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Abstract

Background: The chemokine stromal derived factor-1 (SDF-1 or CXCLI2) and its receptor
CXCR4 have been demonstrated to be crucial for the homing of stem cells and prostate cancers
to the marrow. While screening prostate cancers for CXCLI2-responsive adhesion molecules, we
identified CD164 (MGC-24) as a potential regulator of homing. CD164 is known to function as a
receptor that regulates stem cell localization to the bone marrow.

Results: Using prostate cancer cell lines, it was demonstrated that CXCLI2 induced both the
expression of CD164 mRNA and protein. Functional studies demonstrated that blocking CD |64
on prostate cancer cell lines reduced the ability of these cells to adhere to human bone marrow
endothelial cells, and invade into extracellular matrices. Human tissue microarrays stained for
CD164 demonstrated a positive correlation with prostate-specific antigen levels, while its
expression was negatively correlated with the expression of androgen receptor.

Conclusion: Our findings suggest that CD164 may participate in the localization of prostate
cancer cells to the marrow and is further evidence that tumor metastasis and hematopoietic stem
cell trafficking may involve similar processes.

anatomy alone does not account for the metastatic pattern

Background

Bone metastases are present in approximately 85% of
patients who die due to advanced prostate cancer. Tumor
cells metastasize to bone via the venous plexus and spread
to the axial skeleton, pelvis and spine. Although the pat-
tern of metastasis of some cancers may be explained by
anatomy of the efferent venous and lymphatic drainages,

of most cancers [1]. Stephen Paget proposed the 'seed and
soil' hypothesis in which seeds that represent metastatic
cancer cells grow preferentially in the soil of bone matrix
as an explanation for the clinical observations that pros-
tate cancers preferentially localize to specific organs [2,3].
These observations suggest that factors in addition to
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those that arise within the tumor itself contribute to the
metastatic fate of cancer cells.

As for metastasis, hematopoietic stem cells also 'home' to
the bone marrow. Here the molecular determinants of
stem cell homing have recently been determined to be
largely dependent on a CXC motif chemokine, stromal-
derived factor-1 (SDF-1 or CXCL12), and its receptor,
CXCR4. Studies of animals that lack the CXCL12 or
CXCR4 genes (knockouts) are born with marrows devoid
of hematopoietic activities, despite the fact that normal
fetal liver hematopoiesis occurs [4,5]. Further evidence of
the importance of CXCL12 and CXCR4 to stem cell hom-
ing includes the observations that progenitor cells and
other blood cells move towards gradients of CXCL12, pro-
genitor cell engraftment into nude mice is blocked by
anti-CXCR4 antibodies [6] and the migration of hemat-
opoietic progenitor cells from the blood to the marrow is
enhanced by the expression of elevated CXCR4 levels [7].

Based upon these observations, we hypothesized that
prostate cancer (CaP) cells may use the CXCL12/CXCR4
axis to home to bone marrow [8-11]. We reported previ-
ously that CXCR4 expression is correlated with tumor
grade [8], and that CXCL12 signaling through CXCR4 trig-
gers the adhesion of prostate cancer cells to bone marrow
endothelial cells [11]. Furthermore, antibodies that recog-
nize CXCR4 block the metastatic spread of the prostate
cancer cells to bone in an in vivo animal model [9]. Similar
findings by others suggest that the CXCL12/CXCR4 axis
may play a similar role in the metastasis of other tumors
types to the marrow [12,13], including breast cancers
[13], melanoma [14], pancreatic, neuroblastoma and
renal carcinomas [15,16]. Importantly, our observations
in prostate cancer have largely been substantiated by oth-
ers [17,18].

It is not clear how the CXCL12/CXCR4 axis promotes
metastasis. One possibility is that the binding of CXCL12
to CXCR4 activates adhesion molecules that mediate the
binding of prostate cancer cells to the bone marrow
endothelium. To further elucidate the parallels between
metastasis and hematopoietic stem cell homing, second-
ary data analysis of a large set of DNA microarray data
derived from human primary and metastatic human pros-
tate cancer cells published by Dhanasekaran et al [19] was
performed to identify known and unknown receptors that
might regulate stem cell homing. We found that the level
of expression of CD164/endolyn/MGC-24v mRNA was
greater in bone metastases than in primary tumors.

CD164 was first identified as MGC-24 and cloned as a car-
rier of a peanut agglutinin-binding site, a tumor-associ-
ated carbohydrate marker expressed in human gastric
carcinoma cells [20]. The human CD164 gene is com-
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prised of six exons (E1-6) that through alternative splicing
are expressed as three distinct isoforms; a full-length iso-
form or CD164(E1-6), the originally characterized form
lacking exon 5 (CD164(EA5)) and the CD164(EA4) vari-
ant where exon 4 is deleted [20]. Disulfide-linked 80-85
kDa homodimers are observed, which extracellularly are
comprised of mucin domains linked by cysteine-rich
motifs [21]. The remainder of the protein is comprised of
a transmembrane domain and a 13-amino-acid intracel-
lular region [22]. Like other sialomucins, CD164 is highly
glycosylated by both O- and N-linked glycans [23]. Trans-
membrane forms of CD164/MGC-24 are believed to
mediate the adhesive functions [21,24], and are thought
to regulate hematopoiesis by facilitating the adhesion of
human CD34+ cells to bone marrow stroma [25].

