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Abstract
Background: Genomic alterations of the proto-oncogene c-erbB-2 (HER-2/neu) are associated
with aggressive behavior and poor prognosis in patients with breast cancer. The variable clinical
outcomes seen in patients with similar HER2 status, given similar treatments, suggests that the
effects of amplification of HER2 can be influenced by other genetic changes. To assess the broader
genomic implications of structural changes at the HER2 locus, we investigated relationships
between genomic instability and HER2 status in patients with invasive breast cancer.

Methods: HER2 status was determined using the PathVysion® assay. DNA was extracted after
laser microdissection from the 181 paraffin-embedded HER2 amplified (n = 39) or HER2 negative
(n = 142) tumor specimens with sufficient tumor available to perform molecular analysis. Allelic
imbalance (AI) was assessed using a panel of microsatellite markers representing 26 chromosomal
regions commonly altered in breast cancer. Student t-tests and partial correlations were used to
investigate relationships between genomic instability and HER2 status.

Results: The frequency of AI was significantly higher (P < 0.005) in HER2 amplified (27%) compared
to HER2 negative tumors (19%). Samples with HER2 amplification showed significantly higher levels
of AI (P < 0.05) at chromosomes 11q23, 16q22-q24 and 18q21. Partial correlations including ER
status and tumor grade supported associations between HER2 status and alterations at 11q13.1,
16q22-q24 and 18q21.

Conclusion: The poor prognosis associated with HER2 amplification may be attributed to global
genomic instability as cells with high frequencies of chromosomal alterations have been associated
with increased cellular proliferation and aggressive behavior. In addition, high levels of DNA
damage may render tumor cells refractory to treatment. In addition, specific alterations at
chromosomes 11q13, 16q22-q24, and 18q21, all of which have been associated with aggressive
tumor behavior, may serve as genetic modifiers to HER2 amplification. These data not only improve
our understanding of HER in breast pathogenesis but may allow more accurate risk profiles and
better treatment options to be developed.
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Introduction
The HER2 (c-erb-B2, HER-2/neu) gene, located on chro-
mosome 17q12, is a member of the epidermal growth fac-
tor receptor family with tyrosine kinase activity [1].
Amplification of the HER2 gene and/or over-expression of
the corresponding protein have been detected in 15–25%
of human breast cancers and is associated with poor prog-
nosis [2,3]. Under current standards of clinical care,
patients with HER2 amplified (HER2+) tumors receive
trastuzumab in combination with standard chemother-
apy [4], however, despite treatment with trastuzumab,
many HER2+ patients develop distant and progressive
metastatic disease [5,6].

To develop more effective treatments for patients with
HER2+ breast tumors, efforts have focused on the identi-
fication of genes that modify clinical response to trastuzu-
mab including cyclin-dependent kinase inhibitor 1B
(p27), phosphatase and tensin homolog (PTEN), insulin-
like growth factor 1 receptor (IGF1R) and topoisomerase
II α (TOP2A) [7-11]. In addition, efforts to characterize
molecular changes associated with HER2 amplification
revealed a cluster of genes from the 17q12-q21 region
with similar patterns of amplification, and concordant
changes in gene expression [12-14]. Furthermore, multi-
ple gene expression analyses have defined molecular sig-
natures for breast tumors with varying pathological
characteristics [13,15,16], improving the ability to accu-
rately characterize tumor sub-types.

Despite advances in molecular characterization of HER2+
breast tumors, mechanisms by which HER2 amplification
contributes to breast cancer pathogenesis remain
unknown. In this study, we examined levels and patterns
of allelic imbalance (AI) in primary breast tumors with
and without HER2 gene amplification to 1) examine asso-
ciations between amplification of the HER2 gene and glo-
bal genomic instability and 2) identify chromosomal
changes commonly observed in HER2 amplified tumors.

Methods
Paraffin-embedded primary breast tumors were obtained
from the Windber Medical Center Pathology Department
or the Clinical Breast Care Project (CBCP) Pathology Lab-
oratory. Samples from patients with a previous history of
breast cancer or who had received neoadjuvant therapy
were excluded from this study. Samples from the Windber
Medical Center were archival in nature, having been diag-
nosed between 1991 and 2003; clinical information was
provided for these de-identified samples by the Memorial
Medical Center Cancer Registry. Tissue and blood samples
from CBCP patients were collected between 2001 and
2006 with approval from the Walter Reed Army Medical
Center Human Use Committee and Institutional Review
Board. All subjects enrolled in the CBCP voluntarily

agreed to participate and gave written informed consent.
Clinical information was collected for all CBCP samples
using questionnaires designed by and administered under
the auspices of the CBCP.

