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Abstract

Background: The inhibition of angiogenesis is a promising strategy for the treatment of malignant
primary and secondary tumors in addition to established therapies such as surgery, chemotherapy,
and radiation. There is strong experimental evidence in primary tumors that Cyclooxygenase-2
(Cox-2) inhibition is a potent mechanism to reduce angiogenesis. For bone metastases which occur
in up to 85% of the most frequent malignant primary tumors, the effects of Cox-2 inhibition on
angiogenesis and tumor growth remain still unclear. Therefore, the aim of this study was to
investigate the effects of Celecoxib, a selective Cox-2 inhibitor, on angiogenesis, microcirculation
and growth of secondary bone tumors.

Methods: In 10 male severe combined immunodeficient (SCID) mice, pieces of A549 lung
carcinomas were implanted into a newly developed cranial window preparation where the calvaria
serves as the site for orthotopic implantation of the tumors. From day 8 after tumor implantation,
five animals (Celecoxib) were treated daily with Celecoxib (30 mg/kg body weight, s.c.), and five
animals (Control) with the equivalent amount of the CMC-based vehicle. Angiogenesis,
microcirculation, and growth of A549 tumors were analyzed by means of intravital microscopy.
Apoptosis was quantified using the TUNEL assay.

Results: Treatment with Celecoxib reduced both microvessel density and tumor growth. TUNEL
reaction showed an increase in apoptotic cell death of tumor cells after treatment with Celecoxib
as compared to Controls.

Conclusion: Celecoxib is a potent inhibitor of tumor growth of secondary bone tumors in vivo
which can be explained by its anti-angiogenic and pro-apoptotic effects. The results indicate that a
combination of established therapy regimes with Cox-2 inhibition represents a possible application
for the treatment of bone metastases.
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Background

Angiogenesis - the formation of new blood vessels from
an already established microvasculature - is a key contrib-
utor to the pathogenesis of several diseases such as benign
and malignant tumors, rheumatoid arthritis, and diabetic
retinopathy. A solid tumor cannot grow beyond a critical
size of 1-2 mm3 or metastasize without an adequate
blood supply [1,2]. The development of a new vascular
network consists of several steps which are controlled by
various endogenous stimulators and inhibitors [3]. The
best investigated endothelial cell specific growth factors
are the vascular endothelial growth factor (VEGF) family
and its receptors VEGFR-1, VEGFR-2, and VEGFR-3 [4,5].
Besides hypoxia which is the main inducer of VEGF, pros-
taglandins mediated by Cox-2 have been reported to reg-
ulate VEGF expression [6-8] which demonstrates an
important link between Cox-2 activity and VEGF expres-
sion [9]. Cox-2 is induced by cytokines, growth factors
and tumor promoters and is over expressed in inflamed
and malignant tissues [10]. The enzyme is localized in
neoplastic cells, endothelial cells, and stromal tissues
[9,11-13] and contributes to tumor angiogenesis and
tumor growth by (1) an increased expression of the ang-
iogenic growth factor VEGF [14], (2) the production of
eicosanoid products which can directly stimulate
endothelial cell growth factor induced angiogenesis [15],
and (3) the inhibition of tumor and endothelial cell apop-
tosis by up regulating the antiapoptotic protein bcl-2
[16,17]. Due to the multiple links between tumor angio-
genesis, tumor growth and Cox-2 expression, selective
pharmacological inhibition of Cox-2 represents a promis-
ing therapeutic strategy for the treatment of malignant
solid tumors.

Celecoxib, a selective Cox-2 inhibitor has been shown to
effectively decrease tumor angiogenesis and reduce tumor
growth of a variety of experimental primary tumors
including colorectal, prostate, and breast tumors [18-24].
However, the effects of Cox-2 inhibition on bone metas-
tases which are found in up to 40% of autopsies of
patients with a primary lung tumor [25] have not been
described so far.

Here we report our in vivo findings that Celecoxib has anti
tumor effects on secondary bone tumors of a non-small
cell lung carcinoma by inhibiting angiogenesis and pro-
moting tumor cell apoptosis.

Methods

Animal model and cell lines

Experiments were performed in 10 male adult severe com-
bined immunodeficient mice (SCID, C.B-17/IcrCrl-scid-
BR, Charles River Laboratories Inc., Sulzfeld, Germany, 7
to 8 weeks old, 20 to 25 g body weight), following institu-

http://www.biomedcentral.com/1471-2407/6/9

tional guidelines, approved by the local animal review
board.