In this report, we demonstrate that the full-length CD164
is expressed by human prostate cancer cell lines under
basal conditions. CXCL12 enhances the expression of
CD164 mRNA along with alterations in the expression of
CD164 protein. Functionally, CXCL12 induced binding
to bone marrow endothelial cells or invasion into extra-
cellular matricies can be blocked with monoclonal anti-
bodies that target CD164. Using prostate cancer tissue
microarrays, it was noted that the staining intensity for
CD164 correlated with increased prostate-specific antigen
(PSA) expression. Importantly, CD164 expression in
osseous metastasis was greater than that in soft tissue
metastasis, most notably in comparison to those found in
the liver and lymph nodes. These data suggest that CD164
may play an important role in localizing tumors not only
to sites where there are high levels of CXCL12 expression,
but also to specific tissue locales. The results of this study
suggest that CD164 may play a central role in prostate
cancer metastasis.

Methods

Primary and secondary antibodies

Antibodies targeting CD 164 were generated in the labora-
tory of Dr. H ] Bithring (Tiibingen, Germany) and were
described in detail previously [23]. These include antibod-
ies targeting the class I CD164 epitope (clone 105A5,
mlIgM), the class II epitope of CD164 (clone 103B2,
mlgG3) and the CD164 class III epitopes (Clones 67D2,
mlgG1 and N6B6, IgG2a). In some experiments antibody
from the N6B6 clone was purchased from BD PharMingen
(San Jose, CA, USA) as well as murine isotype matched
monoclonal controls. The control antibodies for these
investigations included IgM clone A57H (Dako, Den-
mark) 1gG3 clone 133316 (BD Pharmigen), I1gG1 clone
11711, 1gG2a clone 20102 (R&D Systems).

Cell lines
Prostate cancer cell lines (PC3, LNCaP C4-2B, and
LNCaP), and bone marrow endothelial cells (HBME)
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were cultured in RPMI medium 1640, supplemented with
10% FBS, 1% penicillin-streptomycin, and 1% I-
glutamine (Invitrogen, Carlsbad CA). PC3 cells were orig-
inally isolated from a vertebral metastasis and were
obtained from American Type Culture Collection (Rock-
ville, MD). LNCaP cells were originally isolated from a
lymph node of a patient with disseminated bony and
lymph node involvement. The LNCaP C4-2B cells were
derived from the parental LNCaP cell line by serial pas-
sage in mice to obtain a more metastatic cell line [30]. The
HBME cells were isolated from a Caucasian male and
immortalized with SV40 large T-antigen [23]. All cultures
were maintained at 37°C, 5% C0,, and 100% humidity.

Secondary data analysis and DNA micro arrays
Secondary data analysis was performed on data published
by Dhanasekaran et al. [19] as previously reported [8].
Using a 10 K human ¢DNA micoarray which included
~5,520 known, named genes and 4,464 ESTs, the authors
determined the gene-expression profiles of RNA obtained
from more than 50 normal and neoplastic prostate speci-
mens [19]. Supplementary information from Dhanaseka-
ran et. al. were imported into a Microsoft Excel database
and data clustered into normal associated tissues (NAP),
benign hyperplasia (BPH), localized cancer (PCa) and
metastasis (Met) [19]. The normalized mean and standard
deviation values for CD164 was evaluated for significance
with Instat 4.0 (GraphPAD software) using one-way anal-
ysis of variance (ANOVA), with the level of significance set
at p < 0.05.

To determine which of these genes are responsive to
CXCL12 and represent known adhesion molecules, RNA
from three independent studies, carried out in triplicate
and pooled, was analyzed from CXCL12 treated LNCaP
and LNCaP C4-2B cells (200 ng/ml, 2 hours,). The RNA
was compared in triplicate against non-treated cells by
DNA micro array using the Human genome U133 gene
chips (Affymetrix Corp. Santa Clara, CA). Protocols and
instrumentation setups, including total RNA samples,
hybridization to the human micro arrays, washing, stain-
ing, and scanning were performed as recommended
(Gene Chip Micro arrays; Affymetrix, Santa Clara, CA) by
the University of Michigan Dental School Microarray
Facility. The resulting arrays were scanned (HP Gene Array
Scanner; Hewlett Packard, Palo Alto, CA), and data analy-
sis performed first with the accompanying software to
obtain average difference intensities (Gene Chip Expres-
sion Analysis Software, ver. 3.3; Affymetrix). Later, average
gene intensity values were determined using a software
package (DNA-Chip (dChip version 1.1)) [26] in consul-
tation with the University of UMCCC Microarray Core
Facility.
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RT- and QRT-PCR

