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Abstract
Background: Published prognostic gene signatures in breast cancer have few genes in common.
Here we provide a rationale for this observation by studying the prognostic power and the
underlying biological pathways of different gene signatures.

Methods: Gene signatures to predict the development of metastases in estrogen receptor-
positive and estrogen receptor-negative tumors were identified using 500 re-sampled training sets
and mapping to Gene Ontology Biological Process to identify over-represented pathways. The
Global Test program confirmed that gene expression profilings in the common pathways were
associated with the metastasis of the patients.

Results: The apoptotic pathway and cell division, or cell growth regulation and G-protein coupled
receptor signal transduction, were most significantly associated with the metastatic capability of
estrogen receptor-positive or estrogen-negative tumors, respectively. A gene signature derived of
the common pathways predicted metastasis in an independent cohort. Mapping of the pathways
represented by different published prognostic signatures showed that they share 53% of the
identified pathways.

Conclusion: We show that divergent gene sets classifying patients for the same clinical endpoint
represent similar biological processes and that pathway-derived signatures can be used to predict
prognosis. Furthermore, our study reveals that the underlying biology related to aggressiveness of
estrogen receptor subgroups of breast cancer is quite different.

Background
Microarray technology has become a popular tool to clas-
sify breast cancer patients into histological subtypes, sub-
groups with a different prognosis, different site of relapse,

and different types of response to treatment [1-9]. A major
challenge for application of gene expression profiling is
stability of the gene list as a signature [10]. Considering
that many genes have correlated expression on a gene
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expression array, especially for genes involved in the same
biological process, it is quite possible that different genes
may be present in different signatures when different
training sets of patients and different statistical tools are
used. Furthermore, genes are usually included in a classi-
fier applying stringent statistical criteria. At these strict sig-
nificance levels, there is only a small chance for any
specific gene to be included. Reproducibility in gene sig-
natures identified in different datasets is thus unlikely
[11]. To our knowledge, so far prognostic gene signatures
were identified based on the performance of individual
genes, regardless of their biological functions. We and
others have previously suggested that it might be more
appropriate to interrogate the gene lists for biological
themes, rather than individual genes [8,12-19]. Moreover,
identification of the distinct biological processes between
subtypes of cancer patients is more relevant to understand
the mechanism of the disease development and for tar-
geted drug development.

In this study we associated biological processes with the
tumor's metastatic capability. We re-sampled our data set
numerous times to get multiple gene lists whose expres-
sion correlated with patients' survival. Based on these
gene lists, over-represented pathways defined in Gene
Ontology Biological Process (GOBP) were identified for
estrogen receptor (ER)-positive or ER-negative breast can-
cer patients, separately. One step further, we compared
the pathways represented by different published prognos-
tic gene signatures with the over-represented pathways
associated with metastatic capability. This study also dem-
onstrated it is feasible to construct a gene signature from
the key pathways to predict clinical outcomes.

Methods
Patient population
The study was approved by the Medical Ethics Committee
of the Erasmus MC Rotterdam, The Netherlands (MEC
02.953), and was performed in accordance to the Code of
Conduct of the Federation of Medical Scientific Societies
in the Netherlands [20]. A cohort of 344 breast tumor
samples from our tumor bank at the Erasmus Medical
Center (Rotterdam, Netherlands) was used in this study.
All these samples were from patients with lymph node-
negative breast cancer who had not received any adjuvant
systemic therapy, and had more than 70% tumor content.
Among them, 286 samples had been used to derive a 76-
gene signature to predict distant metastasis [8]. Fifty-eight
additional ER-negative cases were included to increase the
numbers in this subgroup. According to our previous
study [21], array-measured ER status and clinical ER status
have the best correlation when the cutoff is set at 1000,
after scaling the average intensity of probe sets on an
Affymetrix HG-U133A chip to 600. Using array-based ER
status allows us to avoid the variations of the measures of

ER by either immunohistochemistry or biochemical
assays, as well as including tumors whose ER status is
undetermined. Therefore, ER status for a patient was
determined based on the expression level of the ER gene
on the chip in this study. A sample is considered ER-posi-
tive if its ER expression level is higher than 1000. Other-
wise, the sample is ER-negative [21]. As a result, there are
221 ER-positive and 123 ER-negative patients in the 344-
patient population. The mean age of the patients was 53
years (median 52, range 26–83 years), 197 (57%) were
premenopausal and 147 (43%) postmenopausal. T1
tumors (≤ 2 cm) were present in 168 patients (49%), T2
tumors (> 2–5 cm) in 163 patients (47%), T3/4 tumors (>
5 cm) in 12 patients (3%), and 1 patient had unknown
tumor stage. Pathological examination was carried out by
regional pathologists as described previously [22] and the
histological grade was coded as poor in 184 patients
(54%), moderate in 45 patients (13%), good in 7 patients
(2%), and unknown for 108 patients (31%). During fol-
low-up 103 patients showed a relapse within 5 years and
were counted as failures in the analysis for DMFS. Eighty
two patients died after a previous relapse. The median fol-
low-up time of patients still alive was 101 months (range
61–171 months).

RNA isolation and hybridization
Total RNA was extracted from 20–40 cryostat sections of
30 um thickness with RNAzol B (Campro Scientific,
Veenendaal, Netherlands). After being biotinylated, tar-
gets were hybridized to Affymetrix HG-U133A chips as
described [8]. Gene expression signals were calculated
using Affymetrix GeneChip analysis software MAS 5.0.
Chips with an average intensity less than 40 or a back-
ground higher than 100 were removed. Global scaling was
performed to bring the average signal intensity of a chip
to a target of 600 before data analysis. For the validation
dataset [23], quantile normalization was performed and
ANOVA was used to eliminate batch effects from different
sample preparation methods, RNA extraction methods,
different hybridization protocols and scanners.

