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Abstract

Background: Despite the fact that morphological and physiological observations suggest that the tight junction
(T))-based permeability barrier is modified/disrupted in tumorigenesis, the role of members of the Claudin (Cldn)
family of T| proteins is not well-understood. Using a well-established two-stage chemical carcinogenesis model,
we investigated the temporal and spatial changes in expression of those Cldns that we have previously
demonstrated to be important in epidermal differentiation and the formation of the epidermal permeability
barrier, i.e., Cldnl, Cldné, Cldnl 1, Cldnl2 and Cldn|8.

Methods: The lower dorsal backskin of mice was treated topically with 7,12-dimethylbenz(a)anthracene (DMBA;
0.25 mg/ml in acetone) and following a 10-day incubation period, 12-O-tetradecanoyl-phorbol-|3-acetate (TPA;
25 pg/ml in acetone) was applied three times a week to the same area. Backskin samples were dissected 2, 4, 6,
8 and 12 weeks after the initiation of the experimental protocol and immunohistochemistry was performed on
sections using antibodies against the following: Cldn|, Cldné, Cldnl I, Cldnl2, Cldn18, Ki67 and CD3.

Results: Our data indicate that along with the changes in epidermal cell morphology and differentiation that
occur during tumor formation, there is a dramatic change in Cldn distribution consistent with cell polarity and
barrier selectivity changes. Specifically, in the early stages of DMBA/TPA treatment, the suprabasal-specific Cldns
occupy an expanded zone of expression corresponding to an increased number of suprabasal epidermal cell
layers. As tumorigenesis progressed, the number of suprabasal epidermal layers positive for Cldné, Cldnl I,
Cldn12 and CldnI8 was reduced, especially in the lower strata of the expanded suprabasal zone. In addition, a
variably reduced cell membrane association of those differentiation-specific Cldns was observed, especially within
the infiltrating epidermal structures. In contrast, Cldn| (which is normally expressed in all the living layers of the
epidermis) remained restricted to the cell membrane throughout the tumorigenesis protocol. However
commencing 2 weeks after treatment there was a marked decrease in the number of Cldn|-positive basal cells,
and the zone of Cldn|-null epidermal cells was expanded up into the lower stratified epidermis throughout the
progression of DMBA/TPA treatment. In addition, there was no Cldn| localization in the infiltrating epidermal
structures of the tumorigenic epidermis.

Conclusion: This is the first demonstration of the changes in Cldn expression in the progression of DMBA/TPA-
induced skin tumors; however further investigation into the molecular mechanisms regulating the observed
changes in barrier selectivity during tumorigenesis is required.
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Background

Disruption of epithelial cell polarity and cell-cell junc-
tions with concomitant changes in the expression of junc-
tional proteins during primary tumor formation is
considered to be a hallmark of cancer cell invasion and
metastasis [1]. Amongst the junctional complexes, the
role in tumor formation of specific tight junction (TJ) pro-
teins essential for cell polarity and the formation and
maintenance of heterogeneous permeability barriers is
not well understood. In vivo studies have demonstrated
that the epidermis is characterized by a defined differenti-
ation-dependent expression of Claudins (Cldns), a family
of tetraspan membrane proteins that comprise a major
component of TJ fibrils essential to the structure and func-
tion of TJs [2-6]. Recent studies have also shown that
changes in the distribution pattern of diverse Cldns may
contribute to changes observed in cell permeability [7-
10]. However, no systematic analysis of the expression
and/or localization of various Cldns during skin tumori-
genesis is yet available.

Understanding the molecular basis of skin tumor devel-
opment has been greatly facilitated by the use of animal
model systems in which tumor development can be care-
fully controlled [11]. For example, the classical mouse
two-stage carcinogenesis model provides an excellent sys-
tem in which to study the stages and molecular mecha-
nisms involved in squamous cell carcinoma [12]. The
chemical carcinogenesis process can be divided into three
distinct phases: initiation, promotion and progression.
Initiation results from exposure to a mutagenic carcino-
gen, followed by the application of a promoter to alter
gene expression and increase cell proliferation to ulti-
mately result in tumor formation. Therefore, we used this
model to elucidate the changes occurring in Cldn expres-
sion during the progression of epithelial tumors.