The prostate cancer cell lines at confluence were trans-
ferred to serum free media, and stimulated with CXCL12
at 0 or 200 ng/ml for 0.5-8 h. RNA was recovered using
TrizolR according to the directions of the manufacturer
(Invitrogen, Carlsbad, CA). RNA integrity and purity was
evaluated by electrophoresis with ethidium bromide and
absorbance at A,;,/A,5- 1.0 ug RNA, 10X RT buffer (1X
RT buffer: 50 mM Tris, pH 8.3, 50 mM KCI, 8.0 mM
MgCl,, and 10 mM dithiothreitol), 25 mM dXTP mix (25
mM of each dXTP (ACGT)), 3.0 ug oligo d(T), and 2.5 U
Reverse Transcriptase (M-MLV Reverse Transcriptase, Inv-
itrogen, Carlsbad, CA) were incubated at 38°C for one
hour. Amplification primers were designed using
PrimerExpress™ software (Applied Biosystems, Foster
City, CA) to cross intron/exon boundaries. Cross-reactiv-
ity was determined using BLAST [27], those with the low-
est potential were synthesized. One-fifth of the double
stranded product was then mixed with 10X Taq/RT buffer
(1X Taq/RT buffer: of 10 mM Tris, pH 8.3, 50 mM KCl, 1.5
mM MgCl,, 0.01% gelatin, and 2.0 mM dithiothreitol), 1
mM dXTP mix, 500 ng of each sense and antisense oligo-
nucleotide, and 2.5 U Taq polymerase (AmpliTag DNA
Polymerase; Perkin Elmer Cetus, Norwalk, CT). Five pairs
of forward and reverse primers were designed to identify
the alternatively spliced transcripts of the CD164 gene and
are presented in Table 1[20]. The samples underwent ther-
mal cycling at 94 °C for 1 min, 60°C for 1 min, and 72°C
for 2 minutes for 35 cycles, followed by a 10-min exten-
sion at 72°C (Perkin Elmer Cetus DNA thermal cycler).
The PCR product of PC3, LNCaP C4-2B, and LNCaP cell
lines were analyzed on 12% polyacrylamide gels and
ethidium bromide stained.

Real time-PCR was also performed using random hexam-
ers and 15.0 pl of SYBR® Green PCR Master for quantita-
tive, two step real-time RT-PCR (Applied Biosystems,
Foster City, CA) with 100 nM of the E1 and E2 primers
(Table 2) and 2 pl of the RT product in a total volume of
30 pl. The 2nd step PCR reaction (95°C for 30 seconds,

Table |: CD164 primers and coding regions detected. Five set of
oligonucleotide primers were designed to identify differential
spliced transcripts derived from of CD164.

Primers Primer Sequence
Fl 5'-CTCCCGCTGGTCACCACT-3'
F2 5'-GTTAATACTACCTGCTTTTGGATAGAATGT-3'
F3 5'-TTTCCACGGCCACTCCAG-3'
R1 5-CGCAGCTGTTTCGACCTTC-3'
R2 5'-CCACTTGACAATCACTAACTGTTGAG-3'
R3 5'-GGAGGGCTCAACTGTGGGT-3'
R4 5-AGTATTTTGGCTTCAGTGAG-3'
GAPDH (F) 5'-GACAACAGCCTCAAGATCATCAGC-3'
GAPDH (R) 5'-AAGTCAGAGGAGACCA-3'
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Table 2: Coding regions detected in human CD164. Primer sets
and regions identified in human CD164.

Primers Used Regions Detected Size
FI-RI Exons [-2 53 bp
F2-R2 Exons 2-3 82 bp
F2-R3 Exons 2-5 168 bp
F3-R3 Exons 4-5 62 bp
F3-R4 Exon 4-3' untranslated region 327 bp

60°C) was run for 40 cycles after an initial single cycle of
95°C for 15 minutes to activate the Taq polymerase. The
PCR product was detected as an increase in fluorescence
using an ABI PRISM 7700 instrument (Applied Biosys-
tems, Foster City, CA). The mRNA levels were expressed as
relative copies (% control) normalized against 18S mRNA
(Ambion QuantumRNA™ 18S Universal Primers) and a
standard curve constructed from serial dilutions of a puri-
fied CD164 ¢DNA fragment cloned by classical PCR.

Tissue microarray and immunostaining

High-density tissue micro arrays were constructed from
clinical samples obtained from a cohort of over 600
patients, who underwent radical retro pubic prostatec-
tomy at the University of Michigan as a primary therapy
(i.e., no preceding hormonal or radiation therapy) for
prostate cancer and from materials obtained from the
University of Michigan Rapid Autopsy Program. The
arrays were provided from the University of Michigan
Comprehensive Cancer Center Tissue Core of the Prostate
Specialized Program of Research Excellence program as
detail previously [28]. Tumors were graded using the
Gleason grading system and examined to identify areas of
benign prostate, prostate cancer and bone metastasis. The
formalin-fixed, paraffin-embedded tissues were deparaffi-
nized and placed in a pressure cooker containing 0.01 M
buffered sodium citrate solution (pH 6.0), boiled and
chilled to room temp for antigen retrieval. The slides were
incubated overnight at room temperature with anti-
human CD164 antibody (BD Biosciences, San Jose, CA)
diluted 1:100 (10 mg/ml), IgG2a (Clone 20102, R&D Sys-
tems, Minneapolis, MN). For PSA levels, antigen retrieval
was performed in citrate buffer at pH 6.0. For AR staining,
antigen retrieval was performed with EDTA at pH 8.0 in a
pressure cooker. Polyclonal antibodies to PSA (1:2000
dilution, Dako Cytomation, Carpenteria, CA) and a mon-
oclonal AR-clone AR 441 (1:50 dilution, NeoMarkers, Fre-
mont, CA) were used for staining as previously reported
[29]. A streptavidin/biotin detection method with 3,3'-
Diaminobenzidine Tetrahydrochloride (DAB) was
employed for signal detection and Harris hematoxylin
was used as a counter-stain. Digital images were then
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acquired with the BLISS Imaging System (Bacus Labora-
tory, Lombard, IL). Immunostaining intensity was scored
by a genito-urinary pathologist: as absent (1), weak (2),
moderate (3) or strong (4). Scoring was performed in a
blinded fashion using the Profile web based telepathology
system without knowledge of overall the tumor grade,
tumor size or clinical outcome [30,31].