The human lung carcinoma cell line A 549 was obtained
from the German Cancer Research Institute (Heidelberg,
Germany). Tumor cells [1 x 107/ml] were injected subcu-
taneously into the left flank of a donor mouse each and
grown to a volume of 0.5 to 1.0 cm3. After sacrificing the
donor mouse, the tumor was excised, cut into small pieces
(volume 0.5-1.0 mm3) in Dulbecos Modified Eagle's
Medium (DMEM,) at 4°C and implanted into the recipi-
ent mouse as follows.

All surgical procedures were performed in strictly aseptic
conditions within a laminar flow unit (Merck Eurolab,
Bruchsal, Germany) under deep anesthesia by an intra
peritoneal injection of a mixture of ketamine (Ketanest®,
65 mg/kg body weight, Pfizer, Karlsruhe, Germany), xyla-
zine (Rompun®, 13 mg/kg body weight, Bayer,
Leverkusen, Germany) and acepromazine (Sedastress®, 2
mg/kg body weight, Medistar, Holzwickede, Germany).
The surgical preparation was performed as described pre-
viously [26]. In brief, the scalp of the mouse was shaved
and was surgically excised in an oval area to expose the
frontal and parietal bone. The periosteum was removed
and an oval cavity of approximately 2 by 1 by 0.5 mm was
milled into the calvaria by eliminating parts of the exter-
nal tabula of the calvaria including the spongious bone
underneath. Then one piece (approx. 0.5-1.0 mm?3) of the
human lung carcinoma A 549 was implanted into the cav-
ity. To prevent the tumors from dehydrating or from
mechanical damage, the preparation was sealed with a
glass cover slip and bone cement.

The animals were housed individually in special filter
cages to maintain aseptic conditions and to prevent
mutual damaging of the cranial window. The animals
were provided with sterile standard pellet food and water
ad libitum.

Cox-2 inhibitor treatment

The selective Cox-2 inhibitor Celecoxib was a generous
gift of Pharmacia Inc. (St. Louis, MO, USA). Celecoxib was
dissolved in a carboxymethylcellulose (CMC)-based vehi-
cle at 5 mg Celecoxib/ml vehicle. Five animals each were
treated once daily by s.c. injection of 30 mg/kg body
weight Celecoxib (Celecoxib, n = 5) or the equivalent
amount of the (CMC)-based vehicle alone (Control, n =
5). Treatment started on day 8 after tumor implantation
and was continued until termination of experiments on
day 28 after tumor implantation.

Intravital microscopy
For intravital microscopy, mice were anesthetized and
positioned on a custom made stereotactic device.
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Within the first week after tumor implantation, mice were
observed daily under epi-illumination with a stereotactic
microscope (Leica MZ7;, Leica, Germany) employing a 5
to 40 fold magnification. At 24 hour intervals, the first
appearance of (i) hemorrhage, (ii) the first appearance of
newly formed blood vessels entering the implanted tumor
tissue, and (iii) the onset of perfusion in these newly
formed vessels were determined. Two-dimensional tumor
growth was determined off line by measuring the tumors
surface area on days 7, 14, 21, and 28 after implantation.

Intravital fluorescence video microscopy was performed
using an epi-illumination fluorescence microscope unit
(Leica, Germany) equipped with a 4x (EF 4/0.12, Leitz,
Wetzlar, Germany) and 40x (Zeiss Achroplan 40x/0.75 w,
Carl Zeiss, Germany) objective on days 7, 14, 21 and 28
after tumor implantation. For off line analysis, regions of
interest were recorded on video tapes using a S-VHS vide-
ocassette recorder (AG-7350, Panasonic, Japan) at a rate
of 50 frames/s and a digital camera (Kappa CF 8/1, Kappa
Opto-electronics, Germany).

Using an adequate fluorescence filter set for green light
(bandpass 515-560 nm), the intravenous injection of flu-
orescein isothiocyanate (FITC)-labeled dextran (Sigma,
St. Louis, MO, FITC-Dextran, FD 2000S, molecular weight
2.000.000; 0.1 ml of a 5% solution in 0.9% NaCl as a
plasma marker) enabled the observation of the tumor
microcirculation.

Off-Line analysis of tumor growth and
microhemodynamics

Tumor growth was determined off-line by measuring its
two-dimensional surface area in mm?2 from standardized
digital photographs of the cranial window preparation at
10-fold magnification on days 7, 14, 21, and 28 after
implantation using a computer based analysis program
(AnalySIS® V3.0, Soft Imaging System, Miinster, Ger-
many).

