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Abstract
Background: Experimental and clinical evidence suggest that hypoxia in solid tumours reduces their sensitivity
to conventional treatment modalities modulating response to ionizing radiation or chemotherapeutic agents. The
aim of the present study was to show the feasibility of determining radiotherapeutically relevant hypoxia and early
tumour response by ([18F] Fluoromisonidazole (FMISO) and [18F]-2-fluoro-2'-deoxyglucose (FDG) PET.

Methods: Eight patients with non-small-cell lung cancer underwent PET scans. Tumour tissue oxygenation was
measured with FMISO PET, whereas tumour glucose metabolism was measured with FDG PET. All PET studies
were carried out with an ECAT EXACT 922/47® scanner with an axial field of view of 16.2 cm. FMISO PET
consisted of one static scan of the relevant region, performed 180 min after intravenous administration of the
tracer. The acquisition and reconstruction parameters were as follows: 30 min emission scanning and 4 min
transmission scanning with 68-Ge/68-Ga rod sources. The patients were treated with chemotherapy, consisting
of 2 cycles of gemcitabine (1200 mg/m2) and vinorelbine (30 mg/m2) followed by concurrent radio- (2.0 Gy/d; total
dose 66.0 Gy) and chemotherapy with gemcitabine (300–500 mg/m2) every two weeks. FMISO PET and FDG PET
were performed in all patients 3 days before and 14 days after finishing chemotherapy.

Results: FMISO PET allowed for the qualitative and quantitative definition of hypoxic sub-areas which may
correspond to a localization of local recurrences. In addition, changes in FMISO and FDG PET measure the early
response to therapy, and in this way, may predict freedom from disease, as well as overall survival.

Conclusion: These preliminary results warrant validation in larger trials. If confirmed, several novel treatment
strategies may be considered, including the early use of PET to evaluate the effectiveness of the selected therapy.
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Background
At present, combined modality treatment (chemotherapy
followed by surgery or radio-/chemotherapy) for patients
with locally advanced non-small-cell lung cancer
(NSCLC) is being studied extensively. It is clear, however,
that for different reasons, a substantial number of patients
had lesser benefits from such intensive treatment. For
example, tumour anaemia and tumour hypoxia are con-
sidered as multifactorial causes of tumour treatment
resistance [4,21]. The causes of tumour hypoxia are multi-
factorial and include factors related to oxygen delivery,
such as anaemia, abnormal tumour vasculature and blood
flow, and the rate of oxygen consumption in tumours.

With positron emission tomography (PET), radio-labelled
hypoxia-avid compounds can be applied to evaluate the
oxygenation status in experimental or human tumours
[2]. Fluorine-18 labelled Fluoromisonidazole [1-(2-nitro-
1-imidazolyl)-2-hydroxy-3-fluoropropane, FMISO] is the
most widely used nitroimidazole derivative in clinical
PET, representing a non-invasive method for the quantifi-
cation of the oxygenation status of subjacent tumours
from PET data [7,19].

Conventional techniques used to monitor therapeutic
effects in oncology, such as CT and MRI, are based on
morphologic changes and show limited accuracy [11,14].
Several studies have demonstrated the ability of func-
tional imaging techniques to detect subclinical alterations
in tumour physiology and biochemistry resulting from

efficacious therapy [1,6,13,15,18,20]. These alterations
may occur long before a morphologic change in the
tumour mass is apparent. PET with the glucose analogous
fluorine-18fluorodeoxyglucose (FDG PET) allows non-
invasive serial measurements of tumour glucose use. Pre-
vious studies have suggested that chemotherapy causes a
measurable decrease in tumour glucose use within 1 to3
weeks after the commencement of therapy.

This study evaluates the impact and feasibility of deter-
mining tumour hypoxia by FMISO PET, and of one factor
related to tumour metabolism, namely tumour glucose
use, through FDG PET in patients with NSCLC in relation
to response to radio-/chemotherapy.

Methods
The Medical Ethical Committees of the University of
Aachen approved the study. The study was conducted
according to the Helsinki Declaration. All patients gave
written informed consent before they were enrolled in the
study.