Cell-cell adhesion assays

Prostate cancer cell lines were labeled with Vybrant CFDA
SE Cell Tracer Kit, (Molecular Probes, Inc., Eugene, Ore-
gon) for 30 min in RPMI according to the recommenda-
tions of the manufacturer and washed, and rested for 30
min. CXCL12 pretreatment was performed by incubating
the CaP cells with PBS or 200 ng/ml CXCL12 (or 200 ng/
ml CXCL12 that had been boiled for 15 min as a negative
control), for 30 min at 37°C. Anti-CD164 mAb (N6B6) or
an IgG2a isotype matched control mAb (R&D Systems)
were added at 0 and 50 ug/ml to block adhesion. The
prostate cancer cells (1 x 10°) were then directly deposited
onto confluent HBME monolayers and cell-to-cell adhe-
sion was preformed for 30 min at 37°C. Adherence was
quantified in a 96-well fluorescent plate reader (IDEXX
Research Products, Westbrook, ME), and compared to
input fluorescent levels. Data are presented as percent
change +/- standard deviation compared to non-treated
controls.

Invasion of CaP cells

Cell invasion into a reconstituted extracellular matrices
costing of Matrigel™ overlaid on 8 uM pore sized in poly-
ethylene terephthalate membranes was performed in dual
chambered invasion plates (BD Biosciences, San Jose,
CA). Test cells were placed in the upper chamber (1 x
105cells/well) in serum free RPMI containing 0.1% BSA,
and PBS or 200 ng/ml CXCL12 was added to the top or
bottom chambers. Spontaneous invasion was compared
to invasion supported by a CXCL12 gradient [32]. Anti-
CD164 mAb (N6B6) (BD PharMingen, San Jose, CA,
USA) or an IgG (R&D Systems. Minneapolis, MN, USA)
control was added at 50 ug/ml to both chambers to block
invasion. At the termination of the assay (24 h), the cham-
bers were removed and 40 pl of 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT; 5 mg/ml,
Sigma, St. Louis, MS) was added to the top well and 80 ul
of MTT added to the bottom wells, and incubated for a
further 4 h at 37°C. After completely removing residual
medium or cells from the top chamber, the purple resi-
dues attached to the bottom of the invasion chambers and
those residues in the invasion matrix and adherent to the
bottom of the upper chamber were released with 1 ml iso-
propanol (Sigma). The invasion chambers were rocked for
30 min at a medium speed, and 100 pl from each well
read on a multi-well scanning spectrophotometer (Molec-
ular Devices Corp. Sunnyvale, CA.) at ODs,.
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Immunohistochemistry

PC3 and LNCaP C4-2B cells were cultured in Lab-Tek IT 4-
chamber slides (Nalge Nunc International, Naperville, IL,
USA) at 5 x 10% cells/chamber. After 24 h the cells were
incubated with PBS or CXCL12 (200 ng/ml) for 2 h, then
rinsed three times with ice cold-PBS, fixed in 4% parafor-
maldehyde for 25 min at room temperature, washed and
endogenous peroxidase activity quenched with 75 mM
NH4Cl and 20 mM Glycine in PBS at room temperature
for 10 minutes. Thereafter, the cells were rinsed with PBS
three times. Primary antibody incubations at a 1:50 dilu-
tion in PBS using the N6B6 clone or an IgG2a matched
isotype control (clone 20102, R&D Systems) for 1 h at
room temperature. Antibody detection was performed
using an HRP-AEC staining kit using anti-mouse bioti-
nylated antibodies (R&D Systems), and counter stained
with hematoxylin (Sigma).

Statistical analysis

Statistical differences between the means for the different
groups were evaluated with Instat 4.0 (GraphPad Soft-
ware, Inc. San Diego, CA) using one-way analysis of vari-
ance (ANOVA), with the level of significance at P < 0.05.
All in vitro experiments were repeated two to three times
with triplicate samples.

Results

To identify those molecules that are responsible for the
CXCL12-induced changes in adhesion and invasion, we
examined the patterns of prostate cancer gene expression
in human tissues. A secondary data analysis was per-
formed on data published by Dhanasekaran et al. [19], as
reported previously focusing on known adhesion mole-
cules [8]. For our investigations, a three-step query was
used to select genes that were expressed differentially
between the benign hyperplasic and normal associated
tissues (BHP/NAP) vs. prostate cancer tissue, BHP/NAP
vs. metastatic tissue, and prostate cancer tissue vs. meta-
static tissue. Discrimination among the selected genes
[33] initially produced ~200 candidates that exhibited a
significant (at least 3-fold) change in expression in all
three queries (Table 3). To determine which of these adhe-
sion genes were responsive to CXCL12, RNA from LNCaP
and LNCaP C4-2B cells treated with CXCL12 (200 ng/ml
for 2 h) were compared to RNA from untreated cells using
a microarray analysis. Adhesion molecules that exhibited
a significant change in mRNA expression in response to
CXCL12 treatment included the genes that encode CD164
and o, integrin (Table 3). Since the expression of CD164
and the o, integrin were both elevated in human CaP dis-
ease, and increased in response to CXCL12 stimulation,
they were chosen for further investigation. The role of
CD164 is described herein, where as the regulation of the
o, integrin in association with the B, integrin in prostate
cancers is described elsewhere (Sun et al., submitted).