Methods

DMBAITPA treatment

The coat on the dorsal side of one-month-old CD1 wild
type mice was shaved one day prior to the initiation of the
experimental protocol and mice were shaved once a week
as required until the coat failed to re-grow. The lower dor-
sal backskin of mice was treated topically with 7,12-
dimethylbenz(a)anthracene (DMBA; 0.25 mg/ml in ace-
tone) and following a 10-day incubation period, 12-O-tet-
radecanoyl-phorbol-13-acetate (TPA; 25 pg/ml in
acetone) was applied three times a week to the same area.
Experimental results were highly reproducible in three
independent assays, each comprising three mice per time
point (treated vs. control) and a minimum of 2-3 biop-
sies per mouse. All animal studies were conducted accord-
ing to the regulations of the Canadian Council on Animal
Care.
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Sample Collection

Backskin samples (~1 cm?2) were dissected from the lesion
and/or tumor regions of the mid-dorsal backskin from
DMBA/TPA-treated mice as well as their vehicle-treated
controls; sampling was done 2, 4, 6, 8 and 12 weeks after
the initiation of the experimental protocol. Since the fixa-
tion method routinely used in our laboratory is rather
stringent (see below) and not appropriate for all antibod-
ies, frozen sections were required for Cldn1, Ki67 and
CD3 immunostaining [2]. All other immunolocalization
and histology (Hematoxylin & Eosin; H&E) were per-
formed on paraffin sections. For frozen sections: skin
samples were embedded in HistoPrep™ and solidified in
dry ice-chilled isopentane. Sections (5 um) on slides were
warmed at room temperature for 3 minutes, and then
fixed for 10 minutes in methanol at -20°C, followed by
washing in PBS prior to immunostaining. For paraffin sec-
tions: skin samples were fixed for 12-16 hours in Bouin's
fixative (75% saturated picric acid, 20% formaldehyde
and 5% glacial acetic acid) at room temperature, followed
by ethanol dehydration (30%, 50%, 70%, 95%, 100%),
paraffin embedding and sectioning (5 um). Prior to H&E
and immunostaining, sections were dewaxed and rehy-
drated followed by antigen unmasking and washing steps

[5].

Immunohistochemistry

Paraffin and frozen sections were blocked for non-specific
antibody binding by a 30-minute room temperature incu-
bation (10% goat serum, 0.8% BSA, 1% gelatin in PBS)
followed by several washes in wash buffer (0.8% BSA, 1%
gelatin in PBS). Primary antibodies appropriately diluted
in incubation buffer (1% goat serum, 0.8% BSA, 1% gela-
tin in PBS) were applied for 1-2 hours at room tempera-
ture; antibodies against the following were used: Ki67
(1:25) (cat. # ab833; abcam, Cambridge, MA), CD3
(1:100) (cat. # 555273; BD Biosciences, Franklin Lakes,
NJ), Cldn6 (1:50) (custom antibody generated from hen
#3677 against mouse Cldn6 sequence-CYSTSVPHSRGP-
SEYPTKNYV, Aves Labs, Inc., San Diego, CA), Cldnll
(1:50) (custom antibody generated from hen #3680
against mouse Cldnll sequence-CRKMDELGSK, Aves
Labs, Inc.), Cldn12 (1:50) (custom antibody generated
from hen #5186 against mouse Cldn12 sequence-CZRKL-
RLITENRNEKNLTIYT, Aves Labs, Inc.), Cldn18 (1:50)
(custom antibody generated from rabbit #A9953 against
mouse Cldn18 sequence-CRTEDDEQSHPTKYDYV, Open
Biosystems, Huntsville AL) and Cldnl (6:100) (cat.
#71-7800; Invitrogen, Burlington, Canada). Following
incubation in wash buffer, secondary antibodies against
rabbit, rat and chicken conjugated to FITC (Jackson
ImmunoResearch Laboratories, West Grove, PA) were
used at a 1:50 dilution in incubation buffer for 1 hour at
room temperature. Images were acquired using a Zeiss
Axioplan 2 brightfield/fluorescence capable microscope
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outfitted with an AxioCam camera and Axio Vision 2.05
software (Carl Zeiss Canada Ltd, Toronto, Canada) before
processing with Adobe Photoshop version 7.0 (Adobe
Systems, Inc., San Jose, CA).
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Results and discussion