Patients and patient treatment
All eight patients had histologically proven and unresect-
able NSCLC. The detailed patient characteristics are listed
in Table 1. All patients were treated with chemotherapy
consisting of 2 cycles of gemcitabine (1200 mg/m2) and
vinorelbine (30 mg/m2) given on day 1, 8 (cycle 1A and
1B) and on day 22, 29 (cycle 2A and 2B). Gemcitabine
was administered first in a 30-min i.v. infusion, followed
by vinorelbine, which was given as a 5-min i.v. infusion.
The change in haemoglobin concentrations during chem-
otherapy are shown in Figure 1.

Six patients were included in a phase I study to identify
the dose-limiting toxicities (DLTs) and maximum toler-
ated dose (MTD) of gemcitabine when administered in a
14-day interval (three times) in combination with radio-
therapy which began 14 days after the induction chemo-
therapy. Radiotherapy was administrated with 10- or 15-
MV photons. The total radiation dose to the initial vol-
ume was 50.0 Gy in 2.0 Gy fractions over 5 weeks. A boost
dose of 10 to 16 Gy to the gross tumour volume (defined
by FDG PET after induction chemotherapy) was given in
the same dose fractionation. The gemcitabine dose ranged
between 300 and 500 mg/m2 in 100 mg/m2 increments.
At the end of radio-/chemotherapy one of these patients
developed a perpetual arrhythmia caused by hyperthy-
roidism, followed by a histologically proven atypical
pneumonia caused by cytomegalovirus without leucope-
nia or neutropenia during the treatment. He died because
of cardiopulmonary insufficiency.

One patient outside the phase I study suddenly died of a
lung embolism after two cycles of chemotherapy, and one

Table 1: Characteristics of the population

Characteristics

Age Years
Mean 58
Median 56
Range 41–76

Sex No. of patients
Male 5
Female 3

ECOG performance scale
0 4
1 4

Clinical stage
IIIA 1
IIIB 6
IV 1

Histology
Adenocarzinoma 3
Squamous carcinoma 4
Adenosquamous carcinoma 0
Large-cell carcinoma 1

ECOG performance Scale: 0 – normal activity; asymptomytic
1 – symptomatic; fully ambulatory
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patient was initially excluded from the phase I study
because of distant lymph node metastasis detected by
FDG PET. The latter was being treated with two cycles of
chemotherapy followed by radio-/chemotherapy, due to
left primary bronchus compression. Following chemo-
therapy, one patient had decreased FDG- and FMISO
uptakes in the primary tumour, whereas he had an
increased FDG- and nearly unchanged FMISO-uptake in
one large mediastinal lymph node metastasis. Here, both
tumour localisations were evaluated separately as patient
7a (lymph node metastasis) and 7b (primary) (Tables 2
and 3). All patients were followed up for at least one year.

Positron emission tomography
All PET studies were carried out with a Siemens ECAT
EXACT 922/47 scanner with an axial field of 16.2 cm of
view (Siemens CTI, Knoxville, TN). FMISO and FDG were
produced at the Research Centre Juelich (Juelich, Ger-
many). Quality assurance was done according to the GMP
principles. FMISO PET and FDG PET were performed in
all patients within 3 days before as well as 14 days after
finishing induction chemotherapy. The relevant field of
view was defined with the help of computed tomography.
FMISO PET consisted of one static scan of the relevant
region, performed 180 min after intravenous administra-
tion of 329 ± 36 MBq FMISO. The acquisition and recon-

struction parameters were as follows: Acquisition
consisted of 30 min emission scanning and 4 min trans-
mission scanning with 68-Ge rod sources. The emission
data were corrected for attenuation through the use of a
segmented µ-map and empirical attenuation coefficients.

Following normalization and scatter correction, the emis-
sion scan was reconstructed with and without attenuation
correction using a weighted iterative OSEM algorithm
(ordered subsets-expectation maximization, 6 iterations,
16 substeps). In a final step, a three-dimensional isotropic
Gauss-filter was applied (FWHM 8 mm). Transversal,
coronal, and sagittal slices of 7 mm thickness were recon-
structed with and without attenuation correction.