http://www.biomedcentral.com/1471-2407/6/195

Several alternatively spliced variants of CD164 are known
to be derived from six transcribed CD164 exons. To deter-
mine which of the CD164 transcripts are made by CaP
cells, and to verify the microarray data, RNA was collected
from PC3, LNCaP, and LNCaP C4-2B cells that were cul-
tured in the presence or absence of CXCL12. For these
investigations, all 6 exons of the full-length transcript
were examined using reverse transcription-polymerase
chain reaction (RT-PCR). Sequencing of the PCR-ampli-
fied products verified that the amplicons were derived
from full-length transcripts under basal conditions (Fig-
ure 2). All of the prostate cancer cells expressed mRNA
coding for the full length CD164, and none of the alterna-
tively spliced forms were observed. Cells stimulated with
CXCL12 also expressed mRNA for CD164, but once again,
none of the alternatively spliced transcripts were observed

(Figure 2).

To evaluate the effect of CXCL12 on CD164, prostate can-
cer cell lines were treated with CXCL12 and mRNA expres-
sion was evaluated using real-time RT-PCR. As before,
CD164 mRNA was readily detected under basal condi-
tions in each of the cell lines examined (Figure 3). Under
basal conditions the LNCaP C4-2B cells expressed nearly
2 fold more CD164 than PC3 and LNCaP cell lines (not
shown). As early as 30 min after exposure to CXCL12, the
expression of CD164 mRNA increased in each of the cell
lines (Figure 3). In PC3 cells, the enhanced expression of
CD164 mRNA at 30 min represented the peak of the
response to CXCL12, and the level of CD164 mRNA
expression declined thereafter. By contrast, in the LNCaP
and LNCaP C4-2B cells, the expression of CD164 mRNA
peaked 2 h after exposure to CXCL12 (Figure 3). To deter-
mine if the prostate cancer cells express CD164 protein,
and whether its expression was altered by CXCL12, PC3
and LNCaP C4-2B cells were treated with PBS or 200 ng/
ml of CXCL12 for 2 h. Thereafter, the cells were examined
by immunohistochemistry. The number of cancer cells
exhibiting perinuclear and cytoplasmic expression of
CD164 ranged from 90-100% in PC3 and LNCaP C4-2B
cells (Figure 4). Abundant CD164 expression was detected
in the cytoplasm and on the cell surface of the PC3 and
LNCaP C4-2B cells following CXCL12 stimulation (Figure
4).

We demonstrated previously that activation of CXCR4 by
CXCL12 enhanced the adhesion of prostate cancer cells to
bone marrow endothelial cells. To determine whether
CD164 is involved in CXCL12-induced adhesion, PC3
cells were treated with CXCL12. Binding assays were per-
formed either in the presence or absence of a variety of
neutralizing antibodies that recognize various epitopes of
CD164 (Figure 5A shown in Figure 5B). Compared to
non-stimulated cells, CXCL12 significantly enhanced the
adhesion of PC3 cells to marrow endothelium by 13 + 2.4
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Table 3: Secondary data analysis and DNA micro arrays. Secondary data analysis was performed on data published by Dhanasekaran et
al. [19] to identify adhesion molecules the expression that are altered during prostate cancer progression. Comparisons were made
between normal (norm) tissue/benign prostate hyperplasia (BPH) and cancer (CaP) and metastasis (Met). The normalized mean and
standard deviation values were evaluated for significance with Instat 4.0 (GraphPAD software) using one-way analysis of variance
(ANOVA) are presented, with the level of significance set at p < 0.05 (¥). To determine which of the genes are responsive to CXCL12,

RNA was analyzed from CXCL12 treated LNCaP and LNCaP C4-2B cells (200 ng/ml, 2 hours) were compared against non-treated
cells by DNA micro array using the Human genome U133 gene chips (Affymetrix Corp. Santa Clara, CA). Later, fold change values

were determined using DNA-Chip (dChip version 1.1) [26].

BPH/Norm BPH/Norm CaP Vs Met  Fold Change:  Fold Change:
Vs CaP Vs Met LNCAP LNCaP C4-
2B