Characteristics of skin tumor progression

When treated with vehicle (acetone) only for 12 weeks,
the epidermis (Figure 1a) was morphologically reminis-
cent of the normal, untreated epidermis in age-matched
samples (not shown). Initiation with DMBA followed by
2 to 12 weeks of TPA treatment caused the epidermis pro-

b

Figure |

Histological characteristics of skin tumor formation. H&E staining of the vehicle-treated epidermis after 12 weeks is shown (a).
The epidermis after 4 (b), 6 (c), 8 (d) and 12 (e) weeks of the classical two-stage chemical carcinogenesis protocol revealed striking
abnormalities in epidermal architecture consistent with tumor formation, including the appearance of pseudohorn cysts (marked with
stars). The dorsal skin of the mouse after 12 weeks of DMBA/TPA treatment is shown (f). Both Ki67-positive cells (g) and CD3-positive
infiltrates (h) were evident throughout the experimental protocol (12 weeks is shown). BL: basal layer; SB: suprabasal compartment.
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gressively to display abnormalities in morphological
architecture consistent with tumor formation, including a
much thicker suprabasal compartment, an expanded stra-
tum corneum and a more dispersed granular layer (Figure
1b-e). In addition, characteristic invaginations of epider-
mal structures into the dermis were evident (Figure 1c-e),
as were pseudohorn cysts (Figure 1c-d, marked with
stars); a photograph depicting the dorsal side of the
DMBA/TPA-treated mouse after 12 weeks is shown (Fig-
ure 1f). Throughout the experimental protocol, immun-
ofluorescence confirmed the expression of Ki67 (Figure
1g), a nuclear protein expressed by proliferating cells dur-
ing all phases of the cell cycle, and the T-cell receptor-asso-
ciated CD3 complex (Figure 1h), indicative of the
proliferative and immune infiltrative states of the treated
epidermis. The expression and localization of keratins and
epidermal terminal differentiation markers were also pro-
gressively disrupted as has been previously described (not
shown) [13].

Expression of the suprabasal Cldns in skin tumorigenesis
We next analyzed the expression of those Cldns we have
previously demonstrated to be important in epidermal
differentiation and the formation of the epidermal perme-
ability barrier [2,4,5,14]. The distribution of Cldn6,
Cldn11, Cldn12 and Cldn18 was indistinguishable in the
normal (not shown) and vehicle-treated (Figure 2m-p)
epidermis after 12 weeks, occupying the entire suprabasal
compartment (in Figure 2 the basal layer is marked by a
dotted line and the suprabasal compartment is indicated
with a bracket). After 2 weeks of DMBA/TPA treatment
(Figure 2a-d), on the other hand, the suprabasal compart-
ment was expanded, with a corresponding expanded zone
of Cldn expression in all the suprabasal layers. However,
after 6 (Figure 2e-h), 8 (Figure 3a-d) and 12 (Figure 2i-1)
weeks, the treated epidermis displayed a marked reduc-
tion in the number of suprabasal cell layers staining posi-
tively for Cldn6, Cldn11, Cldn12 and Cldn18; the loss of
staining was evident in the lower suprabasal zone (Figure
3; representative areas of Cldn-negative suprabasal cells
are marked with stars). In addition there was an obvious
but somewhat variable shift in the subcellular localization
of all four of these Cldns away from the cell membrane
that was especially evident in the lower suprabasal layers
of the DMBA/TPA-treated epidermis after 8 weeks (Figure
3a-d, arrowheads illustrate representative areas where
Cldn association is not restricted to cell membranes).
Although all of the suprabasal-specific Cldns assayed
showed some degree of non-membranous labeling after 8
weeks of treatment, this was especially true for Cldn12
and Cldn18 where the subcellular shift extended higher
into the suprabasal zone than for Cldn6 and Cldn11.