The functional microvessel density (FVD) was determined
as the length of all perfused microvessels within a tumor
in relation to the two-dimensional surface area of the
tumor in mm/mm? indicated by the fluorescence of FITC
labeled dextran in all perfused vessels. Recordings on
video tape for off line analysis of the functional vessel den-
sity were made for 15 s each. The off line analysis was per-
formed using a computer based image analysis program
(Caplmage®, Engineering Office Dr. Zeintl, Heidelberg,
Germany).

Histopathologic assessment

At the end of the experiment, tumors were immediately
excised with the surrounding tissue of the calvaria and the
brain for further histopathologic investigation. Tissue
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samples were fixed for 24-48 hours by immersion in 4%
formalin solution. After decalcification of the bone in eth-
ylene-diaminetetraacetic acid for 2 weeks, samples were
embedded in paraffin and sliced in three-um serial sec-
tions for Hematoxylin-Eosin staining and five-um serial
sections for immunohistochemistry.

For the TUNEL reaction, the in situ Cell Death Detection
Kit (Cat. No 1684809, Roche Diagnostics, Mannheim,
Germany) was used according to the manufacturer's
instructions: Briefly, deparaffinized sections were pre-
treated with proteinase K in 10 mM Tris/HCI and washed
in phosphate buffered saline (PBS). Sections were then
incubated with Triton 0.1% (Triton® x-100, Lot. No.
93424, Fluka, Buchs, Switzerland), washed in PBS, and
incubated with 5% BSA (Albumin from bovine serum, A-
9647, Sigma, St. Louis, MO) to block endogenous peroxi-
dase. For TUNEL reaction, the sections were incubated
with the TUNEL reaction mix. Sections were then rinsed
with tris buffered saline (TBS) and incubated in converter
alkaline phosphatase, followed by TBS washings. Sections
were then stained with Fast Red (Sigma FastTM, F-4648,
St. Louis, MO) for 10-15 minutes depending on staining
intensity. Sections were counterstained with Mayer's
hematoxylin (Hdmalaun Mayer, Art.-Nr. 1A-528,
Chroma, Miinster, Germany) and mounted with AquaTex
(AquaTex®, Cat.No. 1.08562, Merck, Darmstadt, Ger-
many). Treatment procedures for Control specimen were
the same except for omitting the primary antibody.

For quantitative analysis of apoptotic cells, standardized
digital images were acquired with a color digital micro-
scopic camera system (Leitz Diavert microscope, Leica,
Bensheim; AxioCam®, Carl Zeiss, Gottingen, Germany)
with a resolution of 1300 x 1030 pixel at 200 fold magni-
fication in three randomly distinguished regions of inter-
est (ROI) of each slide and processed with AxioVision Rel.
3.1 software package (Carl Zeiss, Gottingen, Germany).
The total number of tumor cells and the number of apop-
totic tumor cells were counted. The percentage of positive
cells with TUNEL staining served as rate of apoptosis.

Statistics

All numerical data are presented as median with 25% and
75% quartile. Using the software program SigmaStat® for
Windows (Version 2.03, SPSS, Chicago, IL), data were
analyzed statistically with ANOVA on ranks. Mann-Whit-
ney Rank Sum Test was applied for pair wise comparison
procedures. Differences were considered significant at p <
0.05.

Results

The first newly formed vessels were observed 6 days after
implantation in all tumors. Vessel formation was fol-
lowed by a rapid onset of perfusion within the next 24

Page 3 of 8

(page number not for citation purposes)



BMC Cancer 2006, 6:9

{ Celecoxib
151 o control o*

E 10 9]
E o

£ *
<E 5 - @ ? #§3

|

7 14 21 28

day after implantation

Figure |

http://www.biomedcentral.com/1471-2407/6/9

Graph: Tumor surface, time course. Y-axis: tumor surface (Aryy in mm?2), x-axis: time in days after implantation. ANOVA on
ranks (p = 0,016); *p < 0.05 versus day 7, #p < 0.05 versus Control, Mann-Whitney Rank Sum Test. Significant increase in two-
dimensional tumor surface in both groups between days 7 and 28 after tumor implantation. Two-dimensional tumor surface is
significantly reduced in animals treated with Celecoxib compared to Controls on day 28. A, B, C, D: Photographs of the cra-
nial window with A 549 lung carcinoma, top-view, scale bar 1000 um. Tumor borders marked by arrows. Day 7: Celecoxib

(A), Control (C). Day 28: Celecoxib (B), Control (D).

hours. Intravital microscopy showed that the origin of the
angiogenic sprouting was from the vessels located within
the surrounding bone.

