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Abstract
Background: A considerable proportion of estrogen receptor (ER)-positive breast cancer recurs
despite tamoxifen treatment, which is a serious problem commonly encountered in clinical
practice. We tried to find novel prognostic markers in this subtype of breast cancer.

Methods: We performed array comparative genomic hybridization (CGH) with 1,440 human
bacterial artificial chromosome (BAC) clones to assess copy number changes in 28 fresh-frozen ER-
positive breast cancer tissues. All of the patients included had received at least 1 year of tamoxifen
treatment. Nine patients had distant recurrence within 5 years (Recurrence group) of diagnosis and
19 patients were alive without disease at least 5 years after diagnosis (Non-recurrence group).

Results: Potential prognostic variables were comparable between the two groups. In an
unsupervised clustering analysis, samples from each group were well separated. The most common
regions of gain in all samples were 1q32.1, 17q23.3, 8q24.11, 17q12-q21.1, and 8p11.21, and the
most common regions of loss were 6q14.1-q16.3, 11q21-q24.3, and 13q13.2-q14.3, as called by
CGH-Explorer software. The average frequency of copy number changes was similar between the
two groups. The most significant chromosomal alterations found more often in the Recurrence
group using two different statistical methods were loss of 11p15.5-p15.4, 1p36.33, 11q13.1, and
11p11.2 (adjusted p values <0.001). In subgroup analysis according to lymph node status, loss of
11p15 and 1p36 were found more often in Recurrence group with borderline significance within
the lymph node positive patients (adjusted p = 0.052).

Conclusion: Our array CGH analysis with BAC clones could detect various genomic alterations
in ER-positive breast cancers, and Recurrence group samples showed a significantly different
pattern of DNA copy number changes than did Non-recurrence group samples.
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Background
The incidence of breast cancer has been rapidly increasing
in Korea and it has been the most frequent malignancy in
Korean women since 2002 [1]. Breast cancer is a highly
heterogeneous disease both histologically and molecu-
larly, and hormone receptor-positive and -negative
tumors are quite distinct biologically. Recent gene expres-
sion profiling has identified hormone receptors as a fun-
damental parameter for distinguishing breast cancers,
suggesting a molecular difference according to hormone
receptor status [2]. More than 50% of breast cancer cases
are estrogen-dependent, and treatment with estrogen
antagonists that inhibit estrogen receptor (ER) action, par-
ticularly tamoxifen, has contributed to a dramatic reduc-
tion in breast cancer mortality. However, a substantial
proportion of patients expressing ER either fail to respond
initially or become progressively resistant to endocrine
therapies [3]. Thus, it would be ideal to predict therapeu-
tic efficacy for each patient before treatment is initiated.

Genetic and epigenetic alterations are important steps in
the development of malignancies and may contribute to
disease progression during treatment. Similarly, genetic
alterations may play a role in the development of
tamoxifen resistance [4]. Searches for genes exhibiting
altered expression in resistant breast cancer cells have
been performed using differential display, Serial Analysis
of Gene Expression (SAGE), Comparative Genomic
Hybridization (CGH), and expression microarray, and
several marker genes have been identified using these
techniques [5-9]. However, the exact molecular mecha-
nism, other than ER expression, underlying tamoxifen
response and resistance is not yet understood.

Array CGH has been used to localize copy number
changes associated with human breast and other cancers

[10-14]. Similar to chromosomal CGH, array CGH com-
pares the abundance of specific genomic sequences in
whole-tumor DNA relative to normal reference genomes.
Array CGH can provide higher resolution than conven-
tional CGH with more accurate mapping of regions that
contain oncogenes or tumor suppressor genes [15]. With
more and more array CGH data emerging, there is a need
for efficient algorithms that automatically select regions of
gains and losses. Recently, various software items have
been released to make this complex analysis possible [16-
21].

In this study, we used array CGH to assess DNA copy
number changes in 28 fresh-frozen ER-positive breast can-
cer tissue samples. A program for array CGH data analysis,
the CGH-Explorer and Analysis of Copy Error (ACE) algo-
rithm by Lingjærde et al. [20], was used for calling gains
and losses. The purpose of this study was to elucidate
whether DNA copy number changes in the primary tumor
can predict a patient's prognosis and tamoxifen respon-
siveness in ER-positive breast cancer and to identify the
corresponding chromosomal regions and genes.

Methods
Patients and tumor specimens
A total of 28 primary invasive breast cancer tissues
selected from the frozen tissue archives in the Cancer
Research Institute, Seoul National University, were used
in this study. All tumors were excised between November
1996 and February 2001 and were histopathologically
confirmed as invasive ductal carcinoma. No in situ cancers
were included. This study was conducted under the
approval of the Institutional Review Board of Seoul
National University Hospital. Informed consent was
obtained from all participants prior to surgery. All
patients received tamoxifen as an adjuvant endocrine

Table 1: Clinicopathological characteristics of 28 patients with estrogen receptor-positive invasive ductal carcinoma

Characteristic Recurrence group N (%) Non-recurrence group N (%) p value

Age (range) 41.0 (24–62) 43.1 (29–65) 0.576
T stage

T1 2 (22.2) 2 (10.5)
T2 7 (77.8) 17 (89.5) 0.409

Lymph node metastasis
Negative 2 (22.2) 6 (31.6)
Positive 7 (77.8) 13 (68.4) 0.609

Histological grade
1–2 4 (44.4) 11 (57.9)
3 5 (55.6) 8 (42.1) 0.505

Nuclear grade
1–2 4 (44.4) 7 (36.8)
3 5 (55.6) 12 (63.2) 0.700

PR
Positive 6 (66.7) 14 (73.7)
Negative 3 (33.3) 5 (26.3) 0.701
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therapy for at least 1 year. No other type of hormone ther-
apy was used during the follow-up period. Nine patients
had distant metastasis within 5 years of diagnosis (Recur-
rence group), and 19 patients were alive without evidence
of disease at least 5 years after diagnosis (Non-recurrence
group). Patients in the Recurrence group experienced dis-
tant metastasis at 16 to 53 months after diagnosis (mean,
33 months). Surgical procedures did not differ substan-
tially between the two groups: modified radical mastec-
tomy was performed in 7 patients (77.8%) in the
Recurrence group and 17 patients (89.5%) in the Non-
recurrence group. The remaining patients in each group
underwent breast-conserving surgery plus adjuvant radio-
therapy. Most patients received adjuvant chemotherapy
after surgery, except for one patient in the Non-recurrence
group. Chemotherapy regimens included six cycles of
CMF (cyclophosphamide, methotrexate, and 5-fluorour-
acil) in 17 patients (63%) and a doxorubicin based regi-
men ± a taxane in 10 patients (37%). Median follow-up
time for survival analysis was 66 months. Patient age at
diagnosis, histologic subtype, tumor size, lymph node sta-
tus, histological grade (Scarff-Bloom-Richardson classifi-
cation), and nuclear grade (Black's nuclear grade) were
reviewed. Immunohistochemical staining (IHC) was per-
formed to determine expression of the ER and progester-
one receptor (PR). The primary antibodies used for ER