In the characteristic epidermal structures infiltrating the
dermis of tumors after 8 weeks of treatment, the subcellu-
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lar translocalization of the suprabasal Cldns away from
the cell membrane was even more apparent, with a nearly
complete loss of membrane labeling (Figure 3e-h; the
suprabasal compartment is marked with a double-ended
arrow to demonstrate that the view encompasses only
suprabasal cells and arrowheads point to representative
areas of non-membranous Cldn labeling). In addition,
there were many Cldn6-, Cldn11-, Cldn12- and Cldn18-
negative suprabasal cell layers evident (note that in Figure
3, the stars highlight areas of Cldn-negative epidermal
cells).

The expanded suprabasal Cldn expression compartment
in early DMBA/TPA treatment, followed by the loss of
Cldné, Cldn11, Cldn12 and Cldn18 in the lower strata of
the suprabasal compartment as well as the reduced cell
membrane association of those Cldns primarily associ-
ated with the stratifying/differentiating layers of the nor-
mal epidermis raises the question of whether such
changes are obligatory for the promotional stage of skin
tumor formation. The change in Cldn expression and
localization may also impart new permeability properties
to the affected and surrounding epidermal cells resulting
in their hyperplastic conversion. Our results are consistent
with the hypothesis of Daugherty et al. [15] that undiffer-
entiated cells with poor barrier function exhibit a signifi-
cant intracellular Cldn pool. In addition to transcriptional
and translational regulation of expression levels, barrier
function may be influenced by Cldn subcellular localiza-
tion. In this context the observed changes in Cldn locali-
zation described in this study may be a result of multiple
mechanisms including changes in Cldn phosphorylation.
Although a number of Cldns, including the ones assessed
in this study, have computer-predicted phosphorylation
sites in the cytoplasmic tail domain, the functional signif-
icance of such sites has been demonstrated for only a few
Cldns; e.g. Cldn3 where post-translational phosphoryla-
tion at threonine 192 has been shown to regulate TJ bar-
rier function in ovarian cancer cells [16]. Another
possibility is that there is increased endocytosis and/or an
inhibition of a post-translational insertion into the ER
resulting in Cldn retention in cytoplasmic vesicles. How-
ever, further investigation into the molecular mecha-
nism(s) governing Cldn expression and localization in
skin tumorigenesis is required.

Changes in Cldn| expression through epidermal tumor
progression

Amongst the Cldns in the epidermis, Cldn1 expression is
unique and undergoes a maturation switch parallel to the
acquisition of epidermal barrier function. In the develop-
ing epidermis, Cldn1 expression is first restricted to the
stratified layers at E15.5, and by E17.5 it occupies both the
basal and suprabasal compartments [4]. This mature
expression pattern is maintained throughout life under
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Cldn11

Figure 2
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Cldn12 Cldn18

Suprabasal-specific Cldns in epidermal tumor progression. Cldné, Cldnl |, Cldn12 and Cldn |8 expression changes
during epidermal tumorigenesis to occupy a gradually expanding zone of expression as observed after 2 (a-d), 6 (e-h) and 12
(i-1) weeks of the carcinogenesis protocol. While the localization of these suprabasal-specific Cldns shifted to varying degrees
away from the cell membrane, there was a correspondingly varied reduction in the number of Cldn-positive epidermal cell lay-
ers in the lower strata of the epidermis after 6 and 12 weeks. The acetone-treated epidermis (after 12 weeks) is shown (m-p).
A dotted line marks the base of the epidermal basal layer and the suprabasal zone is indicated with a bracket.