Within the first week after tumor implantation, tumor
growth was identical in all animals. After the initiation of
treatment on day 8 after tumor implantation, animals
treated with Celecoxib showed a reduced tumor growth
compared to Controls without significant differences
between both groups until day 21. On day 28 after tumor
implantation, the two-dimensional tumor surface was
found statistically smaller with 4.8 mm? (3.7/5.7) in
Celecoxib compared to 10.3 mm? (7.5/11.4) in Controls

(Fig. 1).

Functional vessel density (FVD) in the Control animals
increased between day 7 and day 14 after tumor implan-
tation, reaching a constant plateau between days 14 and
28. Between days 7 and 14 FVD was similar in animals
treated with Celecoxib. However, from day 21 after tumor
implantation, FVD decreased in animals treated with
Celecoxib. On day 28, FVD was significantly lower in
Celecoxib treated animals compared to Controls (10.3
mm/mm? (9.8/10.6) vs. 7.8 mm/mm? (6.6/8.1), p =
0.008, Fig. 2). In both groups, FVD was significantly
higher at day 28 after tumor implantation compared to
the first measurements on day 7 after tumor implantation.

The growth of the implanted tumors was observed histo-
logically in all of the cranial window preparations (Fig. 3
a,b). The tumor dimensions determined from the H&E
stained tissue slices showed a close correlation to the
tumor sizes quantified from intravital microscopy investi-
gations. TUNEL staining showed an increased rate of
apoptosis in tumors treated with Celecoxib (p < 0.001).
The percentage of apoptotic cells per total tumor cell
number was 54.4% (44.0/65.8) after Celecoxib treatment
versus 21.8% (4.4/43.5) in Controls. Cell counting also
revealed a reduced overall density of tumor cells with
3394 cellsymm?2 (3129/3936) in animals treated with
Celecoxib compared to 4996 cells/mm? (4466/5732) in
Controls (p < 0,001). (Fig. 3 ¢,d)

The injection of Celecoxib or CMC-vehicle alone was well
tolerated, no difference in animal behavior or loss of
weight was observed.

Discussion

Today's therapy of bone metastases with surgical proce-
dures, chemotherapy, and radiation is limited to palliative
treatment in many cases. Since angiogenesis is essential
for tumor growth, selective targeting of tumor vasculature
is a promising strategy that might help to overcome lim-
ited therapy options in bone metastases. Although bone
metastases occur in up to 40% of lung cancer patients
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Graph: Functional vessel density, time course. Y-axis: functional vessel density (FVD in mm/mm?2), x-axis: time in days after
implantation. ANOVA on ranks (p = 0.008); *p < 0.05 versus day 7, #p < 0.05 versus Control, Mann-Whitney Rank Sum Test.
Significant increase in functional vessel density in both groups between days 7 and 28 after tumor implantation. Functional ves-
sel density is significantly reduced in animals treated with Celecoxib compared to Controls on day 28. A, B: Photographs from
intravital fluorescence microscopy, top-view, scale bar 200 m. Tumor borders marked by arrows. Day 28: Celecoxib (A),

Control (B).

[25], research on antiangiogenic therapy has mostly been
focused on primary tumors. Compounds inhibiting Cox-
2 are of special interest for antiangiogenic therapy because
prostaglandins mediated by Cox-2 have been shown to be
important contributors to VEGF dependent tumor angio-
genesis [27]. Cox-2 inhibitors have already shown prom-
ising antitumor effects in several solid tumors [18,19,22-
24], however, the effects of Cox-2 inhibition on bone
metastases have not been described so far. The main goal
of the current study was to determine the effects of the
selective Cox-2 inhibitor Celecoxib on tumor growth and
angiogenesis of secondary bone tumors of a human non
small cell lung carcinoma in vivo.

Previous studies have suggested that the antitumor activ-
ity of Celecoxib can be attributed, at least in part, to the
inhibition of tumor angiogenesis [9,16,28,29]. Liu et al.
[16] showed that the selective Cox-2 inhibitor NS 398 did
not directly effect tumor cell proliferation of PC-3 prostate
carcinomas but suppressed tumor growth through a down
regulation of VEGF mediated tumor angiogenesis.

