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Abstract
Background: Stat3 has been classified as a proto-oncogene and constitutive Stat3 signaling appears to be
involved in oncogenesis of human cancers. However, whether constitutive Stat3 signaling plays a role in
the survival and growth of osteosarcomas, rhabdomyosarcomas, and soft-tissue sarcomas is still unclear.

Methods: To examine whether Stat3 is activated in osteosarcomas, rhabdomyosarcomas and other soft-
tissue sarcomas we analyzed sarcoma tissue microarray slides and sarcoma cell lines using
immunohistochemistry and Western blot analysis, respectively, with a phospho-specific Stat3 antibody. To
examine whether the activated Stat3 pathway is important for sarcoma cell growth and survival,
adenovirus-mediated expression of a dominant-negative Stat3 (Y705F) and a small molecule inhibitor
(termed STA-21) were used to inhibit constitutive Stat3 signaling in human sarcoma cell lines expressing
elevated levels of Stat3 phosphorylation. Cell viability was determined by MTT assays and induction of
apoptosis was analyzed by western blotting using antibodies that specifically recognize cleaved caspases-3,
8, and 9.

Results: Stat3 phosphorylation is elevated in 19% (21/113) of osteosarcoma, 27% (17/64) of
rhabdomyosarcoma, and 15% (22/151) of other soft-tissue sarcoma tissues as well as in sarcoma cell lines.
Expression of the dominant-negative Stat3 and treatment of STA-21 inhibited cell viability and growth and
induced apoptosis through caspases 3, 8 and 9 pathways in human sarcoma cell lines expressing elevated
levels of phosphorylated Stat3.

Conclusion: This study demonstrates that Stat3 phosphorylation is elevated in human
rhabdomyosarcoma, osteosarcomas and soft-tissue sarcomas. Furthermore, the activated Stat3 pathway
is important for cell growth and survival of human sarcoma cells.
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Background
The signal transducer and activator of transcription
(STAT) protein family is a group of related proteins that
play a role in relaying signals from cytokines and growth
factors [1,2]. Many cancers are strongly associated with
constant activation of STATs, in particular Stat3 [3,4]. In
normal tissues, Stat3 is widely expressed but its transient
activation is tightly regulated by SH2-containing tyrosine
phosphotases (SHP1 and SHP2), protein inhibitors of
activated STATs (PIAS), and suppressors of cytokine sign-
aling proteins/extracellular signaling regulated kinase
(SOCS/ERK) cascades as revealed in the Janus associated
kinase (JAK)/STAT paradigm [5-7]. In a variety of human
cancers, the imbalance among these signaling pathways
leads to constitutive activation of Stat3 that is sufficient to
induce cell tumorgenesis [8]. Stat3 is also involved in the
initiation and promotion of cancers and angiogenesis
[9,10]. Targeting the constitutive Stat3 pathway has
shown promise in inducing cancer cell death and restrict-
ing tumor growth [11-13]. Persistently, activation of Stat3
has become an attractive cancer therapy target [1,4].

Rhabdomyosarcomas, osteosarcomas, and other soft-tis-
sue sarcomas are reported as childhood and adult cancers
and their causes remain largely unknown. Rhabdomyosa-
rcoma is the most common soft tissue sarcoma of child-
hood. Based on histological criteria, it can be classified
into two major subtypes, alveolar rhabdomyosarcoma
(ARMS) and embryonal rhabdomyosarcoma (ERMS).
Although Stat3 is known to be activated in other cancer
types, Stat3 activation in osteosarcomas, rhabdomyosar-
comas, and soft-tissue sarcomas is still unclear. Further, it
is also not clear what role of Stat3 may play in cell growth
and survival in human sarcoma cells, including osteosar-
coma and rhabdomyosarcoma cells.

Here we present evidence that activated Stat3 is detected
in osteosarcoma, rhabdomyosarcoma, and soft-tissue sar-
coma tissues and cell lines. Thereafter, we hypothesized
that inhibition of Stat3 should lead to suppression of oste-
osarcoma and rhabdomyosarcoma cell growth. We tar-
geted the activated Stat3 signaling pathway using a
dominant negative Stat3 Y705F (dnStat3) and STA-21, a
small molecule inhibitor [13,14]. Inhibition of the Stat3
pathway suppressed cell growth of osteosarcoma and
rhabdomyosarcoma cell lines in vitro. Moreover, blocking
of constitutively active Stat3 pathway induced apoptosis
through caspases 3, 8 and 9. Taken together, Stat3 may
serve as a therapeutic target in human osteosarcomas and
rhabdomyosarcomas.

