001

Low risk

High risk

Patients at risk
Low risk
High risk

107 103         84          57         17           6
172       135         99          76         33         10

0.00

0.20

0.40

0.60

0.80

1.00

0 5 10 15 20 25 30
Years

P
ro

ba
bi

lit
y 

of
 D

M
F

S

Low risk

High risk

HR = 4.71 (2.33-9.51)
P value <0.0001

0.00

0.20

0.40

0.60

0.80

1.00

0 5 10 15 20 25 30
Years

P
ro

ba
bi

lit
y 

of
 O

S

Patients at risk
Low risk
High risk

107 105         88          60         18           6
172       154       113          85         41         14

HR = 2.26 (1.51-3.38
P value <0.0001

Low risk

High risk

0.00

0.20

0.40

0.60

0.80

1.00

0 5 10 15 20 25 30
Years

P
ro

ba
bi

lit
y 

of
 O

S

Patients at risk
Low risk
High risk

107 105         88          60         18           6
172       154       113          85         41         14

Patients at risk
Low risk
High risk

107 105         88          60         18           6
172       154       113          85         41         14

HR = 2.26 (1.51-3.38
P value <0.0001

Low risk

High risk

Patients at risk
Low risk
High risk

107 103         84          57         17           6
172       135         99          76         33         10

0.00

0.20

0.40

0.60

0.80

1.00

0 5 10 15 20 25 30
Years

P
ro

ba
bi

lit
y 

of
 D

M
F

S

Low risk

High risk

HR = 4.71 (2.33-9.51)
P value <0.0001

Patients at risk
Low risk
High risk

107 103         84          57         17           6
172       135         99          76         33         10

Patients at risk
Low risk
High risk

107 103         84          57         17           6
172       135         99          76         33         10

0.00

0.20

0.40

0.60

0.80

1.00

0 5 10 15 20 25 30
Years

P
ro

ba
bi

lit
y 

of
 D

M
F

S

Low risk

High risk

HR = 4.71 (2.33-9.51)
P value <0.0001

Patients at risk
Low risk
High risk

29    28    28 26    25    19 
16    14    14 12    11      8

0.00

0.20

0.40

0.60

0.80

1.00

0 1 2 3 4 5 6 7 8 9 1
Years

P
ro

ba
bi

lit
y 

of
 D

M
F

S

0

HR = 3.61 (0.86-15.1)
P value = 0.079

Low risk

High risk

Patients at risk
Low risk
High risk

29    28    28 26    25    19 
16    14    14 12    11      8

Patients at risk
Low risk
High risk

29    28    28 26    25    19 
16    14    14 12    11      8

0.00

0.20

0.40

0.60

0.80

1.00

0 1 2 3 4 5 6 7 8 9 1
Years

P
ro

ba
bi

lit
y 

of
 D

M
F

S

0

HR = 3.61 (0.86-15.1)
P value = 0.079

Low risk

High risk



BMC Cancer 2008, 8:339 http://www.biomedcentral.com/1471-2407/8/339
(0.66 to 0.81), and 0.71 (0.65 to 0.78). A ROC curve to
predict death in 10 years had an AUC of 0.69 (0.62 to
0.77). Hence, MS are predictive of both distant metastases
and deaths. Visual comparison of the MS and Adjuvant!
Online ROC curves (Figure 3) for distant metastasis and
overall survival at 10 years indicate the MS may provide
additional diagnostic value, particularly for the distant
metastasis endpoint.

14-gene signature in study with tamoxifen treated patients
In the study of 45 tamoxifen-treated patients (see Addi-
tional file 9 for clinical and pathological characteristics of
the patients), each unit increase in the MS resulted in an
estimated 4.9 percent increase in the hazard for DMFS
although this association did not reach statistical signifi-
cance (p = 0.085). Sixteen patients were classified as high-
risk and 29 were classified as low-risk by MS using the cut
point of -23.5. In univariate analysis, the HR for DMFS
comparing high risk to low risk subjects was 3.61 (95% CI
0.86 to 15.1, p = 0.079) (Table 2). In multivariate analysis
the HR was 3.50 (95% CI 0.58 to 21.2, p = 0.172). Five-
year distant-metastasis-free survival rates were 73% (95%
CI 40 to 89%) in the high risk group and 92% (95% CI 72
to 98%) in the low risk group (Figure 1).