normal conditions and was not modified when the epi-
dermis was exposed to vehicle over the duration of tum-
origenesis experiments (Figure 4a, the acetone-treated
epidermis after 12 weeks is shown). However in response
to DMBA/TPA treatment, Cldn1 lost its normal distribu-
tion pattern and adopted an expression like the immature
pattern (Figure 4). Thus, 2 weeks after initiation of the car-
cinogenesis protocol, Cldn1-positive cells were decreased
in the basal layer of the epidermis, while the entire supra-
basal compartment maintained cell membrane-associated
Cldn1 expression (Figure 4b); by 4 weeks of treatment,

the basal layer was essentially devoid of Cldnl (Figure
4c). After 8 weeks of treatment, the zone of Cldnl-nega-
tive cells expanded upwards into the lower strata of the
suprabasal compartment, with only sporadic presence of
Cldn1 protein remaining (Figure 4d), a phenomena more
exaggerated after 12 weeks (Figure 4e). However, and in
contrast to the normal suprabasal-specific Cldns, the
membranous localization of Cldnl was preserved
throughout the 12 weeks of sampling in the upper strata
of the suprabasal epidermis. Reminiscent of the reduced
number of Cldn6, Cldn11, Cldn12 and Cldn18-positive
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Cldi48

Figure 3

Differential Cldn localization in the tumorigenic epidermis. Higher magnification immunolocalization images of the epi-
dermis (a-d) as compared to the characteristic epidermal structures infiltrating the dermis (e-h) better demonstrate the differ-
ences in Cldn localization 8 weeks after the initiation of the DMBA/TPA protocol. Membranous Cldn association was more
prominent for each Cldn, albeit to varying degrees, in the upper strata of the epidermis; whereas in the lower strata and the
epidermal invaginations Cldn localization was less membranous in nature and Cldn-null epidermal cells were more frequently
observed. A dotted line marks the basal layer, and a bracket encompasses the epidermal suprabasal compartment in a-d. A
double-ended arrow marks the suprabasal compartment in e-h to demonstrate that the entire panel represents suprabasal
cells; arrowheads point to representative areas of non-membranous Cldn localization, and stars designate areas of Cldn-nega-
tive epidermal cells.

epithelial cell layers in the characteristic epidermal struc-  Although the molecular mechanisms responsible for the
tures infiltrating the dermis, these areas were completely = reduced number of Cldn1-positive cells in epithelial tum-
devoid of Cldn1 expression (not shown). origenesis have not been defined, one possibility involves

suppression by the Snail family of genes, which are
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Figure 4

Changes in Cldn| expression in skin tumorigenesis. In the normal (not shown) and vehicle-treated (a, after 12 weeks)
epidermis, Cldn| is localized in the basal and suprabasal layers; however in response to the two-stage chemical carcinogenesis
protocol, the number of Cldn|-positive epithelial cells was progressively reduced starting from the basal layer and moving
upwards at 2 (b), 4 (c), 8 (d) and 12 (e) weeks. Although a distinctly membranous Cldn| association was maintained in the
upper layers of the treated epidermis, as the number of Cldn | -negative epidermal cells in the lower epidermal layers increased,
only sporadic Cldn| localization was evident (c-e). The epidermal basal layer is indicated by a dotted line, and the suprabasal
compartment is marked with a bracket (a-c); note that the basal layer is out of view in panels d and e; the entire view is there-
fore the suprabasal compartment and is marked with a double-ended arrow.

involved in numerous tumors both in vivo and in vitro
[17]. In support of this notion, functional Snail-binding
E-box motifs have been demonstrated to have a suppres-
sive role on Cldn1 expression in vitro [18,19]. Further-
more, a role for promoter methylation in the silencing of
Cldn3, Cldn4 and Cldn7 has been observed in some
tumors [20,21], suggesting that methylation could also
play a role. Further studies are required to identify the
mechanisms responsible for the changes observed in Cldn
expression through epidermal tumor progression. How-
ever, our studies indicate that in this model the expression
and distribution of Cldns change drastically and in a man-
ner consistent with the loss of cell polarity and altered bar-
rier selectivity concomitant with epidermal tumor
formation.
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