Methods
Cell lines
Osteosarcoma (Saos-2, U2OS, and SJSA), rhabdomyosar-
coma (RH30, RH3 and RD2), leiomyosarcoma (SK-LMS-

1), human foreskin fibroblast (HFF), and human skeletal
muscle myoblast (HSMM) cell lines were purchased from
American Type Culture Collection (ATCC). CW9019, a
rhabdomyosarcoma cell line, was a gift from Dr. Fred Barr
(Department of Pathology, University of Pennsylvania).
All cell lines were maintained in 1× DMEM supplemented
with 10% fetal bovine serum (FBS), 100 U/ml penicilin/
streptomycin/amphotericin B (Fisher Scientific Interna-
tional) at 37°C, aired with 5% CO2. HSMM cells were
grown in SkBM-2 basal medium supplemented with
SkGM-2 singleQuots kit according to the manufacture's
protocol (Cambrex Bio Science, Walkersville, MD, USA).

Cancer tissue microarray immunohistochemistry
To examine whether Stat3 is activated in rhabdomyosar-
coma, osteosarcomas, and other soft-tissue sarcomas, we
stained osteosarcoma (n = 113), rhabdomyosarcoma (n =
64) and other soft-tissue sarcoma (n = 87) tissue samples
on tissue microarray slides from different providers (Bio-
pathology Center of Columbus Children Research Insti-
tute, Biomax, and Cybrdi) using immunohistochemistry
with a p-Stat3(Y705)-specific monoclonal antibody (Cell
Singling Tech., Danvers, MA). The immunohistochemis-
try method was described previously [5,15]. Nuclear p-
Stat3 expression levels were scored as 0, 1, 2, and 3 accord-
ing to the immunohistochemical staining intensity. The
nuclear staining intensity was scored on the following
scale: 0, no staining; 1, weak staining; 2, moderate stain-
ing; and 3, intense staining. Since all the normal tissues
stained were scored as 0 and occasionally 1, samples
stained with scores 0 or 1 were considered as negative,
whereas sarcoma samples with scores 2 and 3 were graded
as positive. The intensity of immunostaining was evalu-
ated only when more than 50% nuclei showed p-Stat3
expression. Scoring of immunostaining intensity was
completed by two to three independent observers (F. H.,
G. C., and J. L.). Discrepant scores between the two or
three observers were rescored to arrive at a single final
score. Light microscopic images were documented using a
LEICA DM-4000B fluorescent microscope (Leica Micro-
systems, Bannockburn, IL) with an attached Diagnostic
RT-KE 2 MP digital camera (Diagnostic Instruments, Ster-
ling Heights, MI).

Western blot
Cells were collected at 4°C in cold harvest buffer supple-
mented with proteinase inhibitor cocktails and spun
down at 3000 × g for 5 min. Cell pellets were lysed in RIPA
lysis buffer as described previously [15]. Protein concen-
trations were quantitated using BCA protein assay kit
from Pierce, Inc. (Rockford, IL) according to the manufac-
ture's protocol. Fifty or 100 μg of cellular proteins were
resolved on 10% PAGE gels in electrophoresis buffer and
transferred to Hybond™-p membrane (Amersham Bio-
sciences, Piscataway, NJ) using transfer buffer with a con-
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stant 100 V. The membranes were then blocked using 5%
nonfat dry milk in TBST (Tris-HCl, pH7.5, Tween, 0.1%)
for 30 min at room temperature (RT) and were incubated
with primary antibody over night at 4°C or for 1 hour at
RT using concentrations recommended by the manufac-
ture. The membranes were washed three times in 1× TBST
for 5 min each time. Proteins of interest were visualized
using an ECF™ western blotting kit (Amersham Bio-
sciences, Piscataway, NJ) according to the manufacture's
protocol. Incubation of secondary antibody and anti-flu-
orescein were carried out both in presence of 1× TBST with
2% nonfat dry milk. The fluorescent signals were scanned
and documented using a Storm 860 scanner (Molecular
Dynamics, Sunnyvale, CA). Antibodies were purchased
separately and used for Western blots of FLAG (Sigma, St.
Louis, MO, USA), GAPDH (Chemicon International,
Temecula, CA), Stat3, and p-Stat3 (Y705) (Cell Signaling
Tech., Danvers, MA).