Multiple gene signatures
For ER-positive and ER-negative patients, 80 samples were
randomly selected as a training set and univariate Cox
proportional-hazards regression was performed to iden-
tify genes whose expression patterns were most correlated
to patients' DMFS time. Our previous analysis suggested
that 80 patients represent a minimum size of the training
set for producing a prognostic gene signature with stable
performance [8]. Because the majority of the published
gene expression signatures had less than 100 genes, the
top 100 genes from the Cox regression were used as a sig-
nature to predict tumor recurrence for the remaining
patients. A relapse score for a patient was used to calculate
a patient's risk of distant metastasis and was defined as the
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linear combination of logarithmically transformed gene
expression levels weighted by the standardized Cox regres-
sion coefficient as described [8]. ROC analysis with dis-
tant metastasis within 5 years as a defining point was
conducted. Patients who did not have 5-year follow-up
were excluded from ROC analysis. The AUC of the ROC
plots was used as a measure of the performance of a signa-
ture in the test set. The above procedure was repeated 500
times (Figure 1). Thus, 500 signatures of 100 genes each
were obtained for both the ER-positive and ER-negative
subgroups. The frequency of the selected genes in the 500
signatures was calculated and the genes were ranked based
on the frequency.

As a control, the patient survival data for the ER-positive
patients or ER-negative patients was permuted randomly
and re-assigned to the chip data. As described above, 80
chips were then randomly selected as a training set and
the top 100 genes were selected using the Cox modeling
based on the permuted clinical information. The clinical
information was permuted 10 times. For each permuta-

tion of the survival data, 50 training sets of 80 patients
were created. For each training set, the top 100 genes were
obtained as a control gene list based on the Cox mode-
ling. Thus, a total of 500 control signatures were obtained.
The predictive performance of the 100 genes was exam-
ined in the remaining patients. A ROC analysis was con-
ducted and AUC was calculated in the test set.

Mapping signatures to GOBP and identification of over-
represented pathways
To identify over-representation of biological pathways in
the signatures, genes on Affymetrix HG-U133A chip were
mapped to the categories of GOBP based on the annota-
tion table downloaded from [24]. Categories that con-
tained at least 10 probe sets from the HG-U133A chip
were retained for subsequent pathway analysis. As a result,
304 categories were used for following pathway analysis.
The 100 genes of each signature were mapped to GOBP.
Hypergeometric distribution probabilities for all included
GOBP categories were calculated for each signature to
evaluate its statistical significance. A pathway that had a
hypergeometric distribution probability < 0.05 and was
hit by two or more genes from the 100 genes was consid-
ered an over-represented pathway in a signature. The total
number of times a pathway occurred in the 500 signatures
was considered as the frequency of over-representation.

To evaluate the relationship between a pathway as a
whole and the clinical outcome, each of the top 20 over-
represented pathways that have the highest frequencies in
the 500 signatures were subjected to Global Test program
[12,14]. The Global Test examines the association of a
group of genes as a whole to a specific clinical parameter
such as DMFS. The contribution of individual genes in the
top over-represented pathways to the association was also
evaluated.

Building pathway-based signatures
To explore the possibility of using the genes from over-
represented pathways as a signature to predict distant
metastasis, the top two pathways for ER-positive and ER-
negative tumors that were in the top 20 list based on fre-
quency of over-representation and had the smallest p val-
ues with the Global Test program were chosen to build a
gene signature. First, genes in the pathway were selected if
their z-score was greater than 1.96 from the Global Test
program. A z-score greater than 1.96 indicates that the
association of the gene expression with DMFS time is sig-
nificant (p < 0.05) [12,14]. To determine the optimal
number of genes in a given pathway used for building the
signature, combinations of gene markers were tested by
adding one gene at a time according to their z-scores. The
number of significant genes that gave the highest AUC
value of the ROC analysis with distant metastasis within 5

Work flow of data analysis for deriving core genes and over-represented pathwaysFigure 1
Work flow of data analysis for deriving core genes and over-
represented pathways.

221 ER-positive or 124 ER-negative patients

Select 80 patients as a training set

Select the top 100 genes as a signature based on Cox modeling 
and predict the outcomes for the remaining patients

Repeat 500 times

Identify core genes based 
on gene frequency

Map the 100 genes in each signature to 
GO Biological Process categories 

Identify over-represented pathways in each signature and calculate 
the frequency of over-represented pathways in the 500 signatures

Select the top over-represented pathways and 
evaluate them using Global Test program
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years as the defining point was considered optimal and
used to build a pathway-based signature.

The relapse score for a given patient was calculated as the
difference between the linear combination of the logarith-
mically transformed expression signals weighted by their
z-scores for negatively correlated genes and that for posi-
tively correlated genes. The predicting performance of the
gene signature was evaluated by ROC and Kaplan-Meier
survival analysis in an independent patient group [23] for
ER-positive patients and ER-negative patients both sepa-
rately and combined.

Comparing multiple gene signatures
To compare the genes from various prognostic signatures
for breast cancer, five gene signatures were selected
[3,8,23,25,26]. Identity of the genes between the signa-
tures was determined by BLAST program. To examine the
representation of the top 20 pathways in the signatures,
genes in each of the signatures were mapped to GOBP.

