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Abstract
Background: The human MutY homolog (hMYH), a DNA glycolsylase involved in the excision
repair of oxidative DNA damage, is currently studied in colorectal cancer (CRC). We previously
demonstrated a haplotype variant c.53C>T/c.74G>A of hMYH (T/A) increasing the risk for gastric
cancer in Chinese. However, most investigations on correlation between hMYH and CRC are
conducted in Western countries and the underlying mechanism has been poorly understood.

Methods: To determine whether the haplotype T/A variant of hMYH was related to colorectal
carcinogenesis, we performed a case-control study in 138 colorectal cancer (CRC) patients and
343 healthy controls in a Chinese population. Furthermore, the C/G for wild-type, C/A or T/G for
single base variant and T/A for haplotype variant hMYH cDNAs with a flag epitope tag were cloned
into pcDNA3.1+ vector and transfected into cos-7 cell line. Their subcellular localizations were
determined by immunofluorescence assay.

Results: It was found that the frequency of haplotype variant allele was statistically higher in CRC
patients than that in controls (P = 0.02, odds ratio = 5.06, 95% confidence interval = 1.26 – 20.4).
Similarly, significant difference of heterozygote frequency was indicated between the two groups (P
= 0.019), while no homozygote was found. In addition, immunofluorescence analysis showed that
hMYH protein with haplotype T/A variation presented in both nucleus and mitochondria, in
contrast to the wild-type protein only converging in mitochondria. However, neither of the single
missense mutations alone changed the protein subcelluar localization.

Conclusion: Although preliminarily, these results suggest that: the haplotype variant allele of
hMYH leads to a missense protein, which partly affects the protein mitochondrial transportation
and results as nuclear localization. This observation might be responsible for the increased
susceptibility to cancers, including CRC, in Chinese.
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Background
Base excision repair (BER) is a major mechanism for the
repair of DNA base damage by reactive oxygen species
(ROS)[1]. The most stable product of oxidative DNA
damage, 8-oxo-guanine (8-oxoG), tends to mispaire with
adenine, which would lead to a transversion of G:C to T:A
[2,3]. The MutY DNA glycosylase initiates the repair path-
way by recognizing and removing the adenine misincor-
porated with 8-oxoG [4]. A series of biochemical studies
demonstrate that the E. coli strain lacking MutY is a muta-
tor for G:C to T:A transversions [5,6]. Moreover, it is
recently discovered that the germline mutations of the
human MutY homolog (hMYH) increase the susceptibility
to develop colorectal cancers (CRC) associated with ade-
nomatous polyposis [7,8].

Our previous study detected 2 heterozygous base pair sub-
stitutions in Chinese, c.53C>T and c.74G>A, in hMYH
gene [9]. Further cloning-sequencing showed that the
mutations occurred at the same allele (haplotype T/A var-
iation). The frequency of variant allele in suspected hered-
itary gastric cancer patients was significantly higher than
that in the control group, which indicated that the T/A
haplotype might form a partial genetic basis for the famil-
ial GC susceptibility in Chinese population. Interestingly,
similar mutants have only been described in East Asian
region. Shinmura et al. [10] has reported the 2 somatic
mutations of MYH gene from lung cancer tissues from
Japanese. However, no more analysis was made to clarify
whether these two occurred on a same allele. Kim et al.
[11] identified the germline haplotype T/A variation in
patients with familial adenomatous polyposis (FAP) and
showed tentative association with the development of
FAP in Korean population.

On the other hand, germline mutations of hMYH have
been extensively studied as risk factors for sporadic CRC
in Caucasian populations [7,12,13]. In China, CRC has
remained the fifth most common cancer and its morbidity
has risen rapidly in recent years [14]. Based on the associ-
ation regarding hMYH mutation and colorectal tumours,
we therefore hypothesized that the haplotype T/A varia-
tion might be related with the pathogenesis of CRC in
Chinese.