Transduction of dominant negative Stat3 Y705F in cancer 
cells
The construction and infection of recombinant Adenovi-
rus/CMV-dnStat3 Y705F (rAd/dnStat3) is described previ-
ously [14,16]. DnStat3 was generated from Stat3 by
changing the tyrosine at position 705 into phenylalanine.
Its protein product cannot be activated through tyrosine
phosphorylation that is crucial for dimerization. The
clone is tagged with a FLAG marker. About 2 × 105 U2OS,
SaoS2, SJSA, RD2 and RH30 cells were transduced with
rAd/dnStat3 or a negative control viral vector, rAd/CMV-
eGFP (rAd/eGFP) (Applied Viromics, Fremont, CA) with
multiplicities of infection (moi) of 400, 100, and 10
based on TCID50 using 293T cells. For cell growth exper-
iments, cells in 5 random fields of view (100× magnifica-
tion) were enumerated on days 2, 4, and 6 post-infection
of rAd/eGFP and rAd/dnStat3. Cell growth rates were pre-
sented as percentages of untransduced controls. Each data
point was averaged from triplicate experiments.

Treatment of STA-21 and cell viability assay
Approximately 5000 RD2 and RH30 cells were grown in
100 μl 10% FBS-supplemented DMEM medium in 96-
well flat-bottomed plates overnight. Treated cells were
exposed to STA-21 (30 μM) that was dissolved in dime-
thyl sulfoxide (DMSO) before being added to the
medium. Cell viability was analyzed by the MTT [3-(4, 5-
dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bro-
mide] (Sigma, St. Louis, MO, USA) assay in three repli-
cates. At the endpoint, cells were treated with MTT (1 mg/
ml) for 3–4 hours. Colorimetric quantification was deter-
mined by an EL808 Ultra Micro-plate Reader (Bio-Tek
Instruments, Inc) after the addition of formazan dissolved
in 25% N, N-dimethylformamide and 10% SDS under
light-proof conditions overnight.

Caspases 3, 8, and 9 immuno-fluorescent staining and 
acridine orange staining
1 × 105 cells (U2OS or RD2) were seeded on sterile cover-
slips in a 6-well plate overnight. The cells were transduced
by either rAd/eGFP or rAd/dnStat3 for 3 or 4 days and
then fixed using methanol/acetone (v:v = 1:1). Three
washes followed the fixation using 1× PBS buffer. During
the third wash, the coverslips were transferred to a new 6-
well plate. For immuno-fluorescent staining, the cells
were blocked in 1× PBS with 10% normal horse serum for
1 hour and incubated with primary rabbit antibodies that
recognize cleaved-caspase-3 (Asp175), cleaved-caspase-8
(Asp374), or cleaved-caspase-9 (Asp330) (Cell Singling
Tech., Danvers, MA) with 1:100, 1:50, and 1:100 dilu-
tions, respectively. Excess antibodies were removed using
3 washes of 1× PBS with constant agitation, 10 minutes
for each wash. Secondary goat anti-rabbit IgG(H+L) Alexa
FluoR 594 antibody (Invitrogen, Carlsbad, CA) (1:1000
dilution) was incubated with 1% bovine serum albumin
(BSA) in 1× PBS for 1 hour at RT. Unbound antibody was
washed off three times using 1× PBS. Nuclei were counter-
stained using 4'-6-Diamidino-2-phenylindole (DAPI)
(100 ng/ml) in distilled H2O for 5 min and then rinsed
three times with 1× PBS, 10 min for each wash. The
cleaved caspase positive cells were scored from three inde-
pendent fields of view (100× magnification) and pre-
sented in averaged percentages of total cells (DAPI
staining) with standard deviations from triplicate experi-
ments.