Data availability
The microarray data analyzed in this paper have been sub-
mitted to the NCBI/Genbank GEO database (series entry
GSE2034 for the first 286 patients, and GSE5327 for the
additional 58 patients). The microarray and clinical data
used for the independent validation testing set analysis
were obtained from the GEO database with accession
number GSE2990.

Results
Multiple gene signatures
Using re-sampling, we constructed a total of 1,000 prog-
nostic gene signatures derived from different patient
groups aiming to improve understanding of the underly-
ing biological processes of breast cancer metastasis. Since
gene expression patterns of ER-subgroups of breast
tumors are quite different [1-4,8,27] data analysis to
derive gene signatures and subsequent pathway analysis
were conducted separately [8]. For both ER-positive and
ER-negative patients, 80 samples were randomly selected
as a training set and the 100 genes most significantly asso-
ciated with distant metastasis-free survival (DMFS) were
used as a signature to predict tumor recurrence for the
remaining ER-positive and ER-negative patients, respec-
tively (Figure 1). The area under the curve (AUC) of
receiver operating characteristic (ROC) analysis with dis-
tant metastasis within 5 years as a defining point was used
as a measure of the performance of a signature in a corre-
sponding test set. The above procedure was repeated 500
times. The average of AUCs for the 500 signatures in the
ER-positive test sets was 0.70 (95% confidence interval
(CI): 0.61–0.77) whereas the average of AUCs for 500 ran-
dom gene lists was 0.50 (95% CI: 0.33–0.66), indicating
a non-random prediction for the true test sets (Figure 2A).

For ER-negative datasets, these values of average AUCs
were 0.67 (95% CI: 0.53–0.80) and 0.51 (95% CI: 0.31–
0.76), respectively (Figure 2B). The results demonstrate
that depending on the training set different gene signa-
tures can be identified with comparable performance.
This could explain the results obtained by earlier studies,
which reported different gene signatures with similar
power to predict risk groups. The 20 most frequently
found genes in the 500 signatures for ER-positive and ER-
negative tumors are listed in Table 1. The most frequent
genes were KIAA0241 protein (KIAA0241) for ER-positive
tumors, and zinc finger protein multitype 2 (ZFPM2) for
ER-negative tumors. There was no overlap between genes
of the ER-positive and -negative core gene lists suggesting
that different molecular mechanisms are associated with
the subtypes of breast cancer disease.

Over-represented pathways in gene signatures and Global 
Test
The 100 genes in each of the 500 signatures for ER-posi-
tive and ER-negative tumors were mapped to the catego-
ries of GOBP. For a given gene signature, a pathway (or
category) that had a hypergeometric distribution proba-
bility smaller than 0.05 and included two or more genes
was considered an over-represented pathway. The "inclu-
sion of 2 or more genes" as a selection criterion in addi-
tion to the statistical significance was to avoid selecting
statistically significant pathways containing only one gene
in the signature. The frequency of over-representation of
GOBP in the 500 signatures for ER-positive and ER-nega-
tive dataset was calculated. Like the observation of most
frequently found genes, the biological pathways over-rep-
resented in the gene signatures are distinct for ER-positive
and ER-negative tumors (Table 2). For ER-positive
tumors, cell division-related processes and immune-
response-related pathways are frequently found in the top
20 over-represented pathways. All of the 20 pathways had
a significant association with DMFS as analyzed by the
Global Test program [12,14], with the 2 most significant
being "apoptosis" (mainly containing genes of the extrin-
sic apoptotic pathway) and "regulation of cell cycle"
(Table 2). For ER-negative tumors, many of the top 20
pathways are related with RNA processing, transportation
and signal transduction. Eighteen of the top 20 pathways
demonstrated a significant association with DMFS in the
Global Test, the 2 most significant being "regulation of
cell growth" and "regulation of G-protein coupled recep-
tor signaling" (Table 2).

The contribution and significance of individual genes in
the top over-represented pathways to the association with
DMFS were determined for ER-positive [see Additional
files 1 and 2] and ER-negative tumors [see Additional files
3 and 4]. Genes can either show a positive association
with DMFS, indicating a higher expression in tumors
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without metastatic capability, or a negative association,
indicative of a higher expression in metastatic tumors. In
ER-positive tumors, pathways with a mixed association
include the 2 most significant pathways "apoptosis" and
"regulation of cell cycle" (Figure 3A). There were also a
number of pathways that had a predominant positive or
negative correlation with DMFS. For example, the path-
way "immune response" is associated with 379 probe sets,
of which the majority showed positive correlation to
DMFS (Figure 3A). Similarly in the biological processes
"cellular defense response" and "chemotaxis", most genes

displayed a strong positive correlation with DMFS [see
Additional file 1]. On the other hand, genes in "mitosis"
(Figure 3A), "mitotic chromosome segregation" and "cell
cycle" showed a predominant negative correlation with
DMFS [see Additional file 1].