and PR (DAKO, Glostrup, Denmark) and immunohisto-
chemical methods have been previously described [22]. A
cut-off value of ≥ 10% positively-stained cells per 10 high-
power fields was used to determine ER and PR positivity.
Tissue samples were frozen in liquid nitrogen within 20
minutes following devascularization in the operating
room and stored at -80°C. All tumor specimens analyzed
contained more than 50% tumor cells.

Construction of BAC library
The array used in this study consists of 1,440 human Bac-
terial Artificial Chromosomes (BACs), which were spaced
approximately 2.3 Mb on average across the entire
genome (MacArray™ Karyo1400 from Macrogen, Inc.,
Seoul, Korea). BAC clones were selected from the proprie-
tary BAC library of Macrogen, Inc. Briefly, the pECBAC1
vector [23] was digested with HindIII and size-selected
HindIII-digested pooled male DNAs were used to gener-
ate a BAC library. These vectors were then transformed
into and grown in the Escherichia coli DH10B strain.

Construction of BAC-mediated array CGH microarray
Clones were first selected to yield an average genomic cov-
erage of 2-Mb resolution. All clones were two-end
sequenced using an ABI PRISM® 3700 DNA Analyzer
(Applied Biosystems, Foster City, CA, USA), and their

Table 2: Most frequent genomic aberrations (>20%) in 28 estrogen receptor-positive invasive ductal carcinomas

Gain (core*) Frequency (%)† Loss (core) Frequency (%)

1q21.1-q44 (q32.1) 50.0–71.4 6q11.1-q27 (q14.1-16.3) 28.6–42.9
17q23.2-q25.3 (q23.3) 57.1–67.9 11q13.5-q24.3 (q21-24.3) 21.4–42.9
8q11.21-q24.3 (q24.11) 42.9–64.3 13q12.11-q33.3 (q13.2-14.3) 25.0-39.3
17q12-q22 (q12-21.1) 35.7–53.6 1p32.3-p13.3 (p22.3-21.1) 21.4–32.1
8p12-p11.1 (p11.21) 35.7–42.9 4q12-q35.2 (q13.1-34.3) 21.4–32.1
19p13.3-p13.11 (p13.12-13.11) 35.7–39.3 22q11.21-q12.3 (q11.21) 25.0–32.1
19q12-q13.42 (q12-13.2) 35.7–39.3 3p21.1-p13 (p14.3-14.1) 21.4–28.6
20q11.21-q13.33 (q13.13-13.32) 25.0–39.3 4p15.32-4p12 28.6
5p15.33 35.7 6p12.3-p11.2 (p12.3) 25.0–28.6
16p13.3-p11.2 35.7 9p24.3-p21.2 (p22.3-21.2) 21.4–28.6
3q24-q29 (q29) 21.4–32.1 5q21.2-q21.3 25.0
22q11.21-q13.33 (q11.21) 21.4–32.1 8p23.2-p21.1 (8p22-21.1) 21.4-25.0
1p36.33-p35.3 (1p36.33) 21.4–28.6 11p15.5-p15.2 (p15.4-15.2) 21.4-25.0
9q33.3-q34.3 (q34.11-34.3) 25.0–28.6 11p11.2-p11.12 25.0
20p11.22-p11.21 (p11.21) 25.0–28.6 14q24.3-q31.3 (q31.1-31.3) 21.4–25.0
11q13.3 25.0–28.6 10q23.31-q25.3 21.4
1p35.3 25.0 17p13.3-p11.2 21.4
5p15.32-p12 (p13.2-13.1) 21.4–25.0 22q13.2-13.33 21.4
13q34 25.0
16q24.3 25.0
3q12.1-q13.33 21.4
7q22.1 21.4
7q36.3 21.4
17p11.2 21.4

*Region of the highest frequency of alteration within a given range of gain or loss regions
†Percentage of patients who have gain/loss. When an aberration covers more than one BAC clone, and the frequencies are uneven across the BAC 
clones, the minimum and maximum frequencies are shown.
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sequences were blasted and mapped according to their
positions described in the University of California, Santa
Cruz (UCSC) human genome database http://
www.genome.ucsc.edu. Confirmation of locus specificity
of the chosen clones was performed by removing multiple
loci-binding clones by individual examination under
standard fluorescence in situ hybridization (FISH) as
described previously [24]. These clones were prepared by
the conventional alkaline lysis method to obtain BAC
DNA. The DNA was sonicated to generate ~3-kb frag-
ments before mixing with 50% DMSO spotting buffer.
The arrays were manufactured by an OmniGrid arrayer
(GeneMachine, San Carlos, CA, USA) using a 24-pin for-
mat. Each BAC clone was represented on an array as trip-
licate spots and each array was pre-scanned using a
GenePix 4200A scanner (Axon Instruments Inc., Foster
City, CA, USA) for proper spot morphology.

DNA labeling for array CGH
DNA was extracted from each breast cancer tissue sample
using the PureGene kit (Gentra Systems Inc., Minneapo-
lis, MN, USA). The labeling and hybridization protocols
described by Pinkel et al. [15] were used with some mod-
ification to the labeling procedure. Briefly, 21 µl solution
containing 500 ng normal DNA (reference DNA) or
tumor DNA (test DNA), 20 µl BioPrime® DNA Labeling
System random primers solution (Invitrogen, Carlsbad,
CA, USA), and water were combined and incubated for 5

min at 95°C, and subsequently cooled on ice. After the
addition of 5 µl 10 × dNTPs labeling mix (1 mM dCTP, 2
mM dATP, 2 mM dGTP, 2 mM dTTP), 3 µl 1 mM Cy-3 or
Cy-5 dCTP (GeneChem Inc., Daejeon, Korea), and 40 U
BioPrime® DNA Labeling System Klenow fragment (Invit-
rogen), the mixture was gently mixed and incubated over-
night at 37°C. The addition of 5 µl BioPrime® DNA
Labeling System Stop Buffer (Invitrogen) ended the reac-
tion. After labeling, unincorporated fluorescent nucle-
otides were removed using QIAquick Spin columns
(Qiagen, Germany). In one tube, Cy3-labeled sample and
Cy5-labeled reference DNAs were mixed together, and 50
µg human Cot I DNA (Invitrogen), 20 µl 3 M sodium ace-
tate, and 600 µl cold 100% ethanol were added for DNA
precipitation.