To ensure consistency, diagnosis of all tumor samples
were made by one pathologist from hemotoxylin and
eosin (H&E) stained slides; staging was performed using
guidelines defined by the AJCC Cancer Staging Manual
sixth edition [17,18]. HER2 status was assayed using the
PathVysion® HER-2 DNA Probe kit (Abbott Laboratories,
Downers Grove, IL). Amplification was defined as a
HER2:CEP 17 signal ratio of ≥ 2.2 [3]. Patients with either
equivocal HER2 status (1.8 – 2.2) or aneusomy were not
evaluated in this study. Clinicopathological information
for all samples is summarized in Table 1.

DNA was obtained from pure populations of primary
breast tumor cells following laser-assisted microdissection
on an AS LMD laser microdissection system (Leica Micro-
systems, Wetzlar, Germany) [19] (Figure 1). All microdis-
sected sections were examined by the CBCP pathologist,
who identified and marked regions of tumor before dis-
section. To avoid PCR artifacts, ≥ 5,000 cells were cap-
tured from each of six consecutive breast tumor sections,
with the sixth section reserved for all confirmatory reruns.
Referent DNA samples for the archival samples were
extracted from disease-free skin or negative lymph node
tissue from each patient using the QIAamp DNA Mini Kit
(Qiagen, Valencia, CA). Referent DNA for the CBCP sam-
ples was obtained from blood clots using Clotspin and
Puregene DNA purification kits (Gentra, Minneapolis,
MN).

Microsatellite markers were amplified as previously
described [20], purified using Sephadex G-50 resin and
genotyped on a MegaBACE-1000 capillary electrophoresis
apparatus (Amersham Biosciences, Piscataway, NJ) fol-
lowing standard protocols. Genotypes were determined
using Genetic Profiler version 2.0 software. AI was
detected as previously described [21] using a cutoff value
of 0.35 (Figure 2), which provides >80% reproducibility
when AI events are confirmed on a second aliquot of DNA
[22].

To increase the ability to detect AI, two microsatellite
markers from each chromosomal region were assayed.
Marker information was then pooled and AI at each chro-
mosomal region was defined as follows: 1) when at least
one marker for a given region showed an allelic ratio ≤
0.35, the region was considered to show AI; 2) when nei-
ther marker had an allelic ratio ≤ 0.35 and at least one
marker was informative, the region was considered nor-
mal; and 3) when both markers were homozygous, the
region was considered uninformative.
Page 2 of 9
(page number not for citation purposes)



BMC Cancer 2008, 8:297 http://www.biomedcentral.com/1471-2407/8/297
Comparison of the clinicopathological factors and levels
and patterns of AI by HER2 status were performed using
Mann-Whitney and Fisher's exact tests. Potential con-
founding factors were investigating by computing the sig-
nificance of partial correlations between HER2 and AI
while holding grade and ER constant as mitigating factors.
Correlations were calculated non-parametically from the
2 by 2 tables for ordinal scores (using Phi coefficient of
association) and then a direct application of the partial
correlation calculation was conducted. P-values were esti-
mated from the non-parametric partial correlation using
parametric assumptions to attempt to indicate if true cor-
relation was observed. A significance value of P < 0.05 was
used for all analyses.

Results
Clinicopathologic features
In total, 181 samples were included in this study. All sam-
ples were collected from female patients; 22% (n = 39)
were HER2+. While age at diagnosis, lymph node status,

tumor histology and stage did not differ significantly
between the two groups, poor differentiation and hor-
mone receptor negative status were observed significantly
more frequently in HER2+ compared to HER2- tumors.
Ninety-four percent of HER2 amplified samples had IHC
scores of 2+ or 3+.

Of the 39 HER2+ tumors, six were from patients diag-
nosed with invasive breast cancer prior to 1998, thus treat-
ment with trastuzumab was not available for these
patients. Of the remaining 33 HER2+ patients, ten were
treated with trastuzumab (Table 2). Four HER2+ patients
have died of disease and three have developed distant
metastasis. The large number of specimens collected
within the last 5 years precluded the analysis of outcome
data in this study.