In ER-negative tumors (Figure 3B), examples of pathways
with genes that had both positive and negative correlation
to DMFS include "regulation of cell growth", the most sig-
nificant pathway, and "cell adhesion". Of the top 20 path-
ways in ER-negative tumors, none showed a dominant

Table 1: Genes with highest frequencies in 500 signatures

Gene title Gene symbol Frequency

Top 20 core genes from ER-positive tumors
KIAA0241 protein KIAA0241 321
CD44 antigen (homing function and Indian blood group system) CD44 286
ATP-binding cassette, sub-family C (CFTR/MRP), member 5 ABCC5 251
serine/threonine kinase 6 STK6 245
cytochrome c, somatic CYCS 235
KIAA0406 gene product KIA0406 212
uridine-cytidine kinase 1-like 1 UCKL1 201
zinc finger, CCHC domain containing 8 ZCCHC8 188
Rac GTPase activating protein 1 RACGAP1 186
staufen, RNA binding protein (Drosophila) STAU 176
lactamase, beta 2 LACTB2 175
eukaryotic translation elongation factor 1 alpha 2 EEF1A2 172
RAE1 RNA export 1 homolog (S. pombe) RAE1 153
tuftelin 1 TUFT1 150
zinc finger protein 36, C3H type-like 2 ZFP36L2 150
origin recognition complex, subunit 6 homolog-like (yeast) ORC6L 143
zinc finger protein 623 ZNF623 140
extra spindle poles like 1 ESPL1 139
transcription elongation factor B (SIII), polypeptide 1 TCEB1 138
ribosomal protein S6 kinase, 70 kDa, polypeptide 1 RPS6KB1 127

Top 20 core genes from ER-negative tumors
zinc finger protein, multitype 2 ZFPM2 445
ribosomal protein L26-like 1 RPL26L1 372
hypothetical protein FLJ14346 FLJ14346 372
mitogen-activated protein kinase-activated protein kinase 2 MAPKAPK2 347
collagen, type II, alpha 1 COL2A1 340
muscleblind-like 2 (Drosophila) MBNL2 320
G protein-coupled receptor 124 GPR124 314
splicing factor, arginine/serine-rich 11 SFRS11 300
heterogeneous nuclear ribonucleoprotein A1 HNRPA1 297
CDC42 binding protein kinase alpha (DMPK-like) CDC42BPA 296
regulator of G-protein signalling 4 RGS4 276
transient receptor potential cation channel, subfamily C, member 
1

TRPC1 265

transcription factor 8 (represses interleukin 2 expression) TCF8 263
chromosome 6 open reading frame 210 C6orf210 262
dynamin 3 DNM3 260
centrosome protein Cep63 Cep63 251
tumor necrosis factor (ligand) superfamily, member 13 TNFSF13 251
dapper, antagonist of beta-catenin, homolog 1 (Xenopus laevis) DACT1 248
heterogeneous nuclear ribonucleoprotein A1 HNRPA1 245
reversion-inducing-cysteine-rich protein with kazal motifs RECK 243

The top 20 genes are ranked by their frequency in the 500 signatures of 100 genes for ER-positive and ER-negative tumors (for details see Figure 1).
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positive association with DMFS. Although for some path-
ways most genes correlated negatively with DMFS [see
Additional file 3], including "regulation of G-protein cou-
pled receptor signaling" and "skeletal development" (Fig-
ure 3B), ranked among the top 3 pathways in significance
(Table 2). Of the top 20 core pathways 4 overlapped
between ER-positive and -negative tumors, i.e., "regula-
tion of cell cycle", "protein amino acid phosphorylation",
"protein biosynthesis", and "cell cycle" (Table 2).

Pathway-derived gene expression profiles as a predictor
In an attempt to use gene expression profiles in the most
significant biological processes to predict distant metas-
tases we used the genes of the top 2 significant pathways
in both ER-positive (Table 3, Table 4) and -negative
tumors (Table 5, Table 6) to construct a gene signature for

the prediction of distant recurrence. A 50-gene signature
was constructed by combining the 38 genes from the top
2 ER-positive pathways ("apoptosis", "regulation of cell
cycle") and 12 genes for the top 2 ER-negative pathways
("regulation of cell growth", "regulation of G-coupled
receptor signaling"). This signature was further validated
using an independent 152-patient cohort [23], which
consisted of 125 ER-positive tumors and 27 ER-negative
tumors (after removing 36 lymph node positive patients
and a patient who died 15 days after surgery). When the
38 genes was applied to the 125 ER-positive patients, a
ROC analysis gave an AUC of 0.782 (95% CI: 0.681–
0.883) (Figure 4A, left), and Kaplan-Meier analysis for
DMFS showed a clear separation in risk groups (p < 0.001,
HR: 3.36 and 95% CI: 1.68–6.70) (Figure 4A, right). For
the 12 genes for the 27 ER-negative patients, an AUC of
0.872 (95% CI: 0.719–1) (Figure 4B, left) and separation
between risk groups with a p < 0.001 and a HR of 19.8
(95% CI: 2.41–163) (Figure 4B, right) was obtained. The
combined 50-gene signature for ER-positive and ER-nega-
tive patients gave an AUC of 0.795 (95% CI: 0.705–
0.878) (Figure 4C, left) and a p < 0.001 and a HR of 4.44
(95% CI: 2.31–8.54) for separation between risk groups
(Figure 4C, right).