Array hybridization, imaging, and data preprocessing
The pellet was resuspended in 40 µl hybridization solu-
tion containing 50% formamide, 10% dextran sulfate, 2×
SSC, 4% SDS, and 200 µg yeast tRNA. The hybridization
solution was denatured for 10 min at 72°C and was sub-
sequently incubated for 1 hour at 37°C to allow blocking
of repetitive sequences. Hybridization was performed in
slide chambers for 48 hours at 37°C. After post-hybridiza-
tion washes, arrays were rinsed, spin-dried, and scanned
into two 16-bit TIFF image files using a GenePix 4200 A
two-color fluorescent scanner (Axon Instruments), and
individual spots were analyzed with GenePix Pro 3.0
imaging software (Axon Instruments). Clones on the X
and Y chromosomes were not used for further analysis
because their intensity may distort the entire data set. The
log2-transformed fluorescent ratios were calculated from

Frequency plots of gains and losses of each chromosomal region in all samples (A), Recurrence group samples (B), and Non-recurrence group samples (C)Figure 2
Frequency plots of gains and losses of each chromo-
somal region in all samples (A), Recurrence group 
samples (B), and Non-recurrence group samples (C). 
Red/green colored bars correspond to the percentage of 
samples with gain or loss in the given chromosomal region.

Cluster dendrogram of array CGH data from 28 ER (+) breast tumor tissues by unsupervised clusteringFigure 1
Cluster dendrogram of array CGH data from 28 ER 
(+) breast tumor tissues by unsupervised clustering. 
The scale on the left vertical bar indicates Manhattan dis-
tance. Samples with the prefix R- belong to the Recurrence 
group and those with the prefix N- belong to the Non-recur-
rence group. The samples from the nine patients in the 
Recurrence group were clustered together under the third-
order dendrogram branch.
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background-subtracted median intensity values, and these
ratios were used to perform normalization according to
intensity normalization methods. We applied LOWESS
normalization, a smoothing adjustment that removes
intensity-dependent variation in dye bias [25]. Data for
each slide was normalized so that the mean in-slide
expression value was 0 and the SD was 1. 109 different
BAC clones have been excluded from further analysis
because values of at least 2 spots of the triplicate have
been missing. Only triplicate of 1,331 different BAC
clones were used.

Real-time quantitative polymerase chain reaction (PCR)-
based copy number validation
The DNA copy number of one clone, BAC57_O15
(8q21.13; BAC start 82359567 and end 82463826: NCBI
homo sapiens genome Build 35.1) was assayed according
to a previously described protocol with normalized nor-
mal human pooled genomic DNA (Promega, Madison,
WI, USA) as a calibration sample. Real-time PCR reactions
were performed on an ABI 7900HT (Applied Biosystems).
Amplification mixtures (20 µl) contained template DNA
(approximately 2 ng), 1 × TaqMan PCR MasterMix, and

Table 3: BAC clones and chromosomal location with significant differences in frequency of gain between patients in the Recurrence 
and Non-recurrence groups

BAC clone Chromosome 
location

Representative genes No. of gains in the 
Recurrence group

No. of gains in the 
Non-recurrence group

Adjusted p value

BAC217_O23 8q21.13 IL7 8 6 0.005
BAC178_P02 8q21.13 8 6 0.005
BAC232_P18 19p13.12 CHERP, SLC35E1, CRSP7 0 10 0.007
BAC246_J06 19p13.11 MAST3, PIK3R2, IFI30, RAB3A 0 10 0.007
BAC192_L06 19p13.11 FKBP8, UBA52, CRLF1 0 10 0.007
BAC195_K16 19p13.11 ZNF253, ZNF505 0 10 0.007
BAC144_L05 19q12 0 10 0.007
BAC90_H02 19q13.12 FXYD5, LISCH7, USF2, HAMP 0 10 0.007
BAC162_E14 19q13.13 HKR1, ZNF527, ZNF569 0 10 0.007
BAC162_K04 19q13.2 PD2, IXL, ZFP36, RPS16, SUPT5H 0 10 0.007
BAC146_F01 19q13.2 MAP3K10, AKT2 0 10 0.007
BAC162_J04 19q13.2 SNRPA, MIA, RAB4B, EGLN2, 

CYP2T2P, CYP2F1P
0 10 0.007

BAC249_F13 19q13.2 CYP2S1, AXL, HNRPUL1 0 10 0.007
BAC239_N12 19q13.31 XRCC1, ZNF576, IGSF4C, PLAUR 0 10 0.007
BAC183_D06 19q13.31 PLAUR, R30953_1, KCNN4 0 10 0.007
BAC78_D10 19q13.31 PLAUR, R30953_1 0 10 0.007
BAC233_C05 19q13.32 FOSB, RTN2, VASP, OPA3 0 10 0.007
BAC130_J22 19q13.41 KLK1, KLK15, KLK3, KLK2 0 10 0.007
BAC53_O15 19q13.42 NALP12 0 10 0.007
BAC168_E17 19q13.42 0 10 0.007
BAC8_P07 5q13.1 3 0 0.008
BAC12_H03 5q14.3 RASA1 3 0 0.008
BAC237_N24 5q15 3 0 0.008
BAC13_G12 5q15 3 0 0.008
BAC147_D19 5q15 3 0 0.008
BAC185_O16 5q11.2 3 0 0.008
BAC171_A01 5q11.2 3 0 0.008
BAC135_P04 5q11.2 3 0 0.008
BAC144_P08 5q12.1 DEPDC1B 3 0 0.008
BAC140_C04 5q12.3 SDCCAG10 3 0 0.008
BAC166_A05 5q13.2 RAD17, MARVELD2 3 0 0.008
BAC154_I09 5q13.2 FCHO2 3 0 0.008
BAC119_I19 5q13.3 ANKRD31 3 0 0.008
BAC96_B13 5q13.3 PDE8B, WDR41 3 0 0.008
BAC12_E06 5q14.2 RPS23 3 0 0.008
BAC25_M19 5q14.3 3 0 0.008
BAC152_G16 8q12.1 7 5 0.01
BAC139_M03 8q24.22 SIAT4A 8 7 0.01
BAC90_C04 8q24.22 8 7 0.01
BAC76_N02 8q24.23-24.3 COL22A1 8 7 0.01
BAC145_H17 8q11.21 7 5 0.01
Page 5 of 13
(page number not for citation purposes)