Comparison of metastatic expression signature and Ki-67 
LI in training set
Using the median as the cutpoint for the Ki-67 LI, univar-
iate analysis indicated this proliferation marker is signifi-
cantly associated with DMFS (HR = 2.4, (95% CI 1.12 to
5.11, p = 0.02) and overall survival (HR = 1.71, (95% CI
1.00 to 2.93, p = 0.05) but is no longer significant after
adjustment for MS in a multivariate analysis. The HR for
Ki-67 were reduced to 1.55 (95%CI 0.69 to 3.45, p = 0.29)
and 1.32 (95% CI 0.75 to 2.33, p = 0.33) for DMFS and
overall survival respectively after adjustment for MS while
the MS retained significance when adjusted for Ki-67 LI;
the HR for the high versus low risk group were 3.64 (95%

Metastasis Score as a continuous predictor of probability of distant- metastasis-free survival (DMFS) (5 and 10 year esti-mates with dashed lines as 95% CI)Figure 2
Metastasis Score as a continuous predictor of proba-
bility of distant- metastasis-free survival (DMFS) (5 
and 10 year estimates with dashed lines as 95% CI).
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Receiver operating characteristic (ROC) curves of 14-gene signature and of Adjuvants! softwareFigure 3
Receiver operating characteristic (ROC) curves of 14-gene signature and of Adjuvants! software. ROC curves 
for distant metastasis (a) and for death (b) within 10 years.
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CI 1.49 to 8.90, p = 0.005) and 2.21 (95% CI 1.23 to 3.97,
p = 0.008) for DMFS and overall survival respectively
(Table 4). Moreover, the correlation coefficient, R2,
between Ki-67 LI and MS was 0.30. We did not find a
strong correlation (R2 = 0.18) between Li-67 LI and the
mRNA level of this gene (see Additional file 10).

Ontology of genes in the prognostic signature
A list of the 14 genes and overlaps with previously
reported signatures is shown in Table 5. Subsets of genes
of the previously reported signatures appear in the 14-
gene signature: 9 genes overlap with the cell proliferation
signature identified by Dai et al [14]; 2 genes overlap with
the 21-gene panel by Paik et al [4], and 6 genes overlap
with 70-gene panel by van't Veer et al [1]. The gene func-
tion analysis revealed that BUB1, CCNB1, MYBL2,
PKMYT1, RACGAP1, CENPA, ORC6L, TK1, DIAPH3,
RFC4, MELK, and RFC4 are associated with one or more
functions of cell cycle control, apoptosis or DNA recombi-
nation and repair. UBE2S is a gene involved in ubiquitina-
tion. There are two genes, PRR11 and DC13, whose
functions are not known. Pathway analyses revealed that
the 14 genes in our prognostic signature are involved in a
variety of biological functions, but a majority of genes are
involved with cell proliferation. Ten of the 14 genes are
associated with the TP53 pathways which have been
found to be coordinately over-expressed in tumors of
poor outcome.

Discussion
Even though several breast cancer prognostic signatures
have been published, the study described here is notable
for several reasons. The use of untreated patients for the
training and test sample sets permits unequivocal identi-
fication of prognostic genes that are not confounded with
response genes, thereby providing insight into pathway
directed therapies and opportunities for basic research.
The prognostic signature does not contain ER, ER-respon-
sive genes or HER2 and therefore circumvents the
expressed concern that expression signatures should pro-
vide information independent of these valuable and rou-
tinely tested IHC markers. In addition, we have shown

that the signature provides additional information than
the commonly used Ki67 proliferation marker. This signa-
ture is expected to be generalizable given the consistent
results observed in the geographically diverse sample sets.
Our results further suggest that the prognostic score from
untreated patients retains its prognostic value in
tamoxifen-treated patients. The relatively small number of
genes in the described signature will facilitate follow up
functional studies in support of their mechanistic role in
distant metastasis. Finally, the relatively small number of
genes in this prognostic signature, which does not depend
on a complex algorithm, coupled with the wide-spread
use of fixed tissue and familiarity of RT-PCR should facil-
itate the broader transfer of these types of analyses to mul-
tiple testing laboratories as well as facilitate submission of
in vitro diagnostic products to regulatory agencies.

We selected genes from 3 previously reported prognostic
gene signatures plus ER-related genes and analyzed the
expression of 197 genes in a training set of non-systemically
treated, N-, T1/T2 (≤ 3 cm), ER+, breast cancer patients. A
subset of 14 genes, found to be prognostic for breast cancer,
was used to generate a metastasis score (MS) to quantify risk
for individuals at different timeframes as well as dichot-
omize samples into high and low risk groups. Following ini-
tial selection and analysis within the training set, we
validated the expression signature on an independent sam-
ple set using the precise dichotomized cutoff of the training
set. Performance characteristics of the signature in the train-
ing and validation sets were similar. Univariate and multi-
variate hazard ratios to predict DMFS were 4.34 and 3.16 in
the training set and 4.71 and 4.02 for the validation set,
respectively. In multivariate analysis, only the metastasis
score remained significant. The 14-gene prognostic signature
also predicts overall survival with univariate and multivariate
hazard ratios of 2.48 and 2.00 in the training and 2.26 and
1.97 in the validation set, respectively. When comparing the
predictive accuracy with a commonly used Adjuvant!
Online, the areas under the ROC curves were slightly higher
for the 14-gene signature classification than for the Adju-
vant! classification indicating MS may provide additional
diagnostic value.