Gene Gene Symbol Mean S.D. Mean SD. Mean SD. Mean SD. Mean SD.
activated leucocyte cell adhesion molecule ALCAM 234 086 1.19 076 197 084 1.04 068 .19 147
cadherin |1, type 2, OB-cadherin (osteoblast) CDHI | 276 020%* 1.0l 027 280 027 -1.09 .17 -1.38 0.65
cadherin 3, type |, P-cadherin (placental) CDH3 307 027 1.1 035 287 038 -1.19 057 -1.06 0.76
cadherin 5, type 2, VE-cadherin (vascular CDH5 1.00 037 350 .0l 1.00 082 -1.03 095 ~-l.12 1.23
epithelium)
CD 3G antigen, gamma polypeptide (TiT3 complex) CD3G 2011 022 1.12 021 190 027 -1.07 068 1.0l 09I
CD 8 antigen, alpha polypeptide (p32) CD8A 324 024 105 024* 3.5 025 -138 060 [1.26 093
CD 34 antigen CD34 356 015 120 0.16 294 0.6 -165 085 121 0.62
CD 36 antigen (collagen type l/thrombospondin CD36 1.96 0.2l 1.32  033* 147 037 [1.19 1.07 1.02 047
receptor)
CD 53 antigen CD53 217 043* 056 045 384 024 -105 085 -1.02 1.06
CD 68 antigen CDé68 331 028 104 025 314 023 -143 055 1.02 03I
CD 79A antigen (immunoglobulin-associated alpha) CD79A 383 025 127 026* 298 023* .19 054 -125 0.64
CD 151 antigen CDI5I 210 018 088 0.16 236 0.7 1.0 092 -l.14 08I
CD 164 antigen, sialomucin CDl64 242 050 068 0.52% 358 028 132 0.65% 195 049*
endothelial cell-specific molecule | EMAPI 3.0l 024 .18 030 261 034 -361 214 -223 0.36
integrin, alpha | ITGAI .72 0.60* 043 0.70* 4.09 0.34* -1.05 120 -120 062
integrin, alpha 2 (CD49B, subunit of VLA-2 ITGA2 206 0.52* 053 0.56%* 393 026 .10 184 -I.Il 097
receptor)
integrin, beta 3 (platelet glycoprotein llla, antigen ITGB3 246 015 108 0.5 237 0.2 -1.07 100 106 0.37*
CDé61)
integrin, beta 4 ITGB4 322 024 062 027 453 021 -1.04 073 -134 059
integrin, beta 5 ITGB5 260 020 .18 022 219 0.9 1.09 1.1l 10l LIl
integrin, alpha 8 ITGA8 209 041 048 032 412 023 .14 051 101 0.87
integrin, alpha V (vitronectin receptor, CD51) ITGAV 210 153 035 140 545 0.16* 1.19 044 137 029
integrin, alpha L (antigen CD11A) ITGAL 348 0.5 09 0.16 382 091 -I.17 068 124 0.53
protocadherin | (cadherin-like I) PCDHI 436 024 094 028 432 028 -148 037 1.17 046
platelet/endothelial cell adhesion molecule (CD3| PECAMI 315 025 096 026 326 025 1.08 083 -1.02 0.67
antigen)
selectin E (endothelial adhesion molecule 1) SELE .60 122 033 127 486 030 1.03 083 1.10 0.67
syndecan 2 SDC2 2.16 034% 059 037¢ 366 0.17% -1.12 140 1.0l 0.76
syndecan 4 SDC4 334 031* 1.6 030 295 033 [.0 121 [.I3 084
vascular cell adhesion molecule | VCAMI 234 020¢ 091 024 262 023 124 143 -1.02 083

% and LNCaP C4-2B by 15 + 1.1 %, while the adhesion of
CXCL12 stimulated cells was inhibited by the class III
epitope monoclonal antibody (clone N6B6) (Figure 5A).
Similar investigations using the N6B6 antibody on
CXCL12 stimulated, or non-stimulated CaPs (PC3 and
LNCaP C4-2B cells), demonstrated that neutralization of
CD164 decreased the binding of prostate cancer cell lines
to human bone marrow endothelium; further suggesting
that CD164 plays a role in prostate cancer localization to
the marrow.

For metastatic prostate cancer cells to establish metastases,
they must migrate through the subendothelial matrix after
attaching to the endothelium. Migration depends on the
availability of chemotactic factors that direct cell move-
ment. To mimic this phenomenon in vitro, we explored
the effect of CD164 on the ability of cancer cells to invade
reconstituted extracellular matrix in response to CXCL12.
Migrating cells were introduced into the upper well of an
invasion chamber within which a gradient of CXCL12 (0
or 200 ng/ml) was established by placing the chemokine
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F3 R3 R4

<4

CD164

Figure |
Cartoon of CD164 genomic structure and PCR primer sets.

in the lower portion of the chamber. The role that CD164
plays in invasion was probed using a neutralizing anti-
CD164 antibody (clone N6B6). As shown in Figure 6,
CXCL12 enhanced the invasion of PC3 cells from 21,260
+ 140 to 37,545 + 459, and LNCaP C4-2B cells from
19,970 + 639 to 27014 + 601 cells. In both cases, ant-
CD164 antibody blocked invasion of the cells under both
basal conditions and in the presence of CXCL12.

Primer Sets F1-R1 F2-R2 F2-R3 F3-R3 F3-R4 GAPDH
CXCL12 D LT T T T S 8
o
< 0
3
- O
o
©
(&)
=
-
o™
(&
o
Figure 2

CaP cells express full length CD164 mRNA. RT-PCR
detection of CD 164 expression by LNCaP C4-2B, LNCaP (L)
and PC3 (P) cells under basal (-) and CXCLI2 (+) stimulated
conditions (CXCLI12 200 ng/ml at 2 h). Primers FI-R| were
used to identify the CD164 coding exons 1-2, F2-R2 identify
exons 2-3 and F3-R3 identify exons 2-5. After RT-PCR, the
amplicons were identified using polyacrylamide gels. A
molecular weight ladder is shown to the left of each figure
that corresponds to differences in 100 base pairs. The data
demonstrate that full length CD 164 mRNA is express by CaP
cells.