BMC Cancer 2006, 6:92 http://www.biomedcentral.com/1471-2407/6/92
900 nM of each primer. PCR cycling conditions com-
prised 10 min polymerase activation at 95°C, 40 cycles at
95°C for 15 sec, and 60°C for 1 min. The relative copy
numbers of the selected chromosomal locations were

determined in the tumor samples and on three normal
control DNAs using the same primer according to the
manufacturer's protocol, and the copy numbers were nor-

Table 4: BAC clones and chromosomal location with significant differences in deletion frequency between patients in the Recurrence 
and Non-recurrence groups

BAC clone Chromosome 
location

Representative genes No. of losses in the 
Recurrence group

No. of losses in the 
Non-recurrence 

group

Adjusted p value

BAC165_D01 11p15.5 RIC8A, SIRT3, PSMD13, NALP6, 
MRPS24P1, IFITM2

6 1 <0.001

BAC121_J14 11p15.5 TOLLIP, STK29 6 1 <0.001
BAC60_J23 11p15.4 KCNQ1, CDKN1C, KCNQ1DN, 

SLC22A1LS, SLC22A18
6 1 <0.001

BAC252_K02 11p15.4 PHLDA2, NAP1L4 6 1 <0.001
BAC193_P15 11p15.4 NUP98, FRAG1, RHOG, STIM1 6 1 <0.001
BAC121_J11 11p15.4 SMPD1, APBB1, HPX 6 1 <0.001
BAC91_J13 11p15.4 TRIM3, ARFIP2, FXC1 6 1 <0.001
BAC88_B15 11p15.3 USP47 6 2 0.002
BAC82_C10 11p15.3-15.2 6 2 0.002
BAC35_I01 11p15.2 PDE3B, CYP2R1, CALCP 6 2 0.002
BAC219_F22 11p15.4 ILK, TAF10, CLN2, PCDH16 6 2 0.002
BAC96_J11 11p15.4 TUB, RIC3 6 2 0.002
BAC195_A16 11p15.4 STK33 6 2 0.002
BAC32_K13 11p15.4 ST5 6 2 0.002
BAC185_G10 11p15.4 C11orf16, ASCL3, C11orf15, NRIP3, 

SCUBE2
6 2 0.002

BAC252_G23 11p15.4 XLKD1, MRVI1 6 2 0.002
BAC96_G07 11q13.4 POLD3, CHRDL2 5 1 0.002
BAC15_I17 22q12.3-13.1 TMPRSS6, IL2RB, C1QTNF6, SSTR3, 

RAC2
3 0 0.008

BAC230_P11 1p36.33 SLC35E2 3 0 0.008
BAC101_I16 1p36.33 3 0 0.008
BAC176_F17 1p36.33 PRKCZ, SKI 3 0 0.008
BAC38_N15 1p36.33 SKI 3 0 0.008
BAC131_H09 22q12.3 MYH9 3 0 0.008
BAC141_N1
9

1p36.32 WDR8, TP73, 3 0 0.008

BAC120_F15 1p35.3 EYA3 3 0 0.008
BAC171_P09 1p36.32 3 0 0.008
BAC90_A08 1p36.22 FRAP1, CDT6, TERE1 3 0 0.008
BAC180_C01 1p36.22 AGTRAP, DKFZp434E1410, 

MTHFR, CLCN6
3 0 0.008

BAC91_A07 1p36.21 3 0 0.008
BAC80_C03 1p36.13 SHARP, ZBTB17, HSPB7, CLCNKA, 

CLCNKB
3 0 0.008

BAC68_M07 1p36.12 ALPL 3 0 0.008
BAC133_M0
3

1p36.12 RAP1GA1, USP48 3 0 0.008

BAC13_F18 1p36.12 CDC42, WNT4 3 0 0.008
BAC236_J05 1p36.11 MPRA, STMN1 3 0 0.008
BAC37_K05 1p36.11-35.3 FGR, G1P3, STX12 3 0 0.008
BAC46_E05 1p35.3 EYA3 3 0 0.008
BAC116_D07 11q13.5 UVRAG 5 2 0.010
BAC222_F09 11q13.5 C11orf30 5 2 0.010
BAC144_K18 11q13.5 GARP 5 2 0.010
BAC195_B24 17p13.1 ASGR1, DLG4, ACADVL, DVL2, 

GABARAP, DULLARD, DERP6, 
CLDN7, SLC2A4, YBX2, EIF5A, 
GPS2

5 2 0.010
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Table 5: Most significant BAC clones that differentiate patients in the Recurrence group from those in the Non-recurrence group by 
SAM analysis

BAC Clone Chromosome 
Location

Representative genes d Fold Change q value (%)

BAC165_D01 11p15.5 RIC8A, SIRT3, PSMD13, NALP6, MRPS24P1, IFITM2 -4.537 0.817 0.339
BAC121_J14 11p15.5 TOLLIP, STK29 -4.015 0.795 0.339
BAC60_J23 11p15.4 KCNQ1, CDKN1C, KCNQ1DN, SLC22A1LS, SLC22A18 -3.943 0.774 0.339
BAC101_I16 1p36.33 SLC35E2 -3.872 0.799 0.339
BAC144_G04 7q22.1 PDAP1, G10, CPSF4, PTCD1, ATP5J2 -3.804 0.860 0.339
BAC193_P15 11p15.4 NUP98, FRAG1, RHOG, STIM1 -3.676 0.811 0.339
BAC252_K02 11p15.4 CDKN1C, KCNQ1DN, SLC22A1LS, SLC22A18, PHLDA2, NAP1L4 -3.566 0.800 0.339
BAC176_F17 1p36.33 PRKCZ, SKI -3.561 0.799 0.339
BAC121_J11 11p15.4 SMPD1, APBB1, HPX -3.531 0.844 0.339
BAC228_L09 11q13.1 ESRRA, HSPC152, PRDX5, RPS6KA4 -3.513 0.828 0.339
BAC33_L13 19p13.3 NFIC, FZR1, C19orf28 -3.486 0.804 0.339
BAC75_B14 19p13.3 EDG6, BRUNOL5 -3.335 0.817 0.339
BAC146_F01 19q13.2 MAP3K10, AKT2 -3.327 0.847 0.339
BAC249_F13 19q13.2 CYP2S1, AXL, HNRPUL1 -3.288 0.869 0.339
BAC176_M0
6