Pathway analysis of published prognostic gene signatures
To compare genes from various prognostic signatures for
breast cancer, five published gene signatures were selected
[3,8,23,25,26]. We first compared the gene sequence
identity between each pair of the gene signatures and
found, consistent with previous reports, very few overlap-
ping genes (Table 7). The grade index gene expression sig-
nature comprising 97 genes, of which most are associated
with cell cycle regulation and proliferation [23], showed
the highest number of overlapping genes between the var-
ious signatures ranging from 5 of the 16 genes of Genomic
Health [25] to 10 with Yu's 62 genes [26]. The other 4
gene signatures showed only 1 gene overlap in a pair-wise
comparison, and there was no common gene for all signa-
tures. In spite of the low number of overlapping genes
across signatures, we hypothesized that the representation
of common pathways in the various signatures may
underlie their individual prognostic value [8]. Therefore,
we examined the representation of the core prognostic
pathways (Table 2) in the 5 signatures. The Genomic
Health 16-gene signature mapped to 10 of the 36 distinct
core pathways (20 for both ER-positive and -negative
tumors but counting the 4 overlapping pathways once)
whereas it mapped to a total of 25 out of 304 GOBPs. The
statistical significance for the enrichment of GOBP, as
computed by hypergeometric distribution probability was
2 × 10-5. Each of the other 4 signatures have 62 or more
genes and were mapped to 19 (53%) distinct prognostic
pathways and their statistical significance of enrichment
was 1 × 10-7 for Wang and van 't Veer, 1 × 10-6 for Sotiriou

Evaluation of the 500 gene signaturesFigure 2
Evaluation of the 500 gene signatures. Each of the 100-
gene signatures for 80 randomly selected tumors in the train-
ing set was used to predict relapsed patients in the corre-
sponding test set. Its performance was measured by the 
AUC of the ROC analysis. (A) Performance of the gene sig-
natures for ER-positive patients in test sets. (B) Performance 
of the gene signatures for ER-negative patients in test sets. 
(Left) Frequency of AUC in 500 prognostic signatures panels 
as derived following the flow chart presented in Figure 1. 
(Right) Frequency of AUC in 500 random gene lists. To gen-
erate a gene list as a control, the survival data for the ER-
positive patients or ER-negative patients was permutated 
randomly and reassigned to the chip data.
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and 6 × 10-11 for Yu's signature (Table 8). Of these 19
pathways, 9 were identical for all 4 signatures, i.e., "mito-
sis", "apoptosis", "regulation of cell cycle", "DNA repair",
"cell cycle", "protein amino acid phosphorylation", "DNA
replication", "intracellular signaling cascade", and "cell
adhesion".

Discussion
Gene-expression profiling for separating patients into dif-
ferent subtypes and risk groups have been focused on the
identification of differential expression of individual
genes rather than obtaining biological insight. In the
present study we have used an alternative approach to
identify in ER-positive and ER-negative populations of
breast cancer patients the underlying biological processes
associated with metastasis. Using a stringent re-sampling

Table 2: Top 20 pathways in the 500 signatures of ER-positive and ER-negative tumors evaluated by Global Test

Pathways GO_ID P Frequency

ER-positive tumors
Apoptosis 6915 3.06E-7 250
Regulation of cell cycle 74 2.46E-5 203
Protein amino acid phosphorylation 6468 2.48E-5 114
Cytokinesis 910 6.13E-5 165
Cell motility 6928 0.00015 93
Cell cycle 7049 0.00028 138
Cell surface receptor-linked signal transd. 7166 0.00033 172
Mitosis 7067 0.00036 256
Intracellular protein transport 6886 0.00054 141
Mitotic chromosome segregation 70 0.00057 98
Ubiquitin-dependent protein catabolism 6511 0.00074 158
DNA repair 6281 0.00079 156
Induction of apoptosis 6917 0.00083 115
Immune response 6955 0.00094 167
Protein biosynthesis 6412 0.0010 145
DNA replication 6260 0.0015 92
Oncogenesis 7048 0.0020 228
Metabolism 8152 0.0021 83
Cellular defense response 6968 0.0025 131
Chemotaxis 6935 0.0027 89

ER-negative tumors
Regulation of cell growth 1558 0.00012 136
Regul. of G-coupled receptor signaling 8277 0.00013 153
Skeletal development 1501 0.00024 160
Protein amino acid phosphorylation 6468 0.0051 151
Cell adhesion 7155 0.0065 110
Carbohydrate metabolism 5975 0.0066 86
Nuclear mRNA splicing, via spliceosome 398 0.0067 203
Signal transduction 7165 0.0078 160
Cation transport 6812 0.0098 160
Calciumion transport 6816 0.010 93
Protein modification 6464 0.011 132
Intracellular signaling cascade 7242 0.012 135
mRNA processing 6397 0.012 81
RNA splicing 8380 0.014 192
Endocytosis 6897 0.026 166
Regul. of transcription from PolII promoter 6357 0.031 109
Regulation of cell cycle 74 0.043 88
Protein complex assembly 6461 0.048 183
Protein biosynthesis 6412 0.063 99
Cell cycle 7049 0.084 72

Each of the top 20 over-represented pathways that have the highest frequencies in the 500 signatures of ER-positive and ER-negative tumors were 
subjected to Global Test program [12, 14]. The Global Test examines the association of a group of genes as a whole to a specific clinical parameter, 
in this case DMFS, and generates an asymptotic theory p value for the pathway. The pathways are ranked by their p value in the respective ER-
subgroup of tumors.
Page 7 of 14
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Association of the expression of individual genes with DMFS time for selected over-represented pathwaysFigure 3
Association of the expression of individual genes with DMFS time for selected over-represented pathways. The Geneplot 
function in the Global Test program [12, 14] was applied and the contribution of the individual genes in each selected pathway is plotted. 
The numbers at the X-axis represent the number of genes in the respective pathway in ER-positive (Left) or ER-negative tumors (Right). 
The values at the Y-axis, represent the contribution (influence) of each individual gene in the selected pathway with DMFS. Negative val-
ues indicate there is no association between the gene expression and DMFS. Horizontal markers in a bar indicates one standard deviation 
away from the reference point, two or more horizontal markers in a bar indicates that the association of the corresponding gene with 
DMFS is statistically significant. The green bars reflect genes that are positively associated with DMFS, indicating a higher expression in 
tumors without metastatic capability. The red bars reflect genes that are negatively associated with DMFS, indicative of higher expression 
in tumors with metastatic capability. (A) ER-positive tumors: from top to bottom: "apoptosis" pathway consisting of 282 genes, "regula-
tion of cell cycle" pathway consisting of 228 genes, "immune response" pathway consisting of 379 genes, and "mitosis"? pathway consisting 
of 100 genes. (B) ER-negative tumors: from top to bottom: "regulation of cell growth" pathway consisting of 58 genes, "cell adhesion" 
pathway consisting of 327 genes, "regulation of G-coupled receptor signaling" pathway consisting of 20 genes, and "skeletal development" 
pathway consisting of 105 genes.
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Table 3: Significant genes in the Apoptosis pathway in ER-positive tumors