To determine at which stage CD164 is expressed during
the progression of prostate cancer, we used an immuno-
histochemical analysis of clinical specimens of prostate
cancer tumors. Staining of microarrays with CD164 mon-
oclonal antibodies revealed that CD164 protein expres-
sion was localized to the cytoplasm and that the level of
expression ranged from moderate to high in clinically
benign and localized prostate cancer tumors (Figure
7A,7B). The level of CD164 expression in malignant epi-
thelia was slightly higher than that in surrounding benign
epithelia, while expression in normal epithelium was pre-
dominately weak in the cytoplasm and strong within the
nucleus. High-grade (Gleason score = 4 + 4 = 8) and low-
grade prostate cancer tumors (not shown) exhibited a
high level of cytoplasmic expression. Similar staining was
observed in bone metastases (Figure 7C). As shown in Fig-
ure 7D and 7E, the expression of CD164 was correlated
with the expression of prostate specific antigen (PSA)
expression but was related inversely to the level of andro-
gen receptor expression (AR). Figure 7F presents data that
illustrate the correlation of the intensity of CD164 immu-
noreactivity and tumor location. Sites that exhibited a
high propensity for tumor metastasis and high levels of
CXCL12 [9] exhibited intense CD164 immunoreactivity.

Discussion

Previously, we determined that the CXCL12/CXCR4
chemokine axis is activated in prostate cancers that metas-
tasize to bone [8,11]. To identify which molecules medi-
ate CXCL12-stimulated changes in adhesion and invasion
of bone by metastatic cells, we first examined patterns of
gene expression in human tissues and cell lines that were
stimulated with CXCL12. Our work focused on two genes
that play an important role in stem cell localization and
the physiology of bone, namely integrin alpha V (CD51)
and CD164. Together with CD61, CD51 forms the het-
erodimer arginine-glycine-aspartic (RGD) motif-depend-
ent vitronectin receptor o,f;, which is the focus of a
parallel report (Sun et al., in press); in the present report,
we focus on CD164. We present data that demonstrate
that CD164 mRNA and protein is expressed by prostate
cancer cell lines which are responsive to CXCL12 stimula-
tion. Functionally, antibody blocking of CD164 prevents
the binding and migration of prostate cancer cells to bone
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Figure 3

Time course of CD164 mRNA expression by CaPs. QRT-PCR was used to detect changes in CD |64 expression by CaP
cells following CXCLI2 stimulation over time for LNCaP, LNCaP C4-2B, and PC3 cells. The data show that LNCaP and
LNCaP C4-2B respond to high concentrations of CXCLI2 by increasing CD 164 mRNA expression. PC3 cells increase CD 164
expression to moderate concentrations of CXCLI2 (20 ng/ml), but at higher CXCLI2 doses (200 ng/ml) down regulate

expression.

marrow endothelium and invasion via the extracellular
matrix. Importantly, CD164 is expressed in human pros-
tate cancer tissues paralleling the PSA expression, and neg-
atively correlating with AR expression. Notably, CD164
expression in osseous metastasis was greater than that in
soft tissue metastasis, in comparison to those found in the
liver and lymph nodes - all sites that express high
CXCL12 levels[9]. These data suggest that CD164 may
play an important role in localizing tumors not only to
sites where there are high levels of CXCL12 expression,
but also to specific tissue locales.

We found that adhesion and invasion of prostate cancer
cells requires the class III epitope, which is recognized by
the clone N6B6 antibody. Class I and II epitopes are con-
formationally independent and are located within the
mucin N-terminal domain I [34]. The class I epitope is
associated with long-chain sialylated O-linked glycans
while the class II epitope is associated with both N- and O-
linked glycans. Class III epitopes are conformationally
dependent and encompass the cysteine-rich subdomain

that links mucin domains I and II [34]. The identity of
individual class III epitopes likely depends on the peptide
backbone of the protein rather than carbohydrate modifi-
cations. Monoclonal antibodies that recognize the carbo-
hydrate-dependent mucin domains of CD164 affect the
adhesion and proliferation of hematopoietic precursor
cells, yet the CD164 class III epitopes are expressed widely
on both hematopoietic and non-hematopoietic cell types
[34]. The threeclasses of CD164 epitopes are expressed by
a subset of CD34+ hematopoietic progenitor cells and
stromal reticular cells from adult bone marrow [35]. In
our studies, only monoclonal antibody N6B6 blocked the
binding and invasion to bone by prostate cancer cells.

Prostate tumors that develop independence from andro-
gens (hormone-refractory prostate cancer) reflect a transi-
tion from a stable to a progressive state of the disease. The
development of skeletal metastases may be associated
with the progression of prostate cancer towards androgen
independence, yet metastasis to bone usually occurs dur-
ing the late stage of the disease. Recent work revealed that
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Expression of CD164 in prostate cancer cell lines is
responsive to CXCLI12. To determine if the prostate can-
cer cells express CD 164 protein, and whether its expression
was altered by CXCLI2, PC3 and LNCaP C4-2B cells were
treated with PBS or 200 ng/ml CXCLI2 for 2 h, fixed and
stained with anti-CD 164 mAb or an IgG isotype matched
control, and photographed at 40X. Scale bars = 100 um. The
cancer cells demonstatrate perinuclear and cytoplasmic
expression of CD 164 in nearly all of the cells under basal
conditions, and abundantly express CD |64 following
CXCL12 stimulation.

androgen receptor (AR) expression is heterogeneous in
cancer patients: individual patients can exhibit both AR-
positive and AR-negative tumor populations. Overall, AR
expression is down-regulated in hormone-refractory pros-
tate cancer but nearly 41.5% of tumor samples examined
expressed some, albeit low (<10%) levels. Previous stud-
ies have demonstrated the value of using PSA immunohis-
tochemistry to diagnose metastatic prostate cancer
[36,37]. Stein et al. [36] demonstrated that most end-stage
prostate cancers retain PSA expression. However, AR
expression is not correlated with PSA expression, which
suggests that PSA expression in late-stage prostate cancers
may be driven by mechanisms that are independent of the
AR [36]. Our observation that CD164 expression is corre-
lated negatively with AR expression but correlated posi-
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Figure 5