Acridine orange staining was previously described[17].
The cells were incubated with 1 mg/ml acridine orange
(Sigma, St. Louis, MO) for 15 min before 3 washes of 1×
PBS. The fluorescence and phase-contrast microscopic
photographs were documented using LEICA DM-IRB
inverted fluorescent microscope (Leica Microsystems,
Bannockburn, IL) with an attached Diagnostic RT-SE6
monochrome digital camera (Diagnostic Instruments,
Inc, Sterling Heights, MI).

Results
We demonstrated that the levels of Stat3 phosphorylation
is elevated in human osteosarcomas, rhabdomyosarco-
mas and other soft-tissue sarcomas tissues. Stat3 signaling
pathway plays a role in the cell growth and survival of
human sarcomas cells because our data also showed that
blocking constitutive Stat3 signaling in sarcoma cells
induces apoptosis and growth inhibition. Inhibition of
Stat3 signaling in sarcomas may represent an effective new
treatment strategy for this type of human cancer.
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Elevated Stat3 phosphorylation in rhabdomyosarcoma, 
osteosarcoma and other soft-tissue sarcoma tissues and 
cell lines
Our results indicated that Stat3 phosphorylation levels
were elevated in osteosarcoma, rhabdomyosarcoma and
other soft-tissue sarcoma tissues and cell lines (Figure 1
&2). The sarcoma tissues used here were classified accord-
ing to clinicopathological data in Table 1 and 2. Osteosa-
rcoma tissue microarray slides had a total of 113
specimens. Soft-tissue sarcoma microarray slides had a
total of 151 specimens (Table 1). Rhabdomyosarcoma is
the most common soft tissue sarcoma of childhood.
Based on histological criteria, it can be classified into two

major subtypes, alveolar rhabdomyosarcoma (ARMS)
and embryonal rhabdomyosarcoma (ERMS). Rhabdomy-
osarcoma tissue microarray slides had a total of 64 speci-
mens in which 32 of them were ARMS and another 32
specimens were ERMS. The patient ages of these cases
were between 0 and 19 (Table 2). Normal tissues did not
stain for p-Stat3 (Figure 1A: a &1c) and sarcoma tissues
stained positively in nuclei, cytoplasm, or both (Figure
1A: b, d and insets in b, d). The percentages of p-Stat3 pos-
itive samples were 19% (21/113) of osteosarcoma, 27%
(17/64) of rhabdomyosarcoma, and 15% (22/151) of
other soft-tissue sarcoma samples.

Stat3 phosphorylation is elevated in rhabdomyosarcoma, osteosarcoma and other soft-tissue sarcoma tissues and cell linesFigure 1
Stat3 phosphorylation is elevated in rhabdomyosarcoma, osteosarcoma and other soft-tissue sarcoma tissues and cell lines. (A) 
Immunohistochemical staining in sarcoma tissues: a. normal skeletal muscle tissue, b. alveolar rhabdomyosarcoma, c. normal 
osteo tissue, d. osteosarcoma. The nuclei were counterstained with hematoxylin blue. Image magnifications are 100×. Images 
of higher magnification (400×) are shown in the insets of b and c. The arrow indicates a cell with nuclear and cytoplasmic p-
Stat3 staining. Western blots also show elevated p-Stat3 in (B) osteosarcoma and leiomyosarcoma cell lines and (C) rhabdomy-
osarcoma cell lines.
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We also investigated the status of p-Stat3 in sarcoma cell
lines. Analysis of Stat3 phosphorylation in these cells lines
was carried out using Western blots with GAPDH as an
internal protein loading control (Figure 1B &1C). Western
blots with a p-Stat3 specific antibody revealed that Stat3
was phosphorylated in several rhabdomyosarcoma, oste-
osarcoma, and leiomyosarcoma cell lines. These included
RD2, RH30, CW9019, SMS-CTR, Saos-2, SKLMS-1, U2OS,
SJSA, as well as IFN-γ-treated HeLa cells serving as a posi-
tive control. P-Stat3 levels in RH3 and a negative control
cell line, HFF, were relatively low or undetectable. How-
ever, these two p-Stat3 negative cell lines contained simi-
lar levels of total Stat3 with the other p-Stat3 positive cell

lines. Elevated Stat3 phosphorylation crucial for Stat3
activation was observed in most of the sarcoma cell lines
we screened.

rAd-mediated transduction of dnStat3 in 
rhabdomyosarcoma and osteosarcoma cell lines
Since elevated levels of Stat3 phosphorylation was found
in sarcoma tissues and cell lines, we subsequently investi-
gated the role activated Stat3 may play in cell growth or
survival of sarcoma cell lines. We introduced dnStat3 into
rhabdomyosarcoma and osteosarcoma cell lines using an
adenoviral vector delivery system. RD2 and SJSA cells
were infected with rAd/dnStat3 (moi = 10, 100, and 400).