Three venous blood samples were taken at minute 0, 5,
and 10 of the emission scans. The radioactivity concentra-
tions were measured with a well counter and corrected for
decay. An FDG PET of the tumour region was performed
60 ± 12 min after intravenous administration of 250 ±
60MBq FDG, using a whole-body acquisition protocol
with 8 min emission scanning and 4 min transmission
scanning. The data were also corrected for attenuation and
reconstructed with the same parameters as for FMISO PET
above.

For FMISO PET, tumour-to-muscle ratios of the regional
radioactivity concentrations were calculated, using the
transverse plane with the maximum FMISO uptake and
manually drawn regions of interest of the tumour and the
ipsilateral muscles. The tumour was defined according to
the image data of FDG PET.

Mean and maximum standardized uptake values (SUV) of
the FMISO and FDG uptake of the tumour were calculated
after normalization of the radioactivity concentration to
the injected radioactivity and the body weight. Addition-
ally, the mean SUV was corrected for partial volume
effects by applying recovery coefficients obtained from
phantom studies [25].

Tumour response was evaluated by computed tomogra-
phy (CT) of the chest and FGD PET (using visual assess-
ment of response by tumour volume), according to
standard WHO criteria [24].

Results
Before and two weeks after chemotherapy treatment,
mean and maximum standardized uptake values (SUV) of
the FMISO and FDG as well as tumour-to-muscle ratios of
FMISO were calculated for the tumour regions (Table 2).
The metabolic responses to treatment are listed in Table 3.

Using FDG PET, the metabolic responses 2 weeks after
completing induction chemotherapy (two cycles gemcit-

Development in haemoglobin concentrationsFigure 1
Development in haemoglobin concentrations. Change 
in haemoglobin concentrations during the course of chemo-
therapy. Mean difference in Hb concentration was 1.7 g/dl 
(SD = 0.4 g/dl) between baseline and final laboratory testing 
(paired T-test; p = 0.033)
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abine/vinorelbine) were as follows: All five patients with
a decreased FDG- and FMISO uptake had a partial remis-
sion (PR) after chemotherapy. One patient died after
chemotherapy, due to a lung embolism. Evaluating
tumour response 6 weeks after radio-/chemotherapy three
patients had a complete remission (CR), and one had a PR
after radio-/chemotherapy. There was a discrepancy
between FDG PET and CT response in one patient, who
had a CR in FDG PET and PR in CT after 6 weeks, but had
a CR in both methods of diagnostic examination after 18
weeks. One patient developed tumour oxygenation near
to muscle oxygenation reaching CR after radio-/chemo-
therapy. There was a discrepancy between the FMISO and
FDG PET in one patient with a decreased FMISO uptake.

However, there was an increase in the mean SUV and a
decreased maximum SUV in FDG PET. This patient had a
local PR after induction chemotherapy and after radio-/
chemotherapy, but developed histologically proven kid-
ney metastasis, as well as an early local tumour progres-
sion. One patient showed a decrease in FMISO uptake,
but a high increase in the FDG uptake. This patient
reached a stable disease (SD) after chemotherapy and a
local PR, but in the same way, disseminated lung metas-
tases and a solitary cerebral metastasis after radio-/chem-
otherapy (Table 3).

The patient (patient7a/b) who had different changes in
FDG and FMISO uptakes in the primary tumour and in

Table 2: Patient data of FDG and FMISO PET (increase of FMISO uptake; increase of mean SUV of FDG uptake)

Pat. FMISO FDG

SUV mean before/
after Cht.

SUV max. before/after 
Cht.

Tu./Musc. before/after 
Cht.

SUV mean before/
after Cht.

SUV max before/after 
Cht.