In addition, amino acid sequence analysis of hMYH pro-
tein illustrates that the haplotype T/A substitutions is pre-
dicted to generate missense mutations of p.Pro18Leu and
p.Gly25Asp, respectively, and then mapped near to the
functional N-terminal mitochondrial targeting sequences
(MTS) domain [15,16]. This targeting sequence has been
widely studied with a focus on mitochondrial transporta-
tion of protein, which is required for maintenance of the
mitochondrial DNA repair capacity and genome stability
[17,18]. Increasing evidences have suggested that mito-

chondrial oxidative damage contributed to human dis-
eases, such as Alzheimer's disease, diabetes and cancer
[19-22]. To elucidate the functional consequence of the
haplotype T/A variation of hMYH, we constructed the
recombinant cDNA with mutations, expressed them in
cultured cos-7 cells and checked the mutant protein sub-
cellular localization, and thereby investigated whether the
haplotype variant of hMYH gene was associated with
human colorectal carcinogenesis.

Methods
Patients and controls
A total of 138 Chinese patients with sporadic CRC had
been enrolled from Jiangsu, China. CRC was diagnosed
by histopathological examination using established clini-
cal criteria and the clinical stage was evaluated on the
basis of the TNM classification system of the UICC [23].
The distribution of CRC was categorized into three seg-
ments: the proximal colon (cecum, ascending colon,
hepatic flexure, transverse colon), the distal colon (splenic
flexure, descending colon, sigmoid colon), and the rec-
tum above the anal canal. It was confirmed that these
patients were not familial cases after the structured assess-
ment including documentation of family history. Three
hundred forty-three healthy individuals without any
apparent cancer phenotype or history in the same geo-
graphic origin were taken as the control group. The demo-
graphic features and clinical manifestations of the subjects
were shown in Table 1. No characteristic difference was
observed in association between the cases and controls.
Total genomic DNA was extracted from peripheral blood
lymphocytes using QIAamp DNA blood mini kit (Qiagen,

Table 1: Demographic features and clinical manifestations of 
CRC patients and normal controls.

Normal controls CRC patients
(n = 343) (n = 138)

Age, years 57.9 ± 14.5 59.6 ± 13.6
Gender (male/female [%]) 207/136 (60.3/39.7) 85/53 (61.6/38.4)
Location --

Proximal colon 16 (11.6)
Distal colon 44 (31.9)
Rectum 78 (56.5)

TNM stages --
T-stage (%)

T1 3 (2.17)
T2 33 (23.9)
T3 88 (63.8)
T4 14 (10.1)

N-stage (%)
N0 71 (51.4)
N1 44 (31.9)
N2 23 (16.7)

M-stage (%)
M0 115 (83.3)
M1 23 (16.7)
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Hilden, Germany) according to the manufacturer's
instructions. Informed consents were obtained from all
the subjects and the study was approved by the ethics
committee of the Nanjing University School of Medicine.

Mutation screening in hMYH gene
The primers were designed to amplify the exon 2 of hMYH
gene, where the T/A haplotype was located in: forward, 5'-
AGCTATCACCCTTGGAAGGC -3', and reward, 5'-
GTCTTGATACGTATCACAATCC -3'. The PCR products
were tested by denaturing high-performance liquid chro-
matography (DHPLC) (WAVE system, USA) [24]. For the
samples presenting an aberrant peak on DHPLC analysis,
the nucleotide sequence was determined by direct
sequencing of PCR products (ABI 3100 DNA sequencer,
Applied Biosystems). The repeated PCR product would be
cloned into the PMD-18-T vector (Takara) and amplified
in E. Coli top10 for further sequencing analysis, if the two
variations occurred in a sample.