Probe Set z-score DMFS Gene Symbol Gene Title

208905_at 4.29 - CYCS cytochrome c, somatic
204817_at 3.73 - ESPL1 extra spindle poles like 1
38158_at 3.41 - ESPL1 extra spindle poles like 1
204947_at 3.04 - E2F1 E2F transcription factor 1
201111_at 3.04 - CSE1L CSE1 chromosome segregation 1-like
201636_at 2.97 - FXR1 fragile X mental retardation, autosomal homolog 1
220048_at 2.82 - EDAR ectodysplasin A receptor
210766_s_at 2.75 - CSE1L CSE1 chromosome segregation 1-like
221567_at 2.66 - NOL3 nucleolar protein 3 (apoptosis repressor with CARD domain)
213829_x_at 2.65 - TNFRSF6B tumor necrosis factor receptor superfamily, member 6b, decoy
201112_s_at 2.57 - CSE1L CSE1 chromosome segregation 1-like
212353_at 2.51 - SULF1 sulfatase 1
208822_s_at 2.47 - DAP3 death associated protein 3
209462_at 2.37 - APLP1 amyloid beta (A4) precursor-like protein 1
203005_at 2.29 - LTBR lymphotoxin beta receptor (TNFR superfamily, member 3)
202731_at 4.01 + PDCD4 programmed cell death 4
206150_at 3.57 + TNFRSF7 tumor necrosis factor receptor superfamily, member 7
202730_s_at 3.18 + PDCD4 programmed cell death 4
209539_at 3.14 + ARHGEF6 Rac/Cdc42 guanine nucleotide exchange factor (GEF) 6
212593_s_at 3.07 + PDCD4 programmed cell death 4
204933_s_at 2.96 + TNFRSF11B tumor necrosis factor receptor superfamily, member 11b
209831_x_at 2.43 + DNASE2 deoxyribonuclease II, lysosomal
203187_at 2.38 + DOCK1 dedicator of cytokinesis 1
210164_at 2.34 + GZMB granzyme B

Genes were sorted based on their "z-score" (significance), reflecting their association with distant metastasis-free survival time ("DMFS") time.

Table 4: Significant genes in the Regulation of cell cycle pathway in ER-positive tumors

Probe Set z-score DMFS Gene Symbol Gene Title

204817_at 3.73 - ESPL1 extra spindle poles like 1 (S. cerevisiae)
38158_at 3.41 - ESPL1 extra spindle poles like 1 (S. cerevisiae)
214710_s_at 3.10 - CCNB1 cyclin B1
212426_s_at 3.08 - YWHAQ tyrosine 3-/tryptophan 5-monooxygenase activation protein
204009_s_at 3.08 - KRAS v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
204947_at 3.04 - E2F1 E2F transcription factor 1
201947_s_at 3.04 - CCT2 chaperonin containing TCP1, subunit 2 (beta)
204822_at 2.91 - TTK TTK protein kinase
209096_at 2.57 - UBE2V2 ubiquitin-conjugating enzyme E2 variant 2
204826_at 2.53 - CCNF cyclin F
212022_s_at 2.46 - MKI67 antigen identified by monoclonal antibody Ki-67
202647_s_at 2.42 - NRAS neuroblastoma RAS viral (v-ras) oncogene homolog
201076_at 3.09 + NHP2L1 NHP2 non-histone chromosome protein 2-like 1 (S. cerevisiae)
201601_x_at 3.00 + IFITM1 interferon induced transmembrane protein 1 (9–27)
204015_s_at 2.90 + DUSP4 dual specificity phosphatase 4
220407_s_at 2.68 + TGFB2 transforming growth factor, beta 2
206404_at 2.38 + FGF9 fibroblast growth factor 9 (glia-activating factor)

Genes were sorted based on their "z-score" (significance), reflecting their association with distant metastasis-free survival time ("DMFS") time.

Table 5: Significant genes in the Regulation of cell growth pathway in ER-negative tumors

Probe Set z-score DMFS Gene Symbol Gene Title

209648_x_at 4.01 - SOCS5 suppressor of cytokine signaling 5
208127_s_at 3.75 - SOCS5 suppressor of cytokine signaling 5
209550_at 3.18 - NDN necdin homolog (mouse)
201162_at 3.14 - IGFBP7 insulin-like growth factor binding protein 7
213910_at 2.87 - IGFBP7 insulin-like growth factor binding protein 7
212279_at 2.91 + MAC30 hypothetical protein MAC30
213337_s_at 2.88 + SOCS1 suppressor of cytokine signaling 1

Genes were sorted based on their "z-score" (significance), reflecting their association with distant metastasis-free survival time ("DMFS") time.
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Table 6: Significant genes in the Regulation of G-protein coupled receptor signaling pathway in ER-negative tumors

Probe Set z-score DMFS Gene Symbol Gene Title

204337_at 3.99 - RGS4 regulator of G-protein signalling 4
209324_s_at 3.73 - RGS16 regulator of G-protein signalling 16
220300_at 2.61 - RGS3 regulator of G-protein signalling 3
202388_at 2.61 - RGS2 regulator of G-protein signalling 2, 24 kDa
204396_s_at 2.34 - GRK5 G protein-coupled receptor kinase 5

Genes were sorted based on their "z-score" (significance), reflecting their association with distant metastasis-free survival time ("DMFS") time.