1 1.90 1.40 2.12 1.83 1.12 1.04 9.70 7.70 12.32 8.16
2 2.20 1.40 2.48 1.63 1.45 1.26 17.10 8.10 20.19 9.69
3 1.90 1.90 2.57 2.43 1.54 1.36 14.10 7.10 16.28 7.96
4 3.70 2.20 4.59 2.43 5.85 1.51 14.00 8.30 19.02 9.40
5 1.60 1.40 1.76 1.65 1.25 1.10 8.50 8.90 10.80 10.18
6 2.20 2.40 2.58 2.71 1.10 1.18 12.00 11.40 14.90 13.68

7a 2.60 2.00 3.02 2.28 1.86 1.75 8.60 10.60 11.85 11.99
7b 2.60 2.00 3.02 2.34 1.86 1.52 8.60 5.10 11.85 7.15
8 2.10 1.80 2.79 2.37 1.89 1.48 1.60 9.70 1.91 14.50

Mean 2.31 1.83 2.77 2.19 1.99 1.36 10.47 8.54 13.23 10.30
SD 0.20 0.12 0.27 0.13 0.49 0.08 1.50 0.63 1.80 0.86

SUV = standard uptake value; Tu./Musc. = tumour to muscle ratio; Cht. = chemotherapy

Table 3: Differences in FDG and FMISO PET data before and after chemotherapy (increase in FMISO uptake; increase in mean SUV of 
FDG uptake); * kidney metastasis as well as an early local tumour progression; †local PR but disseminated lung metastases.

Pat. FMISO FDG

Local Tumour Response

SUV mean post-
prae Cht.

Tu./Musc. post-
prae Cht.

SUV mean post-
prae Cht.

SUV max. post-
prae Cht.

post Cht. post RT/Cht.

1 -0.50 -0.08 -2.00 -4,16 PR CR
2 -0.80 -0.19 -9.00 -10.50 PR
3 0.00 -0.14 -7.00 -8.32 PR CR
4 -1.50 -4.34 -5.70 -9.62 PR PR
5 -0.20 -0.15 +0.40 -0.62 PR PR*
6 +0.20 +0.18 -0.60 -1.22 SD SD

7a -0.60 -0.11 +2.00 +0.14 SD SD
7b -0.60 -0.34 -3.50 -4.70 PR PR
8 -0.30 -0.41 +8.10 +12.59 SD PR†

Mean -0.48 -0.62 -1.92 -2.93
SD 0.17 0.47 1.73 2.34

SUV = standard uptake value; Tu./Musc. = tumour to muscle ratio; Cht. = chemotherapy
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Patient with differences in FMISO uptakeFigure 2
Patient with differences in FMISO uptake. Patient with different FMISO uptake in the primary tumour at the right hilus 
(coronar slices of the posterior mediastinum, anterior view of thorax) and in one large lymph node metastasis in the right 
mediastinum (coronar slices of the anterior mediastinum, anterior view of thorax) after chemotherapy: discrepant tumour 
response according to tumour oxygenation. Cht. = chemotherapy, SD = stable disease, PR = partial remission, R = right side
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one large mediastinal lymph node metastasis after chem-
otherapy also showed a discrepant tumour response.
Whereas there was a histologically proven CR (by bron-
choscopy) of the primary tumour (decrease of FMISO and
FDG uptake), there was no change in the extension of
lymph node metastasis, where we found an increase of
FDG values and only a small reduction in the FMISO
tumour to muscle ratio with central accumulation of
FMISO (Figure 2).

One patient with initial high FMISO uptake and decreased
FMISO and FDG uptakes after chemotherapy showed a
focal enhancement of FMISO at the chest wall, represent-
ing the localisation of early local recurrence.

There was no association between tumour hypoxia
detected by FMISO PET and tumour glucose use measured
by FDG PET.

Discussion
A recent meta-analysis of 83 randomized clinical trials
demonstrated a significant overall improvement in local
control and survival with hypoxia modification [17].
Experimental and clinical evidence suggests that tumour
hypoxia itself represents a prognostic factor which influ-
ences tumour growth, increasing malignant progression
due to gene amplification and enhancing metastatic
potential. In addition, the hypoxic fraction in solid
tumours also reduces their sensitivity to conventional
treatment modalities, thereby modulating the response to
ionizing radiation and many chemotherapeutic agents [8-
10,22,23], representing the most important treatment
modalities in therapy of NSCLC.