9q34.3 TRAF2, FBXW5, C8G, LCN12 -3.286 0.862 0.339

BAC82_M18 3q21.2 SLC12A8 -3.271 0.913 0.339
BAC162_J04 19q13.2 SNRPA, MIA, RAB4B, EGLN2, CYP2T2P, CYP2F1P -3.266 0.862 0.339
BAC91_J13 11p15.4 TRIM3, ARFIP2, FXC1 -3.224 0.853 0.339
BAC96_L08 19p13.3 PPAP2C, THEG -3.195 0.860 0.339
BAC185_L04 11q13.1 SF1, MAP4K2, MEN1, HSMDPKIN, EHD1, KIAA0404, PPP2R5B -3.182 0.833 0.339
BAC168_E17 19q13.42 ZNF579, ZNF524 -3.182 0.872 0.339
BAC65_N13 19p13.3 TJP3, APBA3, MRPL54, MATK -3.175 0.825 0.339
BAC224_C15 9q34.3 MAN1B1, DPP7, GRIN1 -3.128 0.857 0.339
BAC42_H14 10q26.2-26.3 -3.127 0.863 0.339
BAC122_I18 11q13.1 NAALADL1, CDCA5, ZFPL1, C11orf2, TM7SF2, ZNHIT2, FAU, MRPL49, 

HRD1
-3.126 0.846 0.339

BAC37_C21 19p13.3 ANKRD24, EBI3, SHD, FSD1, STAP2, SH3GL1 -3.116 0.840 0.339
BAC167_H05 11p11.2 KAI1 -3.112 0.883 0.339
BAC29_C11 2p25.1 HPCAL1, ODC1 -3.084 0.867 0.339
BAC195_K21 11q12.3 EEF1G, RBM21 -3.060 0.868 0.339
BAC80_E04 21q22.3 UBE2G2, SUMO3, PTTG1IP -3.053 0.854 0.339
BAC192_C22 11q13.1 TIGD3, FKSG44 -3.051 0.875 0.339
BAC57_D10 19p13.3 PRSS15, FUT6, NRTN -3.044 0.858 0.339
BAC76_D18 2p25.1 HPCAL1, ODC1 -3.024 0.907 0.339
BAC30_K23 19q13.32 -3.022 0.890 0.339
BAC128_J04 11q13.1 BANF1, CST6, CATSPER1, GAL3ST3, SF3B2, PACS1 -2.997 0.879 0.339
BAC76_C20 5q35.3 RASGEF1C -2.994 0.884 0.339
BAC215_J18 1p34.2 MYCL1 -2.976 0.896 0.339
BAC63_I09 1p35.3 -2.959 0.886 0.339
BAC78_D10 19q13.31 PLAUR -2.950 0.875 0.339
BAC132_L20 17p11.2 FBXW10, FAM18B -2.948 0.877 0.339
BAC104_F07 6p21.32 CREBL1, FKBPL, C6orf31, PPT2, EGFL8, AGPAT1, RNF5, AGER, PBX2, 

GPSM3, NOTCH4
-2.947 0.850 0.339

BAC38_N15 1p36.33 SKI -2.939 0.875 0.339
BAC209_K24 21q22.3 PTTG1IP, ITGB2, C21orf69, C21orf67, C21orf70 -2.931 0.853 0.339
BAC136_D13 21q22.3 UBE2G2, SUMO3, PTTG1IP -2.894 0.869 0.339
BAC252_I22 16p13.3 TSC2, PKD1, TRAF7, RAB26 -2.881 0.820 0.339
BAC30_F19 7q32.2 UBE2H -2.873 0.901 0.339
BAC197_D09 11q12.2 PGA5 -2.872 0.874 0.339
BAC183_D06 19q13.31 RIC-8, SIRT3, PSMD13, NALP6, MRPS24P1, IFITM2 -2.839 0.891 0.339
BAC239_N1
2

19q13.31 TOLLIP, STK29 -2.835 0.889 0.339

BAC120_F15 1p35.3 KCNQ1, CDKN1C, SLC22A1LS, SLC22A18 -2.833 0.908 0.339
BAC219_C01 6p21.33 SLC35E2 -2.824 0.857 0.339
BAC91_A07 1p36.21 PDAP1, G10, CPSF4, PTCD1, ATP5J2 -2.822 0.888 0.339
BAC59_B08 16p13.3 NUP98, FRAG1, RHOG, STIM1 -2.809 0.854 0.339
BAC1_C02 21q22.3 CDKN1C, KCNQ1DN, SLC22A1LS, SLC22A18, PHLDA2, NAP1L4 -2.804 0.878 0.339
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malized based on the standard curve generated from those
three control samples.