Construction of expression vectors
The wild-type hMYH (type 1) cDNAs, presented by Prof.
Haruhiko Sugimura of the Hamamatsu University School
of Medicine, was C-terminally tagged with a FLAG
sequence and introduced into a mammalian expression
vector pcDNA3.1+ [25]. Overlapping PCR site-directed
mutagenesis was used to construct the haplotype T/A var-
iation and either of the single base pair substitutions, T at
nucleotide 53 or A at 74, into hMYH cDNA. This method
was performed in two steps [26]: 1) complementary oligo-
deoxyribonucleotide primers were used to generate two
DNA fragments (named "a" and "b") having overlapping
ends; and 2) these fragments were combined in a subse-
quent 'fusion' reaction in which the overlapping ended
anneal. Specific alterations in the nucleotide sequence
were introduced by incorporating nucleotide changes into
the overlapping oligo primers. The olignonucleotides
designed for fragments "a" and "b" in the first PCR were

listed in Table 2. The mutant constructions were con-
firmed by sequencing (ABI 3100, USA).

Immunofluorescence analysis
The expression vector was transfected into the cos-7 cell
line, cultured on the slide glass, with the LipofectAMINE
2000 reagent (Invitrogen, USA). After 24 h, the cells were
washed with PBS and fixed with methanol at -20°C for 30
min. The cells were subsequently washed once, treated
with 0.25% Triton X-100 in PBS for 5 min, washed twice,
and incubated with anti-FLAG M2 polyclone antibody
(Sigma, USA) 40 μg/ml, at 4°C for overnight. Indirect
immunofluorescence labelling was performed with a Flu-
orescence-5-isothiocyanate (FITC)-conjugated anti-
mouse IgG second antibody (Sigma, USA) at room tem-
perature for 60 min, and the mitochondria was stained
with MitoTracker Red CMXros (Molecular Probes, USA).
Fluorescence images were collected and analyzed by laser
scanning confocal microscopy (LSM510, Zeiss).

Statistical analysis
The SPSS 11.0 program was used to conduct the statistical
analysis. For testing of significance of differences between
138 CRC patients and 343 healthy controls, nonparamet-
rical Mann-Whitney Utest (unpaired) was applied. The
observed genotype frequencies were compared with a chi-
square 'goodness-of-fit' test to determine whether they
were in Hardy-Weinberg equilibrium. The Fisher's exact
tests were used to assess the genotype and allele distribu-
tion between two groups. The genotypic-specific risks
were estimated as odds ratio (OR) with associated 95%
confidence intervals (CI) by unconditional logistic regres-
sion and the ORs were adjusted for age and sex. For the
statistical calculations, wild-type genotypes were assigned
as "0" and heterozygous variant genotypes as "1". A P
value < 0.05 was considered statistically significant.

Table 2: Oligonucleotides used to create point mutations in the hMYH-type1-Flag/pcDNA

Mutation Oligos for fragments "a" and "b" in the 1st. PCR (5'→3') *

p.Pro18Leu- p.Gly25Asp
c.53C>T-c.74G>A

Fa:GGCGTGGATAGCGGTTTGA
Ra:CACTTCCCACGGCTGCTCGTaGCTTCCTCATGA
Fb: CGAGCAGCCGTGGGAAGTGaTCACAGGAAGCA
Rb: TGAAATTCCTCCTGCGTCAGC

p.Pro18Leu
c.53C>T

Fa:GGCGTGGATAGCGGTTTGA
Ra:CACTTCCCACGGCTGCTCGTaGCTTCCTCATGA Fb:TCATGAGGAAGCtACGAGCAGCCGTGGGAAGTG
Rb: TGAAATTCCTCCTGCGTCAGC

p.Gly25Asp
c.74G>A

Fa:GGCGTGGATAGCGGTTTGA
Ra: TGCTTCCTGTGAtCACTTCCCACGGCTGCTCG
Fb: CGAGCAGCCGTGGGAAGTGaTCACAGGAAGCA
Rb: TGAAATTCCTCCTGCGTCAGC

*Three bolded letters in the sequence represent the code of a mutated amino acid.
The lowercase letters are the substituted nucleotide residues.
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Results
Association analysis of the c.53C>T/c.74G>A variation 
with sporadic CRC
An abnormal DHPLC peak was found in exon 2 of hMYH
gene. The PCR product with aberrant elution profiles in
DHPLC were sequenced directly and showed 2 hetero-
zygous substitutions c.53C > T and c.74G > A (Figure 1A
&1B). Repeated PCRs were cloned and transfected into E.
Coli top10. Ten randomly picked clones for each sample
were subjected to sequence and revealed that both of the
substitutions affected a same allele with a wild-type allele
remained (Figure 1C).