It is recognized that nitroimidazoles bind selectively to
hypoxic cells [16], leading to an intracellular accumula-
tion of nitroimidazole. The FMISO uptake represents a
global value for macroscopic tumour parts. As a non-inva-
sive measure, this method is highly feasible for evaluating
the state of oxygenation in subjacent tumours. In a pro-
spective study we were able to validate FMISO PET for
determination of radiotherapeutically relevant hypoxia by
gold standard for measuring tissue oxygenation in human
tumors, the computerized polarographic needle electrode
system in patients with metastatic neck lymph node from
a primary squamous carcinoma of the head and neck.
High correlation was found between tumour-to-muscle
ratio of FMISO and parameters of hypoxic fraction ≤ 2.5
mmHg and ≤ 5.0 mmHg [7]. Using dynamic and static
FMISO PET scans, Eschmann et al could show that high
ratios to reference tissues (mediastinum and muscle) cor-
related with the risk of relapse in NSCLC [5].

Our study was conducted in order to evaluate the feasibil-
ity of FMISO PET for the depiction of tumour oxygenation

in NSCLC. Furthermore, we wanted to examine whether
there is a reoxygenation after two-cycle chemotherapy,
and whether there is an association between tumour
metabolism or tumour hypoxia and tumour response or
tumour recurrence. After chemotherapy, we were able to
show a decrease in the FMISO uptake, reflecting reoxygen-
ation in most patients, which resulted in a good tumour
response. On the other hand, an increased (patient 6) or
a nearly unchanged, high tumour to muscle ratio (patient
7a) corresponded to worse local tumour outcomes. But
no association between initial high FMISO uptake and
treatment outcome or tumour response could be detected.

Although there was a significant decrease in Hb concen-
trations due to chemotherapy (paired T-test; p = 0.033)
influencing tumour oxygenation, we did not find a direct
association between the reduction of the Hb concentra-
tion and FMISO or FDG uptake. Even the patient with an
increased FMISO uptake showed stable Hb concentra-
tions with an Hb of 13.4 g/dl at the time of second PET
examinations (data not shown). Another patient showed
a focal enhancement of FMISO at the chest wall after
chemotherapy, representing the localisation of early local
recurrence.

Mac Manus et al. prospectively studied the capacity of
FDG PET and computed tomography (CT) to determine
the response soon after radio- or radio-/chemotherapy in
patients with NSCLC. Both CT and PET responses were
individually significantly associated with survival dura-
tion; but in the multifactor analysis, this included the
known prognostic factors of CT response, performance
status, weight loss, and stage; only the PET response was
significantly associated with the duration of survival (p <
0.0001) [12].

In another study, FDG PET imaging before and after
induction therapy was prospectively evaluated in patients
with oesophageal cancer to determine whether changes in
PET images could measure the response to therapy. A
comparison of the percentage decrease in SUV with the
percentage of treatment effects through pathological
examinations of oesophagectomy specimens indicated a
correlation between large decreases in SUV and patho-
logic measurements of treatment effect [3].

In our study, all five patients with a clear decrease in the
FDG uptake had a PR after chemotherapy; two had a PR
and even three a CR after radio-chemotherapy. On the
other hand, patients with nearly unchanged or increased
FDG values showed worse tumour control or disease-free
survival; therefore, changes in tumour metabolism
detected by FDG PET may predict the tumour response
and outcome in NSCLC.
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Conclusion
The results of this prospective study elucidate that in
patients with NSCLC changes in FDG PET may represent
early response to therapy, and in this way, may predict
freedom from disease and overall survival. In addition a
qualitative and quantitative definition of hypoxic sub-
areas is possible on the basis of FMISO PET, and that these
sub-areas may correspond to the localization of local
recurrences, making the definition of a biological target
volume possible. Nevertheless, data on the role of FMISO
PET scans for NSCLC are limited. In addition, the prob-
lem of image-fusion and the low spatial resolution restrict
the use for target definition. Our feasibility study included
only 8 patients. Therefore, these preliminary results war-
rant validation in larger trials.
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