Statistical analysis
The average ratio of the three replicate spots for each clone
was calculated. A total of 1,331 different BAC clones were
used in the final analysis. First, we performed complete
linkage hierarchical clustering based on Manhattan dis-
tance measure of all 28 samples using the normalized
1,331 clones [26]. This processed data set was then sub-
jected to copy number change analyses for identification

of regions of amplification and deletion. For calling gains
and losses in array CGH data, the Analysis of Copy Errors
(ACE) algorithm in CGH-Explorer [20] was used with an
False Discovery Rate (FDR) <0.01. CGH-Explorer was also
used for graphical illustration of CGH data. Recently, Lai
et al. compared 11 different algorithms which are most
frequently used for analyzing array CGH data [27]. In this
paper, they pointed out that some current implementa-
tions does not include any assessment of the statistical sig-
nificance of the reported copy number changes, although
quantitative statistics about the aberrations are critical in

BAC142_E13 9q34.2 PRKCZ, SKI -2.803 0.888 0.339
BAC100_L06 7q11.22 SMPD1, APBB1, HPX -2.803 0.927 0.339
BAC149_E07 11q13.2 ESRRA, HSPC152, PRDX5, RPS6KA4 -2.801 0.886 0.339
BAC10_E08 15q25.1 NFIC, FZR1, C19orf28 -2.797 0.895 0.339
BAC232_G07 13q34 EDG6, BRUNOL5 -2.780 0.895 0.339
BAC155_O0
7

21q22.3 MAP3K10, AKT2 -2.773 0.875 0.339

BAC219_N2
1

2q14.3 CYP2S1, AXL, HNRPUL1 -2.762 0.912 0.339

BAC24_E16 10q22.2 TRAF2, FBXW5, C8G, LCN12 -2.751 0.867 0.339
BAC142_B18 9q34.11 SLC12A8 -2.747 0.873 0.339
BAC168_H24 19q13.33 SNRPA, MIA, RAB4B, EGLN2, CYP2T2P, CYP2F1P -2.745 0.912 0.339
BAC233_C05 19q13.32 TRIM3, ARFIP2, FXC1 -2.744 0.905 0.339
BAC70_M18 10p15.3 PPAP2C, THEG -2.718 0.880 0.339
BAC32_K13 11p15.4 SF1, MAP4K2, MEN1, HSMDPKIN, EHD1, KIAA0404, PPP2R5B -2.712 0.907 0.339
BAC127_P09 12q13.13 ZNF579, ZNF524 -2.696 0.929 0.339
BAC104_G21 5p15.33 TJP3, APBA3, MRPL54, MATK -2.690 0.917 0.339
BAC110_G12 19p13.3 MAN1B1, DPP7, GRIN1 -2.676 0.879 0.339
BAC125_M0
6

9q34.13 -2.668 0.880 0.339

BAC4_J24 9q34.3 NAALADL1, CDCA5, ZFPL1, C11orf2, TM7SF2, ZNHIT2, FAU, MRPL49, 
HRD1

-2.663 0.890 0.339

BAC142_G12 16p13.3 ANKRD24, EBI3, SHD, FSD1, STAP2, SH3GL1 -2.657 0.826 0.339
BAC100_M2
4

6p21.32 KAI1 -2.656 0.896 0.339

BAC195_F16 7q32.1 HPCAL1, ODC1 -2.655 0.913 0.339
BAC109_M0
6

7q22.1 EEF1G, RBM21 -2.653 0.916 0.339

BAC247_C06 3q21.3 UBE2G2, SUMO3, PTTG1IP -2.645 0.935 0.339

BAC140_C04 5q12.3 TIGD3, FKSG44 3.601 1.104 0.686
BAC86_O11 20p12.1 PRSS15, FUT6, NRTN 3.435 1.160 0.686
BAC125_H18 2p11.2 HPCAL1, ODC1 3.308 1.119 0.686
BAC122_F23 7p14.1 3.295 1.131 0.686
BAC89_K07 7p14.2 BANF1, CST6, CATSPER1, GAL3ST3, SF3B2, PACS1 3.286 1.146 0.686
BAC69_J21 2p12 RASGEF1C 3.244 1.097 0.686
BAC24_A20 7p14.2 MYCL1 3.236 1.135 0.686
BAC165_M1
0

20p12.1 3.601 1.104 0.686

BAC140_C04 5q12.3 PLAUR 3.435 1.160 0.686
BAC86_O11 20p12.1 FBXW10, FAM18B 3.308 1.119 0.686
BAC125_H18 2p11.2 CREBL1, FKBPL, C6orf31, PPT2, EGFL8, AGPAT1, RNF5, AGER, PBX2, 

GPSM3, NOTCH4
3.295 1.131 0.686

BAC122_F23 7p14.1 SKI 3.286 1.146 0.686
BAC89_K07 7p14.2 PTTG1IP, ITGB2, C21orf69, C21orf67, C21orf70 3.244 1.097 0.686
BAC69_J21 2p12 UBE2G2, SUMO3, PTTG1IP 3.236 1.135 0.686
BAC24_A20 7p14.2 TSC2, PKD1, TRAF7, RAB26 3.601 1.104 0.686

Table 5: Most significant BAC clones that differentiate patients in the Recurrence group from those in the Non-recurrence group by 
SAM analysis (Continued)
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order to decide which region to pursue for further analy-
sis. ACE is one of only two algorithms that incorporate
FDR so far. Another advantage of ACE is that it can be
used even in situations where normal DNA is unavailable.

The counts of loss or gain vs. no change were summarized
by tumor group for each BAC, providing 2 x 2 tables for
analysis. Chi-square analysis was applied to these tables to
test for a significant difference in the distribution of loss
or gain vs. no change between tumor groups (Recurrence
and Non-recurrence) for each BAC. We then used the q
value from the R package of Bioconductor to adjust for
multiple comparisons and assign these resulting q values
as adjusted p values. Equivalently, the q value is the mini-
mal FDR at which the gene/clone appears significant.

As an alternative analysis to increase our power in identi-
fying regional changes in copy number between tumor
groups (Recurrence and Non-recurrence), we averaged
log2 ratios over a window of three consecutive BACs, shift-
ing along the chromosome one BAC at a time. To find
clones with differential aberrations between groups, we
used the Significance Analysis of Microarrays (SAM) soft-
ware [28] for the averaged log2 ratios. SAM is most effec-
tive for small numbers of experiments and is the most

popular method employed for microarray analysis. In the
microarray context, the expression levels of some genes
are highly correlated although an analytical FDR
approach assumes that tests are independent. To over-
come this drawback, SAM uses permutations to get an esti-
mate for the FDR of the reported differential genes. SAM
score (d) is the T-statistic value. "Fold change" in SAM out-
put is the ratio of average expression levels of a given gene
under each of two conditions (Recurrence group/Non-
recurrence group in this study). SAM adopts q-value as the
lowest FDR at which the gene is called significant. The q-
value measures how significant the gene is: as d > 0
increases, the corresponding q-value decreases.

The follow-up duration was calculated from the date of
diagnosis until the date of death or last contact. The dis-
tant metastasis-free survival was the time between diagno-
sis and confirmation of distant recurrence. Survival
estimates were computed using the Kaplan-Meier method
and the differences between survival times were assessed
by means of the log rank test. Multivariate analyses were
carried out using Cox's proportional hazards model [29].
Survival analyses were carried out using the SPSS (version
12.0) software package (Chicago, IL, USA).