Validation of pathway-based breast cancer classifiers constructed from the optimal significant genesFigure 4
Validation of pathway-based breast cancer classifiers constructed from the optimal significant genes. To find the 
optimal number of genes as a signature, ROC analyses, with 5-year DMFS as defining point, with an increasing number of genes 
were conducted in the training set of ER-positive tumors or ER-negative tumors. For ER-positive tumors, in the "apoptosis" 
pathway, 24 genes (reaching an AUC of 0.784) were considered optimal (Table 3). For the "regulation of cell cycle pathway" in 
ER-positive tumors, 17 genes (AUC of 0.777) were considered optimal (Table 4). For ER-negative tumors, the optimal number 
of genes was 7 (AUC of 0.790) for the "regulation for cell growth" pathway (Table 5), and 5 (AUC of 0.788) for the "regulation 
of G-protein coupled receptor signaling" pathway (Table 6), respectively. The selected genes for the top 2 pathways for ER-
positive and ER-negative tumors were subsequently used to construct prognostic gene signatures separately for the 2 ER-sub-
groups of tumors. The 152-patient test set [23] consisted of 125 ER-positive tumors and 27 ER-negative tumors based on the 
expression level of ER gene on the chip. (A) ROC (Left) and Kaplan-Meier (Right) analysis of the 38-gene signature for ER-pos-
itive tumors. Thirteen patients with less than 5-year follow-up were excluded from ROC analysis. (B) ROC (Left) and Kaplan-
Meier (Right) analysis of the 12-gene signature for ER-negative tumors. One patient with less than 5-year follow-up was 
excluded from ROC analysis. (C) ROC (Left) and Kaplan-Meier (Right) analysis of a combined 50-gene signature for ER-posi-
tive and ER-negative tumors. Fourteen patients with less than 5-year follow-up were excluded from ROC analysis.
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and permutation methodology we were able to show that
indeed multiple signatures can be identified showing sim-
ilar prognostic power while the genes from these different
samplings have similar functions. Similar observations
were made when we mapped the core prognostic path-
ways to 5 published prognostic signatures [3,8,23,25,26].
Thus, we showed that in spite of the low number of over-
lapping genes between the various published gene signa-
tures, the signatures had many pathways in common,
implying that different prognostic gene signatures repre-
sent common biology. In a recent study, comparing the
prognostic performance of different gene-signatures,
agreement in outcome predictions were found as well
[28]. However, in contrast to our present approach, the
underlying pathways were not investigated. Instead, the
performance of various gene signatures on a single patient
cohort, heterogeneous with respect to nodal status and
adjuvant systemic therapy [29], was compared [28]. It is
important to note, however, that although similar path-
ways are represented in various signatures, it does not nec-
essarily mean the individual genes in a pathway are
equally significant or are all similarly associated with
tumor aggressiveness [see Additional files 1 and 3].

The fact that none of the 20 genes most frequently present
in the 500 signatures for the ER-positive tumors were
among in the top 20 core gene list of the ER-negative
tumors, was not surprising and is in line with the fact that
ER-subgroups of tumors are biologically very different
entities [1-4,8,27]. Furthermore, although among the top
20 over-represented pathways, 4 were common for ER-
positive tumors and ER-negative tumors, there were in
total only 2 shared genes pointing into the same direction
with respect to metastatic capability of the tumors. Both
genes, KIAA0256 in the "protein biosynthesis" pathway

and CCNT2 in the "cell cycle pathway", were associated
with an aggressive tumor behavior. These results imply
that the underlying biological processes between ER-sub-
groups of tumors with respect to their metastatic behavior
have little if any in common. Of the top 20 core prognos-
tic pathways for the ER-positive tumors many biological
processes are related to cell division activities, immunity,
signal transduction, and extrinsic apoptosis-related bio-
logical processes. The cell division-related pathways have
predominantly negative correlation with survival time,
while immune-related pathways have predominantly pos-
itive correlation. This indicates that ER-positive tumors
with metastatic capability tend to have higher cell division
rates, are more resistant to external apoptotic stimuli, and
induce a poor immune reaction in the host body. In ER-
positive tumors, one or more of these pathways, or genes
in these pathways, have also been described to be associ-
ated with the efficacy of tamoxifen therapy in recurrent
breast cancer [7], in the various prognostic signatures
described in the present paper [8,23,25,26], as well as in
other published signatures not specifically designed for
ER-positive tumors, such as the 70-gene prognostic signa-
ture [3], the stromal signatures [30], and the hypoxia sig-
nature [31]. The differences in metastatic behavior
between ER-subgroups of tumors is further substantiated
by the finding that in ER-negative tumors other pathways
showed the strongest involvement, including those
related with cell growth regulation, possibly through JAK/
STAT signaling, and modulation of G-protein receptor sig-
nal transduction, RNA splicing or processing, and ion
transport. No comparison can be made with the literature
since no other studies so far have described prognostic of
predictive pathways specifically in ER-negative breast can-
cer.