A total of 138 CRC patients and 343 healthy controls were
screened for the haplotype variation (Table 1). The allele
and genotype frequencies among controls were consistent
with the Hardy-Weinberg equilibrium (P > 0.05). The het-
erozygous frequencies of the hMYH mutation were
detected at 4.35% in CRC group and 0.87% in control
(Table 3), while no homozygote was found in the present
study.

The frequency of the variant allele detected in CRC
patients (2.17%) was significantly higher than that in
healthy individuals (0.44%), (P = 0.020, OR = 5.06 and
95% CI = 1.26 – 20.4). Table 3 also showed that the fre-
quency of heterozygous hMYH genotype was statistically
different between CRC patients and healthy controls (P =
0.019). Moreover, the heterozygous haplotype T/A variant
genotype was not significantly associated with any clinical

characteristics of CRC, while 5/6 CRC patients carrying
this variant had a cancer at rectum.

Distinct subcellular localization of wild- and variant-type 
hMYH protein
The transcript of hMYH gene detected in the cases with the
haplotype variant encoded a missense protein of
p.Pro18Leu/p.Gly25Asp, resulting in the substitutions
c.53C>T/c.74G>A, located near to the functional N-termi-
nal MTS sequence, as shown in Figure 2A. The hMYH type
1 protein was reported to be focused in the cell mitochon-
dria [27]. We went on to investigate whether the structural
changes actually affected its subcellular localization.

Overlapping PCR was used to construct three mutants
from hMYH cDNA (type 1), the complex mutation
c.53C>T/c.74G>A, and either of the single base pair sub-
stitution, c.53C>T or c.74G>A, in hMYH. Three kinds of
mutants and wild-type hMYH cDNA were cloned into the
pcDNA3.1 mammalian expression vector, with the FLAG
sequence at the C-terminus, and transfected into cos-7 cell
line respectively. We checked the fluorescence micro-
scopic images of the transfected cells to identify the sub-
cellular localization of the exogenous hMYH-FLAG
proteins.

Consistent with the results previously reported [27], wild-
type protein of hMYH was localized in the mitochondria
(shown in Figure 2B–a). However the mutant protein
with p.Pro18Leu/p.Gly25Asp has changed its subcellular

Identification of haplotype variation c.53C>T-c.74G>A in hMYH geneFigure 1
Identification of haplotype variation c.53C>T-c.74G>A in hMYH gene. (A) DHPLC chromatogram of exon 2 of hMYH 
gene showed the wild type and the mutant pattern. The arrow was pointed to the aberrant peak in patients with variant. (B) 
Partial sequence of exon 2 of hMYH gene (forward sequencing). Direct sequencing depicted 2 nucleotide substitutions (c.53C 
> T and c.74G > A). (C) Sequencing of cloned PCR product revealed the 2 nucleotide substitutions C > T and G > A on the 
same allele. Arrows showed the mutant sites.
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localization and rather presented both in the nucleus and
mitochondria of the cos-7 cells (Figure 2B–b). Interest-
ingly, both of the two single base mutant hMYH-FLAG
protein remained to be mitochondrial localized (Figure
2B–c &2B–d). It suggested that the haplotype variation of
hMYH affected the localization of the gene product from
the mitochondrial to the dual localization, and the pro-
tein transportation of the T/A variant-type hMYH protein
was partly impaired, whereas single base mutant types
were free from the influence.

Discussion
ROS is the most prevalent source of DNA lesions in aero-
bic organisms, and mammalian cells have developed sev-
eral repair pathways to cope with the resultant oxidative
DNA damage [28]. The BER protein hMYH is essential in
protecting against such damage and inherited defects
within the protein lead to predisposition to carcinogene-
sis in humans [1,29]. Our previous study have demon-
strated that a haplotype variation of hMYH (c.53C>T-
c.74G>A, T/A) might be a genetic factor for the gastric can-
cer susceptibility in Chinese [9].