Results
The distribution of potential prognostic factors was
roughly matched between the Recurrence and Non-recur-
rence groups. Patient age, tumor size, axillary lymph node
metastasis, histologic grade, nuclear grade, and expression
of PR were not significantly different between the two
groups, as shown in Table 1.

Top, Distant recurrence-free survival curves for all 28 patients according to whether or not they have 11p15.5 loss (A) and 8q21.13 gain (B)Figure 4
Top, Distant recurrence-free survival curves for all 
28 patients according to whether or not they have 
11p15.5 loss (A) and 8q21.13 gain (B). Bottom, Point 
plot and moving average (solid line) of representative sam-
ples showing 11p15.5 loss and 8q21.13 gain.

Correlation of array CGH data (black bar) with real-time PCR data (white bar)Figure 3
Correlation of array CGH data (black bar) with real-
time PCR data (white bar). Vertical axis is log2 ratio of 
each sample DNA to control. *, samples called as "gain" with 
CGH-Explorer. The samples called as gain in array CGH 
study tend to have higher value with real-time PCR than the 
other samples.
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First, we performed complete linkage unsupervised hierar-
chical clustering of all 28 samples using the 1,331 clones
distributed across the 22 autosome pairs. The nine sam-
ples from Recurrence group patients tended to be located
relatively close together below the third-order branch in
the dendrogram (Figure 1). The genomic alteration pat-
tern was expected to differ considerably between the
Recurrence and Non-recurrence groups in this analysis.

Using the ACE algorithm in the CGH-Explorer program,
copy errors were determined as either copy gain or loss.
Out of the 1,331 clones, 1,154 clones showed gains and
1,088 clones showed losses in at least one sample. Only
14 clones showed no gain or loss across all 28 samples.
The chromosomal regions with common genomic altera-
tions (≥ 20%) are shown in Table 2. Gains in 1q21.1-q44,
17q23.2-q25.3, 8q11.21-q24.3, 17q12-q22, and 8p12-
p11.1, and losses in 6q11.1-q27 and 11q13.5-q24.3 were
the most common altered regions among the 28 ER-posi-
tive breast cancer samples (Table 2 and Fig. 2A). The
majority of these regions have been reported in previous
conventional or array CGH breast cancer studies
[13,14,30,31].

To identify genomic alterations that are associated with
disease recurrence, we first compared the gain and loss fre-
quencies between the Recurrence and Non-recurrence
groups. The average frequency of copy number changes
was similar between the two groups. Of the Recurrence
group samples, an average of 14.7% of the clones had
gains and 12.3% had losses, whereas an average of 16.0%
and 12.8% of the clones in the Non-recurrence group
samples had gains and losses, respectively. The frequency
patterns of copy number changes for each group across
the entire genome are shown in Fig. 2B and 2C.

Using the chi-square test applied to a 2 × 2 table to com-
pare gain and loss of individual BACs between the Recur-
rence and Non-recurrence groups, we identified BACs that
were significantly different between the two subtypes
(adjusted p value <0.05), including gains in 8q21.13,
19p13.12-p13.11, 19q12-q13.42, 5q11.2-q14.3,
8q24.22, and 8q12.1, and losses in 11p15.5-p15.2,
22q12.3, 1p36.33-p36.11, 11q13.2-q13.5, and 17p13.1
(Table 3 and 4). Using a more stringent threshold of sig-

nificance (adjusted p <0.01), loss in 11p15.5-p15.4 was
the only difference between the Recurrence and Non-
recurrence groups. Gains in 19p, 19q, 22q, 1p, 9q, and
17q and loss in 4q were found more often in the Non-
recurrence group than in the Recurrence group. To vali-
date our array CGH data, real-time PCR for 8q21.13 was
performed, which revealed a correlation between the two
methods (Figure 3).

As an additional method to identify copy regional
changes that differed significantly between the two
groups, we used SAM analysis applied to the sliding win-
dows of three consecutive BAC clones from each group.
The majority of significant changes were toward loss in
the Recurrence group or gain in the Non-recurrence
group. Copy changes of 125 clones were different with q
values in SAM <0.5% between the two groups, including
11p15, 1p36, 7q22, 11q13, 19p13, 19q13, 9q34, 3q21,
10q26, and 11p11 (Table 5). Among these, losses in
11p15.5-p15.4, 1p36.33, 11q13.1, and 11p11.2 were sig-
nificantly more frequent in the Recurrence group using
both types of analysis. These regions that exhibited copy
number changes are therefore strong candidates for prog-
nosis indicators in ER-positive breast cancers.

In the Kaplan-Meier analysis of the 28 patients, both loss
at 11p15.5 and gain at 8q21.13 were significantly associ-
ated with distant metastasis-free survival (p <0.001 and p
= 0.006, respectively; Fig 4A, B). 1p36.33 loss was also the
significant prognostic factor for distant recurrence (p
<0.001, figure not shown). Multivariate analysis using the
Cox proportional hazard model with parameters includ-
ing age, T stage, lymph node status, nuclear grade, and PR
revealed that loss of 11p15.5 was the most significant fac-
tor among the different variables (hazard ratio 12.3 [95%
confidence interval: 2.7–55.4]) (Table 6).

Next, we did subgroup analysis according to lymph node
status. The number of cases in lymph node negative
patients was too small for this analysis (n = 2 in Recur-
rence group and N = 6 in Non-recurrence group). In
lymph node positive patients, no chromosomal aberra-
tion was significantly different between the two risk
groups with an adjusted p value <0.05. Loss of 1p36.33-
p35.3 and 11p15.5-p15.4 were found more often in

Table 6: Multivariate analysis for predictors of distant recurrence based on the Cox proportional hazards regression model

Variables Hazard ratio 95% Confidence interval p value

11p15.5 loss 12.3 2.74–55.44 .001
Tumor size ≥ 2 cm 1.0 0.17–6.12 .965
Lymph node-positive 2.0 0.30–14.28 .457
Nuclear grade 3 3.3 0.40–28.19 .264
PR 1.5 0.38–6.46 .533
Age<35 years 0.9 0.87–1.04 .327
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Recurrence group, and loss of 4q13.1-q34.3 and gain of
19q12-q13.2 were found more in Non-recurrence group
with borderline significance (p = 0.052) (Table 7).