Table 4: Univariate and multivariate analyses of 14-gene signature and Ki-67 LI for distant-metastasis-free survival (DMFS) and overall 
survival (OS)

Univariate analysis Multivariate analysis

Endpoint Variable Hazard ratio (95% CI) p-value Hazard ratio (95% CI) p-value

DMFS 14-gene signature 4.34 (1.86–10.1) 0.001 3.64 (1.49–8.90) 0.005
Ki-67 LI 2.40 (1.12–5.11) 0.024 1.55 (0.69–3.45) 0.286

OS 14-gene signature 2.48 (1.42–4.32) 0.001 2.21 (1.23–3.97) 0.008
Ki-67 LI 1.71 (1.00–2.93) 0.049 1.32 (0.75–2.33) 0.332
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We were curious whether the signature developed in
patients without systemic therapy would be predictive in
tamoxifen-treated patients. In a study of a small number
of tamoxifen-treated women, the signature predicted two
risk groups using the same single cutpoint as for untreated
patients, but the results only trended to significance due
likely to sample size. Since tamoxifen treatment only
reduces distant recurrence by approximately 30%, larger
data sets will be required to discern the prognostic nature
of the signature in women who do and do not respond to
tamoxifen.

Several investigators [35,36] have queried whether molec-
ular expression scores provide discrete information to
those routinely provided by single or composite patholog-
ical prognostic tests already routinely provided. As an

example, Ki-67 LI determined proliferation status has
been reported in numerous individual studies as well as a
meta-analysis study to be a prognostic factor for recur-
rence-free and disease-specific survival [37-44]. We tested
Ki-67 LI because of the strength of reports in literature and
availability in the training set. Ki-67 labeling index was
predictive for recurrent disease; however, after adjustment
for the metastatic expression signature this often used
marker lost significance. As with two previous reports
(Potemski et al [42] and Tan et al [43]) we did not find a
strong correlation between the Ki-67 LI full range of stain-
ing and the mRNA levels of this gene.

The 14 upregulated genes represent a unique signature
and do not fully overlap with any of the original 3 signa-
tures from which the genes were selected. Three prolifera-

Table 5: Gene name, description, and function of the 14-gene prognostic signature and the overlap with previously reported 
signatures

Gene Paik et al van't Veer et al Dai et al Gene Description Gene Function

BUB1 x BUB1 budding uninhibited by 
benzimidazoles 1 homolog (yeast)

cell cycle

CCNB1 x cyclin B1 regulation of cell cycle

CENPA x x centromere protein A, 17kDa chromosome organization and biogenesis 
(sensu Eukarya), nucleosome assembly

DC13 x DC13 protein assembly of cytochrome oxidase

DIAPH3 x x diaphanous homolog 3 (Drosophila) actin cytoskeleton organization and 
biogenesis

MELK x maternal embryonic leucine zipper kinase protein amino acid phosphorylation, ATP 
binding

MYBL2 x v-myb myeloblastosis viral oncogene 
homolog (avian)-like 2

anti-apoptosis, regulation of cell cycle, 
development

ORC6L x x origin recognition complex, subunit 6 
homolog-like (yeast)

DNA replication

PKMYT1 x membrane-associated tyrosine- and 
threonine-specific cdc2-inhibitory kinase

protein amino acid phosphorylation, 
regulation of cyclin dependent protein kinase 
activity

PRR11 x proline rich 11 E2F transcription factor taget gene, 
regulation of cell cycle

RACGAP1 x Rac GTPase activating protein 1 electron transport

RFC4 x replication factor C (activator 1) 4, 
37kDa

DNA replication

TK1 x thymidine kinase 1, soluble DNA metabolism

UBE2S x ubiquitin-conjugating enzyme E2S ubiquitin cycle
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tion genes (BUB1, CCNB1 and MYBL2) highlighted in
Whitfield et al [45] appear in the 14 gene signature
described here but only MYBL2 overlaps with the p53 sta-
tus signature recently reported by Miller at al [46]. Even
though the TP53 genes have not appeared in lists of pro-
liferation genes, network analysis of the genes of the pro-
liferation signature described here is suggestive of network
involvement (see Additional file 11). The signature lacks
the ER and PgR genes. The absence of these hormonal
receptors is not unexpected given that these genes have
been reported to be weakly prognostic in untreated
patients. The majority of the genes in the signature are
involved in processes associated with tumor growth such
as DNA replication (BUB1, CCNB1, CENPA, ORC6L,
RFC4, TK1), cell cycle control (BUB1, CCNB1, MYBL2,
ORC6L, PKMYT1, RACGAP1), cellular assembly and
organization (BUB1, CCNB1, CENPA, DIAPH3), and
ubiquitination (UBE2S). Many of the genes in the signa-
ture have been implicated in cancers. The known and
inferred role of these genes in cell proliferation is consist-
ent with their contribution to the disease process. While
the 14-gene tumor expression profile reported here has
practical importance in classifying distant metastasis as an
outcome in patients with operable, invasive breast cancer,
the identification of prognostically relevant gene path-
ways has ramifications for targeted therapy in the future,
with applications to conventional cytotoxic drugs and
novel experimental therapies [47-49].