CRC is one of the major causes for cancer mortality in the
world, and is becoming more prevalent in Asian countries
[14]. In China, the incidence of CRC was initially low, but
in recent years, the rate is increasing due to the changes of
life style and nutritional habits. According to the report of
the Health Ministry of China in 2002, the incidence rate
of CRC is approx 0.037% and is the fifth leading cause of
cancer mortality [30]. CRC is a collective term for cancers
of the colon and rectum. Most of CRC occurs at colon in
Caucasian, while the rectal cancer appears a higher fre-
quency in Chinese. In the present study, the percentage of
cancer was 11.6% in the proximal colon, 31.5% in the dis-
tal colon, and 56.5% in the rectum, respectively. Although
the issue whether colon and rectal cancer should be con-
sidered as a single or two distinct entities is still being
debated [31], cancers of the colon and rectum share many
common features [32] and show little different in our
results, and thus were discussed together in this study.

The heterozygous T/A haplotype variant configuration
was discovered in 6/138 (4.35%) sporadic CRC cases and
3/343 (0.87%) controls. The frequency of variant T/A
haplotype in patients was significantly higher than that in
the control group (P = 0.019). It suggested a correlation
between such hMYH variation and sporadic CRC suscep-
tibility in Chinese. As oxidative DNA damage plays an
important role in the carcinogenesis, we proposed that the
variation of the BER gene hMYH might be commonly
associated with the processes. It should be pointed out
that we could not formally exclude the possibility that
selection bias contributed to the observed differences
between the two groups, due to a low frequency of this
variant allele found.

Eukaryotic cells have nuclear and mitochondrial genomes
and thus the cells have necessarily to develop either two
distinct repair enzymes or a transport system to deliver the
same enzymes into separate organelles [25,33]. The
human MutY homolog comprises the entire MutY
sequence flanked by extended N- and C-terminal
domains, which are involved in subcellular targeting of
hMYH: e.g. MTS and nuclear localization sequence (NLS)
to the N- and C-terminus, respectively (Figure 2A) [34]. It
suggests that the same hMYH protein presents differential
subcellular localizations in human cells.

Several lines of evidence have shown that hMYH protein
is a nuclear protein, preventing mutations from oxidative
damage in the nuclei [4,35,36]. Takao et al. [17] detected
that the C-terminus of hMYH was a functional NLS, which
could target the heterologous hMYH protein into the
nucleus. However, the full-length hMYH (type 1) with
both NLS and MTS displayed rather a mitochondrial dis-
tribution. An alternative spliced form of hMYH (type 2)
missing the first exon, pointed to MTS at N-terminus of
hMYH, presented a nuclear localization [37]. It suggested
that the MTS could be functionally dominant over the
NLS in hMYH transportation. Tsai-Wu et al. [36] once
proposed that hMYH was a shuttling enzyme with a
steady-state nuclear distribution. Upon induction, pre-

Table 3: Distribution of the hMYH haplotype c.53C>T-c.74G>A mutation in the cases and controls.

Control (%) Case (%) P value OR (95% CI)

No. (%) No. (%)

Genotype
Wide-type genotype 340 (99.1%) 132 (95.7%) 0.019 5.15 (1.27–20.9)
Heterozygous genotype 3 (0.87%) 6 (4.35%)

Allele
Wild-type allele 683 (99.6%) 270 (97.8%) 0.020 5.06 (1.26–20.4)
Variant allele 3 (0.44%) 6 (2.17%)
Page 5 of 8
(page number not for citation purposes)



BMC Cancer 2008, 8:269 http://www.biomedcentral.com/1471-2407/8/269
sumably elevated oxidative potential in the mitochondria,
MTS of hMYH presented its dominant function, and some
unidentified mitochondrial factors would recognize this
domain and transport hMYH from the nuclei to the mito-
chondria.