Anti-p-Stat3 immunohistochemistry shows that Stat3 phosphorylation is elevated in other soft-tissue sarcomasFigure 2
Anti-p-Stat3 immunohistochemistry shows that Stat3 phosphorylation is elevated in other soft-tissue sarcomas. (A) neurofi-
broma, (B) synovial sarcoma, (C) neurilemmoma, (D) angio sarcoma, (E) myxoid liposarcoma, (F) malignant fibrous histiocy-
toma, (G) myxoid malignant fibrous histocytoma, (H) hemagiopericytoma. The nuclei were counterstained with hematoxylin 
blue. All image magnifications are 100×.
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FLAG-tagged dnStat3 expression levels in sarcoma cells
were detected in Western blots probed with an anti-FLAG
antibody. Two days post-infection, dnStat3 was expressed
in SJSA and RD2 cells in a dose-dependent manner, but
not in untransduced cells and cells transduced with rAd/
eGFP (moi = 400) (Figure 3A &3B). The transduction effi-
ciency of rAd vector on these cells was determined by
infection of rAd/eGFP. Greater than 90% of cancer cells
showed green fluorescence by day 4 post-infection with
rAd/eGFP (moi = 400) (Figure 3C and Saos-2 data not
shown).

Targeting Stat3 signaling pathway using dnStat3 and STA-
21 suppressed cell growth and viability in 
rhabdomyosarcoma and osteosarcoma cells
Osteosarcoma and rhabdomyosarcoma cell growth and
viability were significantly suppressed in the presence of
dnStat3 or STA-21. Sarcoma cells were transduced with
either rAd/eGFP or rAd/dnStat3 (moi = 400). Growth of
cells with/without transduction was normalized to

untransduced controls at days 2, 4 and 6 post-transduc-
tion (Figure 1). The growth rates of untransduced cells
were set at 100%. There were minor adverse effects by rAd/
eGFP on cell growth as observed in osteosarcoma and
rhabdomyosarcoma cells when moi of 400 was used.
However, all sarcoma cells transduced with rAd/dnStat3
showed dramatic reduction in cell growth being less than
20 or 40% of untransduced controls (day 4 or 6 post-
infection) (Figure 1). To investigate whether the dnStat3
cell growth inhibition effects were specific to sarcoma
cells, a normal human skeletal muscle myoblast cell line
(HSMM) was transduced with the same dose of rAd/
dnStat3 and rAd/eGFP (moi = 400). Interestingly, at day 6
post infection, there were no observable changes in cell
growth and morphology of HSMM (data not shown).

STA-21 is a novel small inhibitor that prevents Stat3 from
dimerization, translocation into the nucleus, and its sign-
aling pathway [13]. The cell viability of RH30 and RD2
were also greatly reduced after 4 and 5 days' exposure to

Table 1: Clinicopathological parameters of Osteosarcoma and soft-tissue sarcoma analyzed

Clinicopathological parameters Numbers (%)

Gender (total 264)
Female 113 (42.7)
Male 151 (57.2)

Age (years) (total 264) 1–20 65 (24.6)
21–40 98 (36.9)
41–60 55 (20.7)
61–80 42 (15.8)
81–100 4 (1.5)

Grade (total 15) I 14 (93.3)a

III 1 (6.7)a

Histology (total 264) Osteosarcoma 113 (42.5)
Liposarcoma 32 (12.1)
Chondrosarcoma 28 (10.6)
Histiosarcoma 26 (9.8)
Leiomyosarcoma 19 (7.1)
Fibrosarcoma 16 (6.0)
Neurilemmoma 12 (4.4)
Neurofibroma 4 (1.5)
Synovial Sarcoma 4 (1.5)
Hemangiosarcoma 3 (1.1)
Alveolar Sarcoma 2 (0.75)
Adenocarcinoma 1 (0.38)
Epithelioid hemangioendothelioma 1 (0.38)
Malignant Glomus Thigh Tumor 1 (0.38)
Malignant Schwannoma 1 (0.38)
Malignant Tienosynovial Tumor 1 (0.38)
Sacrococcygeal Melanoma 1 (0.38)