Genetic differences in HER2+ and HER2- tumors
Median AI levels were 25% (range 0–80%) and 13%
(range 0–67%) in HER2+ and HER2- tumors, respectively.

Table 1: Clinical and pathological characteristics of 181 invasive breast tumors at the time of diagnosis

HER2 amplified (n = 39) HER2 negative (n = 142) P-valuea

Menopausal Status
Pre (<50 years) 31% 31% NS
Menopausal (≥ 50 years) 69% 69%
Tumor Type
Infiltrating ductal 84% 73% NS
Infiltrating lobular 8% 16%
Mixed ductal and lobular 5% 5%
Other 3% 6%
Tumor Grade
Well (Grade 1) 11% 41% P < 0.0001b

Moderate (Grade 2) 26% 36%
Poor (Grade 3) 63% 23%
Hormone Receptor Status P < 0.05c

ER+/PR+ 53% 63%
ER+/PR- 11% 17%
ER-/PR+ 0% 3%
ER-/PR- 36% 17%
Lymph Node Status NS
Negative 47% 53%
Positive 53% 47%
TNM Stage NS
Stage I 36% 47%
Stage II 40% 35%
Stage III 21% 16%
Stage IV 3% 2%
HER2 – IHC P < 0.0005d

0+ 0% 17%
1+ 6% 33%
2+ 17% 49%
3+ 77% 1%

aP-values calculated for HER2 positive versus negative tumors.
bComparison between well- and poorly-differentiated tumors.
cComparison between hormone receptor negative (ER-/PR-) and hormone receptor positive tumors.
dComparison between 0+/1+ and 2+/3+.
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Images of tumors before and after laser-assisted microdissection with corresponding FISH dataFigure 1
Images of tumors before and after laser-assisted microdissection with corresponding FISH data. The tumor 
specimen on the top was taken from a pre-menopausal woman with stage IIb IDCA, without amplification of the HER2 gene. 
The tumor specimen on the bottom was taken from a pre-menopausal woman stage IIIB IDCA and HER2 amplification of 3.3. 
Green signals = CEP17 probe, orange = HER2.
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Levels of AI were significantly higher (P<0.005) in HER2
amplified (mean = 27%) compared to HER2 negative
(mean = 19%). When stratified by chromosomal region,
AI events were detected significantly more frequently in
HER2+ tumors at 11q23, 16q22-q24 and 18q21 (Table
3). No region was altered at significantly higher levels in
HER2- tumors.

Confounding factor analysis of AI and HER2 with ER status 
and tumor grade
Because ER status and tumor grade have been associated
with HER2 status and may confounding the relationship
between HER2 amplification and AI, partial correlations
were calculated at each chromosomal region between
HER2+ and HER2- samples, holding ER status and grade
constant. While the correlation between AI and HER2 sta-
tus at chromosome 11q23 was influenced by grade, three
chromosomal regions, 11q13.1, 16q22-q24 and 18q21
showed significant correlations with HER2 status that can-
not be explained by either ER status or grade.

Discussion
The development of trastuzumab has been cited as a suc-
cessful example of pharmacogenomics where treatment
choices are personalized to individual patients based on
specific tumor characteristics. Not all patients with HER2+
tumors, however, will benefit from trastuzumab, and
given that the cost of trastuzumab ranges from $20,000 –
$80,000/year with potential side effects including fever
and chills, gastrointestinal toxicity, myelosuppression,
and cardiotoxicity with heart failure [23], more precise

prediction of which HER2+ patients will derive benefit
from trastuzumab and improved understanding of how
amplification and/or overexpression of HER2 contribute
to aggressive tumor biology are critical to improving
patient treatment.