Table 7: Number of common genes between different gene signatures for breast cancer prognosis

Wang's 76 genes van 't Veer's 70 genes Paik's 16 genes Yu's 62 genes

Wang's 76 genesa CCNE2 No genes No genes
van 't Veer's 70 genesb CNNE2 SCUBE2 AA962149
Paik's 16 genesc No genes SCUBE2 BIRC5
Yu's 62 genesa No genes AA962149 BIRC5
Sotiriou's 97 genesa PLK1, FEN1, CCNE2, 

GTSE1, KPNA2, MLF1IP, 
POLQ

MELK, CENPA, CCNE2, 
GMPS, DC13, PRC1, 
NUSAP1, KNTC2

MYBL2, BIRC5, STK6, 
MKI67, CCNB1

URCC6, FOXM1, DLG7, 
DKFZp686L20222, DC13, 
FLJ32241, HSP1CDC21, 
CDC2, KIF11, EXO1

aAffymetrix HG-U133A Genechip
bAgilent Hu25K microarray
cNo genome-wide assessment; RT-PCR
To compare genes from various prognostic signatures for breast cancer, five gene signatures were selected, the 76-gene signature [8], the 70-gene 
signature [3], the 16-gene signature [25], the 62-gene signature [26], and the 97-gene signature [23]. Identity of genes was determined by BLAST 
program when gene signatures were derived from different platforms. Except for the 97-gene expression grade index [23], which showed an 
overlap with 5 to 16 genes with the other gene signatures, a maximum overlap of only 1 identical gene was found between the other gene 
signatures. The initially reported 3-gene overlap between the 76-gene and the 70-gene prognostic signatures [8]included genes with high similarity 
in sequences. In this study, only genes with an identical sequence in two signatures are considered overlapped based on results from BLAST 
program. Therefore, CCNE2 gene is the only common gene between the two signatures.
Page 11 of 14
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We were able to construct a 50-gene signature by combin-
ing the genes from the 2 most significant ER-positive and
ER-negative pathways. This signature was validated and
performed well on an independent published patient
cohort [23], herewith showing the feasibility to derive a
gene signature from biological pathways. Although fur-
ther methodology and analysis would be required to opti-
mize the selection of such a pathway-based prognostic

signature, our example provides not only a new way to
derive gene signatures for cancer prognosis, but also gives
insight into the distinct biological processes between sub-
groups of tumors.

Conclusion
Our study for the first time applied a method that system-
atically evaluated the biological pathways related to

Table 8: Mapping various gene signatures to core pathways

Published gene signaturesa

Pathways GO_ID Wang Van 't Veer Paik Yu Sotiriou

ER-positive tumors
Apoptosis 6915 X X X X X
Regulation of cell cycle 74 X X X X X
Protein amino acid phosphorylation 6468 X X X X X
Cytokinesis 910 X X X X
Cell motility 6928 X X
Cell cycle 7049 X X X X X
Cell surface receptor-linked signal transd. 7166 X
Mitosis 7067 X X X X X
Intracellular protein transport 6886 X X X
Mitotic chromosome segregation 70 X X X
Ubiquitin-dependent protein catabolism 6511 X X X
DNA repair 6281 X X X X
Induction of apoptosis 6917 X
Immune response 6955 X X X
Protein biosynthesis 6412 X X X
DNA replication 6260 X X X X
Oncogenesis 7048 X X X
Metabolism 8152 X X
Cellular defense response 6968 X X X
Chemotaxis 6935 X X

ER-negative tumors
Regulation of cell growth 1558 X
Regul. of G-coupled receptor signaling 8277
Skeletal development 1501 X X
Protein amino acid phosphorylation 6468 X X X X X
Cell adhesion 7155 X X X X
Carbohydrate metabolism 5975 X X
Nuclear mRNA splicing, via spliceosome 398
Signal transduction 7165 X X X X
Cation transport 6812
Calciumion transport 6816
Protein modification 6464
Intracellular signaling cascade 7242 X X X X
mRNA processing 6397
RNA splicing 8380
Endocytosis 6897
Regul. of transcription from PolII promoter 6357 X
Regulation of cell cycle 74 X X X
Protein complex assembly 6461 X X
Protein biosynthesis 6412 X X
Cell cycle 7049 X X X X X

aPublished gene signatures that were studied include the 76-gene signature [8], the 70-gene signature [3], the 16-gene signature [25], the 62-gene 
signature [26], and the 97-gene signature [23]. Individual genes in each signature were mapped to the top 20 core pathways for ER-positive and ER-
negative tumors, a cross indicates a match.
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patient outcomes of breast cancer and showed that vari-
ous published prognostic gene signatures providing simi-
lar outcome predictions are based on the representation
of largely overlapping biological processes. Identification
of the key biological processes, rather than the assessment
of signatures based on individual genes, allows not only
to build a biological meaningful gene signature from
functionally related genes, but also provides insight into
the mechanism of the disease development and, as spin
off, potential targets for future drug development. In this
respect, as pharmacologic inhibitors for specific pathways
become available for the clinic, the signatures that define
tumors according to their vital pathways may provide cru-
cial guidance for designing appropriate drug combina-
tions [32].

Abbreviations
AUC, area under the curve; DMFS, distant metastasis-free
survival; ER, estrogen receptor. GOBP, gene ontology bio-
logical process; ROC, receiver operating characteristic.
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