a Grade I: 14 chondrosarcomas in cartilages; Grade III: one adenocarcinoma in fibrous tissue. Grade information is not available in other sarcoma 
specimens
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STA-21 (Figure 1). Approximately 12% and 48%
untreated cell viability were detected in RH30 and RD2
cells, respectively, exposed to 30 μM STA-21 for 4 days.
After 5-day treatment, STA-21 inhibitory effects were even
more significant that viabilities of drug-treated RH30 and
RD2 cells were only 1.8% and 11% of the untreated,
respectively.

Apoptosis induced by dnStat3 and STA-21 through caspase 
cleavage pathways
Rhabdomyosarcoma and osteosarcoma cell lines trans-
duced with rAd/dnStat3 not only suffered cell growth and
viability inhibition but also total cell number reduction
suggesting that cell death was induced by the expression
of dnStat3 (Figure 1 and data not shown). In addition,
massive accumulation of vacuoles occurred in the cyto-
plasm of these cells (Data not shown). These prompted us
to explore if necrosis or apoptosis contribute to the cell
death. In order to investigate the mechanism underlying
the rhabdomyosarcoma and osteosarcoma cell death,
RD2 and U2OS cells were fixed at day 4 post transduction
of rAd/eGFP or rAd/dnStat3. The fixed cells were then sub-
jected to acridine orange staining and anti-cleaved-cas-
pase immuno-fluorescent staining for necrosis and
apoptosis evaluations, respectively. For acridine orange
staining, there was no difference between control cells and
transduced cells with rAd/dnStat3 (data not shown) indi-
cating that necrosis is not involved. For apoptosis evalua-
tion, there was no observable difference in cleaved caspase
immuno-staining among negative controls (untrans-
duced or transduced with rAd/eGFP) in U2OS and RD2
cells lines (Figure 2). However, cell death caused by the

transduction of dnStat3 appeared to be apoptosis as
cleaved caspases 3, 8, and 9 were observed in increased
portions of dnStat3-expressing RD2 and U2OS sarcoma
cells (Figure 2; cleaved caspase 9 staining for U2OS and
cleaved caspase 8 staining for RD2, data not shown). In
RD2 cells, 4-day dnStat3 expression induced 23%, 44%,
and 52% of cells to undergo apoptosis through cleaved
caspases 3, 8 and 9, respectively. Similarly in U2OS cells,
transduction of dnStat3 caused caspases 3, 8, and 9 cleav-
ages in 27%, 42%, and 63% of cells, respectively (Figure
2). The apoptotic effect through the blocking of Stat3 sig-
naling in sarcoma cells was further confirmed using STA-
21. STA-21-treated rhabdomyosarcoma cells, RH30 and
RD2, showed increased portions (58.2% and 35.4%) of
cells undergoing apoptosis through the caspase 3 cleavage
pathway (Figure 2). In contrast, normal HSMM cells were
not affected by the STA-21 treatment for the same dura-
tion (Figure 2). Apparently, cytotoxicity to normal cells by
targeting the Stat3 signaling pathway would be very min-
imal.

Discussion
We demonstrated that elevated levels of Stat3 phosphor-
ylation are detected in some sarcoma tissues (15–27%).
Phosphorylation at tyrosine 705 is important for the acti-
vation of Stat3. The mechanisms underlying the elevated
Stat3 phosphorylation in these sarcoma tissues are not
clear. There might be constant upstream activation by
cytokines and growth factors [1,18], down regulation of
counter balancing signal transduction pathways, such as
SOCS1, or both [7]. In rhabdomyosarcoma, the fusion
protein PAX3-FKHR directly interacts with Stat3 and

Table 2: Clinicopathological parameters of Alveolar (ARMS) and Embryonic (ERMS) patients used

Variable Number of patients (32 each type)
ARMS ERMS

Gender
Male 13 24
Female 19 8

Age (years)
0–4 11 18
5–14 14 10
15–19 7 4
Mean 9.1 5.8
Median 10 4

Stage
I 5 7
II 5 4
III 15 14
IV 7 7

Primary site
Head and Neck 11 10
Extremity 12 3
Genitourinary 4 9
Others 5 10
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changes gene expression profiles that are normally regu-
lated by JAK/STAT signaling pathways. This leads to alter-
ations in local cytokine concentrations that inhibit
adjacent inflammatory cells and evade immune detection
[19]. Activation of Stat3 was reported to be present in
Ewing sarcoma family tumors (ESFT) [20]. These previous
studies are consistent with our finding that the Stat3 sign-
aling pathway is constitutively activated in rhabdomyosa-
rcomas, osteosarcomas, and other soft-tissue sarcomas.