In the present study, Celecoxib significantly reduced func-
tional vessel density in tumors and tumor size by 25% and
53%, respectively, compared to Controls. It has been
shown previously that the antiangiogenic potential of
selective Cox-2 inhibitors is mainly mediated by Cox-2
dependent mechanisms. Cox-2 regulates angiogenesis pri-
marily through the eicosanoid products prostaglandin E,
(PGE,), Thromboxane A, (TXA,) and Prostacyclin (PGIL,)
[6,15,30-36]. PGE, stimulates the expression of VEGF, the
key regulator of angiogenesis [6,30,31]. Downstream ang-
iogenic actions of PGE, also include the induction of the
matrix metalloprotinases MMP-2 and MMP-9 and the
integrin o, 3, which is selectively expressed on endothelial
cells [32-35]. TXA, and PGI, mediate angiogenic actions
such as endothelial cell migration and VEGF up regulation
[15,36]. Antiangiogenesis, induced by endothelial cell
apoptosis may be mediated by Cox-2 dependent and Cox-
2 independent mechanisms [17,21,37-39].

The mechanisms and the causal relation between Cox-2

inhibition, angiogenesis and tumor growth were not
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Figure 3

A, B: A 549 lung carcinoma at day 28, hematoxylin-eosin
stained cross section, scale bar 500 um. Tumor borders
marked by arrows. Control (A), Celecoxib (B). C, D: A 549
lung carcinoma at day 28, TUNEL reaction, scale bar 50 um,
apoptotic cells stained red. Control (C), Celecoxib (D).

investigated within the scope of the present study. How-
ever, our data demonstrate an effective anti tumor action
of Celecoxib. The results of the functional vessel density
time course indicate that one mechanism underlying the
anti tumor effect of Celecoxib is the antiangiogenic poten-
tial resulting in a reduction of feeding and draining tumor
blood vessels. Interestingly, the time course showed that
the functional vessel density decreased in animals treated
with Celecoxib from day 14 after tumor implantation
while the tumor surface increased overall. However,
tumor growth was decelerated by Celecoxib, resulting in a
relatively reduced tumor size of 53% compared to Con-
trols, suggesting that the decrease of functional vessel den-
sity precedes a reduction of tumor size.

Liu et al. [16] further stated that tumor growth suppres-
sion by Cox-2 inhibition is achieved by a combination of
direct induction of tumor cell apoptosis and decreased
angiogenesis because NS 398 also enhanced tumor cell
apoptosis, detected with the TUNEL reaction. Since then,
the proapoptotic effect of Cox-2 inhibitors on tumor cells
and endothelial cells, being mediated via various path-
ways has been proved in several in vitro and in vivo studies
[17,21,37,38,40-46]. Cox-2 dependent mechanisms are
based on a decreased production of PGE, which is associ-
ated with the modulation of pro- and antiapoptotic fac-
tors such as Bcl-2 and the prostate apoptosis-response
gene (PAR-4) [17,38]. Cox-2 independent mechanisms of
apoptosis induction by Celecoxib include (i) bcl-2 inde-
pendent blockade of Akt signaling by inhibition of 3-
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phosphoinositide-dependent protein kinase-1 (PDK-1)
and (ii) a caspase-9 and apoptosis protease-activating fac-
tor-1 (Apaf-1) dependent but bcl-2 independent mito-
chondrial pathway [21,37,41-45]. The significance of the
Cox-2 independent apoptosis pathways was substantiated
by the creation of Celecoxib derivates lacking Cox-2
inhibitory activity being able to effectively induce apopto-
sis via the same mechanisms as the parental Celecoxib,
such as the blockade of Akt activation [42-44]. In the
present study, apoptosis of tumor cells was investigated
using the TUNEL assay. Consistent with previous findings,
a significantly higher percentage of apoptotic tumor cells
were found in tumors treated with Celecoxib compared to
Controls. The exact mechanism by which apoptosis is
augmented is not established in this study. However, it
may be suggested that it is similar to that reported previ-
ously, which may include Cox-2 dependent as well as
Cox-2 independent pathways [17,21,37,38,40-45].

Conclusion

The data presented demonstrate that Celecoxib is a potent
inhibitor of tumor growth of secondary bone tumors in
vivo. This can be explained by its antiangiogenic and proa-
poptotic effects. We believe that a combination of estab-
lished treatment procedures of bone metastases such as
surgery, radiation, and chemotherapy with cyclooxygen-
ase 2 inhibition is promising to improve the success of
therapy.
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