Discussion
This study showed that genomic alteration patterns
detected by array CGH are different between ER-positive
breast cancer patients in the Recurrence group and the
Non-recurrence group after surgery and tamoxifen treat-
ment. These differences were first suggested by unsuper-
vised hierarchical clustering and then confirmed by two
statistical methods that were designed to identify the most
different specific BAC clones and chromosomal regions
between the two groups. We found that loss of 11p15 and
1p36 and gain of 8q21 are significantly associated with
distant recurrence of the disease within 5 years of diagno-
sis. These chromosomal aberrations are thus candidate
markers for tumor aggressiveness or tamoxifen resistance
in ER-positive breast cancers. The independent prognostic
significance of two of these chromosomal aberrations was
further demonstrated by a striking survival difference in
patients who did and did not have the corresponding
chromosomal copy number change. The fact that most of
the genomic alterations that we identified have been pre-
viously reported in other conventional or array CGH stud-
ies underscores the confidence of the methodology used
here. Clinically, if we can predict the prognosis of ER-pos-
itive breast cancer by whole genome DNA copy number
analysis, use of new generation aromatase inhibitors or
cytotoxic chemotherapy can be actively considered for the
patients with a poorer prognosis.

Allelic loss at 11p15.5 is frequently observed in a variety
of tumors, including breast cancer [32-35]. In invasive
ductal carcinoma, the frequency of LOH at 11p15.5 is
approximately 30–60% [32,33]. Two distinct regions on
chromosome 11p15 that are subjected to LOH in breast

cancer have been identified and refined by Karnik et al.
[34]. Phillips et al. determined the potential effects of
chromosome 11 on the tumorigenic and metastatic abili-
ties of the MDA-MB-435 cell line via chromosome trans-
fer, and indicated that chromosome 11 harbors a
metastasis-suppressor gene for breast cancer [36]. Until
now, any association between chromosome 11p15.5 and
clinical parameters such as recurrence or survival has not
been well established. Several studies have suggested that
LOH in this region increases during breast cancer progres-
sion [34,37,38], and one conventional CGH study
showed that 11p loss is associated with disease recurrence
in lymph node-negative breast cancer [39].

We could not validate 11p15.5 loss with our real-time
PCR method that was used to show the amplification of
8q21.13. The development of an efficient methodology
that can validate the copy number loss should be given
priority in future studies.

Ragnarsson et al. [40] found a high percentage of LOH at
1p36 and significant separation of survival curves
between breast cancer patients with and without this alter-
ation. These researchers also showed that LOH at 1p is a
better prognostic indicator than any other variable,
including lymph node metastasis.

Chromosome 8q gain is known to be associated with poor
outcome in patients with clinically localized prostate can-
cer [41,42] and node-negative breast cancer [30,31].
TPD52 on chromosome 8q21 has been proposed as a
potential amplification target gene in this region [43-45].

We divided the patients into axillary lymph node negative
and positive breast cancers to avoid biases caused by mix-
ing the different risk groups, because the axillary lymph
node status has been shown to be the single most impor-

Table 7: Chromosomal locations showing different frequencies of aberration between the two groups in lymph node positive patients

Recurrence group (N = 7) Non-recurrence group (n = 13) Adjusted p value

Aberration No aberration Aberration No aberration

1p36.33-1p35.3 loss 3 4 0 13 0.052
4q13.1-4q34.3 loss 0 7 7 6 0.052
11p15.5-11p15.4 loss 4 3 1 12 0.052
19q12-19q13.2 gain 0 7 8 5 0.052
8q21.13-8q24.22 gain 6 1 5 8 0.111
11p11.2-11p11.12 loss 4 3 2 11 0.112
17p13.3-17p11.2 loss 3 4 1 12 0.113
7p21.2-7p13 gain 3 4 2 11 0.286
11q14.3-11q24.3 loss 4 3 4 9 0.326
17q23.2-17q24.2 gain 3 4 9 4 0.326
20q13.13-20q13.33 
gain

3 4 3 10 0.421

1q32.1-1q44 gain 6 1 9 4 0.451
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tant prognostic factor for disease-free survival and overall
survival in breast cancer patients. Due to the small
number of cases in each group, no chromosomal aberra-
tion was different in frequency between the two risk
groups. 1p36 and 11p15, the most significant chromo-
somal location in overall analysis, were also found more
in Recurrence group than Non-recurrence group with
modest significance in lymph node positive patients.
More cases are required to confirm this result in the sub-
group analysis and to elucidate the usefulness of these
potential prognostic factors in lymph node negative
patients.

In the recent publication of Arpino et al., ER+/PR- tumors
express higher levels of HER-1 and HER-2 and display
more aggressive features than ER+/PR+ tumors [46]. In
this study, we showed that several chromosomal aberra-
tions, such as 11p15.5 loss have stronger effect on distant
recurrence of ER+ patients than PR status. It would be also
interesting to stratify the patients according to PR expres-
sion status and investigate whether the pattern of DNA
copy change is different between ER+/PR- and ER+/PR+
tumors.

A major weakness of our study is the small number of
samples used, which was due to the limited availability of
suitable fresh-frozen breast cancer tissues. DNA from for-
malin-fixed, paraffin-embedded tissues that had been
archived for many years was tested, but it was so frag-
mented that it could not be utilized in this array CGH
study.

With the increasing needs for efficient software that auto-
matically select regions of gains and losses in array CGH
studies, many algorithms have been recently developed
[17-19,47]. We used a representative software and algo-
rithm, CGH-Explorer and ACE, for thresholding the copy
number ratios. It was comprehensive and had user-
friendly graphical tools. An analytical tool that can iden-
tify the clones between two subject groups has not yet
been established for array CGH.

Conclusion
In conclusion, using array CGH analysis with BAC clones,
we were able to detect various genomic alterations in ER-
positive breast cancers. Patients in the Recurrence group
showed a significantly different pattern of chromosomal
gain and loss than patients in the Non-recurrence group.
Copy number loss of 11p15 and 1p36 and gain of 8q21
are significantly associated with distant recurrence of the
disease within 5 years of diagnosis. These regions will be
further explored for the identification of metastasis-sup-
pressing or -enhancing genes using a higher resolution
method with a larger number of study subjects.
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