Our data strongly support that the activated Stat3 pathway
could serve as a therapeutic target in rhabdomyosarcoma
and osteosarcoma cancers using a dominant negative
Stat3 mutant or a small molecule Stat3 inhibitor, STA-21.
It has been shown that interference of the Stat3 signaling

pathway leads to cancer cell apoptosis and proliferation
prohibition [13,21-23]. We targeted activated Stat3 path-
ways with rAd/dnStat3 and STA-21 in sarcoma cell lines.
Suppression of cell growth and cell number reduction
were observed in sarcoma cells expressing dnStat3 or
exposed to STA-21. Interestingly, no such dnStat3 inhibi-
tory effects were observed in HSMM, normal human skel-
etal myoblasts. These data support that suppression of cell
growth in sarcoma cells is likely due to the antagonizing
effects of dnStat3 and STA-21 on the cell proliferation that
is promoted by elevated Stat3 phosphorylation.

Transduction of dnStat3 and treatment of STA-21 induces
apoptosis in rhabdomyosarcoma and osteosarcoma cells
in vitro. Compared to untransduced or rAd/GFP-trans-

Western blots show dnStat3 expression in a dose-dependent manner in (A) SJSA osteosarcoma and (B) RD2 rhabdomyosar-coma cell linesFigure 3
Western blots show dnStat3 expression in a dose-dependent manner in (A) SJSA osteosarcoma and (B) RD2 rhabdomyosar-
coma cell lines. (C) Nearly 100% transduction efficiency of rAd/GFP (moi of 400) on SJSA, U2OS, RH30 and RD2 cell lines at 
day 4 post-infection. GFP: green fluorescent protein expression images. Phase: phase-contrasted images. All image magnifica-
tions are 100×.
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duced controls, sarcoma cells infected with rAd/dnStat3
showed significant reductions in total cell number and
suggested that cell death had occurred. Cell death caused
by dnStat3 is apparently caspase-dependent apoptosis,
since cells undergoing apoptosis contained activated cas-
pases 3, 8 and 9 as demonstrated by immuno-fluorescent
staining. This implies that dnStat3 induces apoptosis
through two independent upstream pathways mediated
by caspases 8 and 9 that lead to the cleavage of down-
stream caspase 3. Activation of Stat3 has been shown to
enhance cell survival and proliferation of cancer cells and
render them resistant to chemotherapeutic drugs and
stress through the activation of survival genes and cell-
cycle regulated genes [24,25]. We report here a very
intriguing phenomenon that dnStat3-induced apoptosis
is mediated through both caspase-8 and -9 pathways.
Induction mechanisms for apoptosis through caspase 8
and 9 pathways are different [26-30]. The involvement of
caspase 8 pathway suggests an autocrine role that dnStat3
transduction may play in apoptosis-bound sarcoma cells.
The underlying mechanisms are still elusive and are worth
pursuing. The induction of apoptosis by blocking Stat3
pathway in sarcoma cells expressing elevated levels of p-
Stat3 is further supported using STA-21 that is an effective
Stat3 inhibitor in breast cancer and some other cancer
cells [[13] and unpublished data]. Given the low cytotox-
icity of Stat3 inhibition to normal cells, targeting Stat3 sig-
naling pathway would be a promising therapeutic strategy
for sarcomas in which Stat3 is constitutively activated.

Conclusion
Stat3 phosphorylation is elevated in human rhabdomy-
osarcoma, osteosarcomas, and other soft-tissue sarcomas.
The Stat3 pathway is involved in cell growth and survival
of human rhabdomyosarcoma and osteosarcoma cells.
Inhibition of Stat3 signaling in sarcomas may represent an
effective treatment strategy for these types of cancer.
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