Breast cancer pathogenesis is associated with an accumu-
lation of sequential genetic alterations. Early genetic
changes that deregulate tumor suppressor and oncogenes
may render these cells susceptible to additional genetic
damage and lead to widespread instability in the tumor
genome. Increasing levels of genetic changes have been
associated with adverse characteristics such as poorly dif-
ferentiated pathology, metastasis and decreased survival
[24-26]. Isola et al. assessed global copy number changes
using comparative genomic hybridization and found that
tumor with HER2 amplification had significantly higher
levels of aberrations compared to HER2- tumors, suggest-
ing that these tumors were genetically more advanced
[27]. In agreement with the results of Isola et al., we found
that higher levels of chromosomal alterations were corre-
lated with HER2 status, suggesting that HER2 amplifica-
tion may serve as a surrogate marker for underlying
genomic instability

In addition to the high levels of overall genomic instabil-
ity associated with HER2 amplification, the positive asso-
ciation between chromosomal alterations at
chromosomes 11q13.1, 16q22-q24 and 18q21 and HER2
amplification suggests that genes in these regions may
contribute to pathogenesis of HER2+ tumors. Bertucci et

Detection of allelic imbalance in a HER2+ breast tumor with fluorescence-based genotypingFigure 2
Detection of allelic imbalance in a HER2+ breast tumor with fluorescence-based genotyping. Alleles for marker 
D17S250 on chromosome 17q12 were detected as fluorescent peaks in reference DNA (top panel) and microdissected breast 
tumor DNA (bottom panel). A normalized peak height ratio of 0.28 was calculated for the tumor sample using the following 
peak heights in relative fluorescence units (rfu): tumor DNA – 8,791 rfu and 30,585 rfu, referent DNA – 61,195 rfu and 59,934 
rfu.
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al. identified a 36-gene expression profile of HER2+ breast
tumors which included altered expression of genes chro-
mosomes 11q and 16q, including the fatty acid desaturase
2 (FADS2) gene [GenBank: AF084559] on chromosome
11q12.2 and the M-cadherin (CDH15) gene [GenBank:
D83542] on chromosome 16q24 [28]. Deletions of chro-
mosome 18q have been associated with poor survival
[29]. Loss of chromosome 18q has been associated with
amplification of HER2 as well tumor progression and
poor prognosis [27,29,30]. Thus, chromosomal altera-
tions at these regions may contribute to the aggressive
pathology and poor prognosis associated with HER2+
tumors.

Because the HER2 gene is located within one of the 26
regions in our AI panel, patterns of AI at 17q12-q21 were
examined. The two markers used to assess chromosomal
content at 17q12-q21, D17S250 and D17S579, define a
5.7Mb region that includes not only the HER2 and TOP2A
genes but also the signal transducer and activator of tran-
scription 3 (STAT3) and breast cancer 1 (BRCA1) genes
(Figure 3). In samples with AI at chromosome 17q12-q21,
the majority of HER2- cases had AI at either D17S250
(24%) or D17S579 (59%), while in 50% of HER2+
tumors, AI was detected at both markers, suggesting that
multiple genes from the 17q region may be altered in
HER2+ tumors.

TOP2A alterations may contribute to pathogenesis in
HER2+ breast carcinomas by altering sensitivity to anthra-
cyclines [31]. Increased expression of STAT3, which may
alter cellular proliferation, angiogenesis, and apoptosis,
can be activated by HER2 [32,33], and has been associated
with advanced disease and poor response to chemother-
apy [34], thus genomic amplification of 17q12-q21 may
increase STAT3 levels and contribute to aggressive, refrac-
tory breast disease. Although mutations in BRCA1 are
uncommon in sporadic cancers, physical loss of BRCA1
has been detected in ~50% of sporadic tumors. BRCA1

Table 2: Clinical characteristics of 39 HER2+ patients

Sample Date Diagnosis Stage Diagnosis Trastuzumab Statusa

1 2003 IIA No NED
2 2003 IIB No DOD
3 2003 IIA Yes NED
4 2003 IIA No NED
5 2005 I Yes NED
6 2003 IIA Yes DOD
7 2004 IIA No NED
8 2004 I No NED
9 2004 IV Yes AWD
10 2004 IIIA Yes AWD
11 2004 IIIA Yes NED
12 2004 IIIC Yes AWD
13 2004 I No NED
14 2004 I No NED
15 2004 IIIC Yes NED
16 2004 IIIA Yes NED
17 2001 IIB No NED
18 2001 I No NED
19 2002 I No NED
20 2002 IIA No UNK
21 2002 IIIA No NED
22 2002 I No NED
23 2002 I No NED
24 2002 IIB No NED
25 2003 IIIC No NED
26 2003 IIA No NED
27 2005 I No NED
28 2004 IIA No NED
29 2005 IIIA No NED
30 2005 I No NED
31 1996 IIIB No DOC
32 2002 I Unknown NED
33 2003 I Yes NED
34 1992 IIA No NED
35 1993 IIIA No DOD
36 1994 I No NED
37 1995 I No DOC
38 1995 I No DOD
39 1996 IIB No NED

aAWD = alive with disease, DOC = dead other causes, DOD = dead 
of disease, NED = no evidence of disease, UNK = status unknown