As it has been described above, the type 1 transcription of
hMYH is concentrated in the mitochondria in cos-7 cells
and recombinant hMYH has essentially similar activities
to the partially purified protein [36]. This allows us to
analyze the role of variation on MTS domain in the cos-7

Differences in structure and subcellular localization between the wild- and variant-type hMYH proteinsFigure 2
Differences in structure and subcellular localization between the wild- and variant-type hMYH proteins. (A) 
Schematic diagrams showed the structures of the wild-type hMYH type 1 protein (upper) and the hMYH protein with haplo-
type variation predicted a missense protein of p.Pro18Leu – p.Gly25Asp (lower). Dots represented the polymorphic amino 
acids, which was mapped to the N-terminus of the MTS domain. (B) The distinct subcellular localization of the wild- and vari-
ant-type of hMYH proteins. The wild-type (a) and variant-types (b, c, d) hMYH with the FLAG epitope tag at the C-terminus 
were expressed in cos-7 cells and stained with anti-FLAG M2 as the first antibody and FITC-conjugated anti-mouse IgG as the 
second antibody. The immunofluorescence microscopic image of FITC (green)-stained cells showed the localization of exoge-
nous hMYH protein. The mitochondrias were counterstained with CMXros (red). The merged FITC and PI stained images 
showed overlapping yellow signals in the mitochondrias. Only the hMYH protein with haplotype variation (b) presented dual 
localization in nuclei and mitochondrias.
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cell model. We found that the hMYH protein with both
missense mutations, that we detected previously, was
dually localized in nucleus and mitochondria, and not
focused in the mitochondria any more [38]. It indicated
that the mutation affected the ability of hMYH protein to
be transported into mitochondria. One rational explana-
tion for it is that the p.Pro18Leu – p.Gly25Asp missense
mutation in the N-terminus of hMYH influences the func-
tion of MTS domain, and then the MTS domain is difficult
to be recognized. As a result, a proportion of the mutative
hMYH protein would not be transported into mitochon-
dria, and display the nuclear distribution instead [36].
Interestingly, immunofluorescence showed that the
hMYH proteins with single missense mutation,
p.Pro18Leu or p.Gly25Asp, remained in the mitochon-
dria, similar to the wild-type protein. It seems that the
effect of the mutations are additive and either one of the
missense mutations in the haplotype is not enough to
impair the function of MTS domain.

Mitochondrial oxidative energy metabolism is the major
intracellular source of ROS and mitochondrial biomole-
cules including mitochondrial DNA are constantly
exposed to a high level of ROS [39]. Almost all the studies
performed to date have found increased oxidative damage
in mitochondrial DNA and it is consistent with the obser-
vation that mitochondrial DNA mutations accumulate
[40]. Mitochondrial DNA mutations have been reported
in 10% to 70% of CRC and the presence of tumour mito-
chondrial DNA mutations seems to be a prognostic
marker and a relevant predictive factor of CRC [21]. On
the other hand, mitochondrial DNA repair enzymes
involved in BER system play an important role in mito-
chondrial genome stability and hMYH protein is the req-
uisite enzymes in this system [18,41,42]. Thus, it is
possible that the haplotype variant allele of hMYH
impairs the ability of oxidative damage repair in mito-
chondria and increases the instability of the mitochon-
drial genome, thus contributes to the carcinogenesis,
including CRC. However, the glycolsylase activation of
hMYH protein in mitochondria has not been directly ana-
lyzed in this study. Another point should be mentioned
that, as no homozygous variation was detected in the pop-
ulation investigated, the impact of the heterozygous vari-
ant genotype on the hMYH gene will be explored in the
following study.

Conclusion
In conclusion, the hMYH variation affecting protein trans-
portation is likely to associate with cancer susceptibility. A
portion of hMYH protein arising from the haplotype
allele was not able to be transported into mitochondria,
and the variation might be responsible for the increased
risk for developing CRC. We are aware that these data are
still preliminary due to limited sample size. Furthermore,

the adenine glycosylase activity of the mutants in mito-
chondria and mitochondrial genome stability under the
influence of the mutants have not been directly investi-
gated. Thus, validation of these results on larger cohorts
and further functional studies are imperatively necessary.
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