The sample population and the experimental approaches
we employed vary in some aspects from previously
reported studies. First, the signature was developed and
validated on FFPE samples from non-systemically treated
breast cancer patients to capture solely prognostic infor-
mation without confounding by genes that may play a
role in recurrence and/or response to treatment. In con-
trast, Oncotype Dx [4] was trained in tamoxifen-treated
patient samples – which may have contributed to the
identification of ER and PgR as important markers. As dis-
cussed by Hayes [50], ER and ER-related genes are known
to be positive predictors of endocrine therapy but only
weakly prognostic. Second, our study population has a
broad distribution of age covering both pre- and post-
menopausal women that is representative of a typical
breast cancer patient population. In comparison, the
MammaPrint signature [1,2] was developed using sam-
ples from primarily younger women and the Oncotype
DX signature [4] was developed using clinical trial sam-
ples. Third, the number and equal weighting of each of
the genes of the signature permits more focused follow-up
mechanistic studies. Fourth, the long duration of follow-
up in the validation set allows quantification of risk over
different time frames as well as categorizing risk into dif-
ferent groups. This is important as individuals differ sub-
stantially in their risk tolerance and time horizon concern.

Fifth, the signature was developed on FFPE samples and
expression analysis was performed using RT-PCR. This
sample type enables analysis of archived sections that
have extended outcome data as well as present day speci-
mens that are routinely processed in a similar manner.
Gene signatures developed on frozen tissues (for example,
MammaPrint and wound response signatures [12]) would
require a change in present sample collection and storage.
Finally, clinical data reported by Esteva [51] suggest that a
multigene expression profile assay, trained on tamoxifen
treated samples, may not necessarily classify the risk of
recurrent disease in patients with N(-) breast cancer who
do not receive adjuvant tamoxifen or chemotherapy. The
14-gene prognostic signature reported here was developed
on untreated patient samples, and as suggested by one of
the referees, one potential implication of the current study
is that the 14-gene expression signature may identify a
low-risk patient-group with hormone receptor-positive
breast cancer, whose predicted absolute survival benefit
from systemic adjuvant therapy is so low that a woman,
armed with this prognostic information, may favor the
avoidance of the occasionally troublesome side effects of
endocrine therapy.

The reported study has limitations. In order to identify a
cohort of non-systemically treated patients, it was neces-
sary to assemble samples from patients before tamoxifen
became a routine treatment option. As a result, the sam-
ples in this cohort may not represent ER+ breast cancer
patients today. In this study, we used a retrospective pop-
ulation-based cohort study design. While a cohort study is
expected to have fewer hidden confounders and biases
than a case-control study, we cannot exclude the presence
of masked bias. Further, population-based cohorts have
less uniformity than patients from the controlled setting
of clinical trials. On the other hand, such studies are likely
to be more representative of a community setting in which
the molecular prognostic assay would be applied [52].

Conclusion
In conclusion, we have identified and validated a gene
expression signature, applicable to the analysis of rou-
tinely acquired FFPE tissue that adds important baseline
prognostic information to assist women in their decisions
about the size of absolute benefits and risks of adjuvant
systemic therapy. The described signature does not
include the modestly prognostic hormone receptor and
HER2 markers and remains prognostic when prolifera-
tion, assessed by Ki-67 IHC score is included in the analy-
sis, thereby simplifying interpretation of the resulting
score relative to these standardly used markers. This report
extends previous studies that identified genes involved in
proliferation as important prognostic members of indi-
vidual risk factors and combined signatures and high-
lights the implication of consistent biological and clinical
Page 12 of 15
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associations with gene expression profiles. The limited
number of genes in the signature will facilitate mechanis-
tic studies and may serve as targets for future therapies.
Further, the relatively small number of genes in this prog-
nostic signature coupled with the familiarity of RT-PCR
should facilitate the broader transfer of these types of
analyses to multiple testing laboratories as well as facili-
tate submission of in vitro diagnostic products to regula-
tory agencies, both of which will result in expanded cost-
effective access relative to laboratory developed assays
offered by single laboratories.
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