Table 3: Frequency of AI by HER2 status at 26 chromosomal 
regions

Chromosomal Region HER2+ HER2- P HER2+ v HER2-

1p36.1-p36.2 0.25 (36) 0.12 (140) 0.0658
2q21.3-23.3 0.14 (36) 0.15 (130) 1.0000
3p14.1 0.19 (36) 0.18 (129) 0.8100
5q21.1-q21.3 0.23 (35) 0.16 (133) 0.3233
6q15 0.18 (38) 0.20 (133) 1.0000
6q22.1-q23.1 0.25 (37) 0.16 (134) 0.2286
6q25.2-q27 0.32 (37) 0.20 (136) 0.1219
7q31.1-q31.31 0.20 (35) 0.08 (133) 0.0523
8p22-p21.3 0.26 (35) 0.18 (130) 0.3476
8q24 0.26 (39) 0.16 (129) 0.1577
9p21 0.20 (35) 0.12 (129) 0.2607
10q23.31-q23.33 0.14 (37) 0.15 (132) 1.0000
11p15 0.26 (35) 0.18 (133) 0.3411
11q13.1 0.33 (39) 0.19 (137) 0.0790
11q23 0.50 (36) 0.23 (128) 0.0033
13q12.3 0.27 (37) 0.30 (130) 0.6641
13q14.2-q14.3 0.29 (39) 0.18 (133) 0.1790
14q32.11-q31 0.18 (38) 0.20 (131) 1.0000
16q11.2-q22.1 0.30 (37) 0.30 (134) 1.0000
16q22.3-q24.3 0.50 (36) 0.26 (129) 0.0076
17p13.3 0.43 (30) 0.26 (117) 0.0789
17p13.1 0.33 (39) 0.28 (137) 0.5564
17q12-q21 0.26 (38) 0.17 (133) 0.2367
18q21.1-q21.3 0.27 (37) 0.13 (128) 0.0416
22q12.3 0.27 (38) 0.15 (132) 0.4565
22q13.1 0.33 (39) 0.26 (134) 0.6639

Numbers in bold are statistically significant
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deletions may be attributed to the genomic structure of
BRCA1, which is characterized by unusually high num-
bers of Alu and non-Alu repetitive sequences [35]. During
replication, mis-pairing between repetitive elements can
lead to large deletions in the BRCA1 gene region [36].
How the unstable genomic structure of BRCA1 affects
HER2 is unknown, however, because BRCA1 is a DNA
repair enzyme, deletions of BRCA1 may impair cellular
DNA repair, leading to an accumulation of DNA damage
across the genome.

Conclusion
In conclusion, breast tumors with copy number changes
in the HER2 gene show higher levels of overall genomic
instability. Alterations at chromosomes 11q13, 16q22-
q24 and 18q21, all of which have been associated with
aggressive tumor behavior, may serve as genetic modifiers
to HER2 amplification. In addition, alterations within
and across the 17q12-q21 region, including TOP2A,
STAT3 and BRCA1 may modify the effects of HER2 ampli-
fication. Future studies to identify the gene alterations

Schematic diagram of the 17q12-q21 regionFigure 3
Schematic diagram of the 17q12-q21 region. Genes involved in breast cancer are listed across the top, with distance 
between genes noted. Patterns of AI are as follows: solid line = HER2- tumors, dotted line = HER2 amplified. Black circles rep-
resent an AI event, white circles, normal chromosomal content. Where there is no circle, the reference genotype was 
homozygous, and thus uninformative.
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associated with HER2 amplification as well as examina-
tion of a larger group of HER2+ patients treated with tras-
tuzumab should improve our understanding of HER in
breast pathogenesis and allow more accurate risk profiles
and better treatment options to be developed.
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