CD164 regulates CaP cell adhesion to HBME. PC3 and
LNCaP C4-2B cells were labeled with Vybrant CFDA SE Cell
Tracer Kit, (Molecular Probes, Inc., Eugene, Oregon) for 30
min and directly deposited on to human bone marrow
derived endothelial (HBME) monolayers. CXCLI2 pretreat-
ment was performed by incubating the CaP cells with 200 ng/
ml CXCLI2 for 2 hours. In (A) 50 pug/mL anti-CD 164 mAb
antibodies (or Ig controls) were added to each chamber.
Cell-to-cell adhesion for PC3 cells was preformed for 30 min
at 37°C and quantified using a 96-well fluorescent plate
reader (IDEXX Research Products, Westbrook, ME). Data
are presented as percent change +/- standard deviation from
non-treated controls for n = 4. In (B) the CD 164 antibody
(N6B6) was used in an adhesion assay with PC3 and LNCaP
C4-2B cells treated with either PBS or CXCLI2 (200 ng/ml)
to block adhesion. * Indicates significant difference from vehi-
cle treated cells (no CXCL12), and ** indicates significant dif-
ference from Ig treated controls at p < 0.05. The data
demonstrates that CD |64 blockade regulates PC3 and
LNCaP C4-2B binding to HBME.

tively with PSA expression concurs with the
aforementioned conclusion and may be useful as a prog-
nostic indicator of androgen-independent tumor growth
[38]. Furthermore, the correlation between staining inten-
sity and sites of frequent metastasis and CXCL12 staining
is further evidence that CD164 may be involved in tumor
localization.

The adhesion of cancer cells to the end-organ vasculature
is a crucial step in the metastatic cascade. When combined
with organ-specific growth factors, adhesion may have a
substantial effect on which site(s) are the target of metas-
tasis [39]. The binding of cancer cells to the microvascular
endothelium is believed to require two distinct steps [40].
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CD 64 regulates CaP cell invasion. Cell invasion into a
reconstituted extracellular matrix was performed using two
chambered invasion plates (BD Biosciences, San Jose, CA).
PC3 and LNCaP C4-2B cells were placed in the upper cham-
ber (I % 105 cells/well) in serum free medium. Spontaneous
invasion was compared to invasion supported by a CXCLI2
200 ng/ml gradient [32]. Where indicated, IgG control or
mouse anti-human CD 164 monoclonal antibody (50 pg/ml,
Clone N6B6, BD PharMingen) was added at the start of the
investigation to each chamber. At the termination of the
assay (24 h), the invasion was quantified by MTT. * Indicates
significant difference from vehicle treated cells (ho CXCL12),
and ** indicates significant difference from IgG treated con-
trols at p < 0.05. The data demonstrate that anti-CD | 64
inhibits invasion of CaP cells

http://www.biomedcentral.com/1471-2407/6/195

nitial localization of cancer cells (including prostate can-
cer cells) to the endothelium appears to be mediated
largely by lectins and mucins such as CD164 [41]. There-
after, activation of integrin receptors and the subsequent
development of secure contacts between the cancer cells
and endothelium are required. Antibodies that recognize
galectin-3 and RGD motif peptides reduce the ability of
prostate cancer cells to bind to endothelial tissue [42].
Similar inhibition of binding by antibodies that recognize
B1 integrins and CD44 isoforms suggests that integrins
participate in the adhesion of cancer cells to endothelial
cells [43]. In addition, a mucin-type disaccharide that is
expressed on most types of cancer cell (including breast
and prostate cancer cells) contributes to adhesion of can-
cer cells to human bone marrow endothelium [43].
Finally, the expression of hyaluronan, a high-molecular-
weight glycosaminoglycan component of extracellular
and cell-associated matrices, has been correlated with can-
cer [44].

As was the case for CD164, we observed that CXCL12
enhanced the transcription and activation of o, 3;. More-
over, the level of o, 3; expression appeared to be correlated
with an increase in tumor grade and malignancy. Unlike
CD164, the constitutive expression of this receptor com-
plex represents an inactive state (Sun et al., submitted).
However, short-term exposure of cancer cells to CXCL12
activates the affinity of prostate cancer cells for o5 lig-
ands in addition to increasing the level of receptor expres-

Figure 7

Human prostate tissue samples stained with CD 164. High-density tissue micro arrays of human CaP tumors were
immunostained for CD 164, AR and PSA as described in the methods. Immunostaining intensity was scored by a genito-urinary
pathologist: as absent (), weak (2), moderate (3) or strong (4). Scoring was performed blindly using a telepathology system
without knowledge of overall the tumor grade, tumor size or clinical outcome [30]. Representative staining of CD 164 staining
for (A) benign prostate hyperplasia (B) localized prostate cancer (C) metastatic prostate cancer to bone marrow. Correlation
of CD 164 staining with prostate specific antigen (PSA) staining intensity (D), androgen receptor (E) and tissue type (F). The
data demonstrate that CD 164 staining intensity increases with increasing tumor grade.
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sion. Our experiments revealed that antibodies that
recognize CD164 inhibited the binding of prostate cancer
cells to human bone marrow endothelium and reduced
invasion of the extracellular matrix by prostate cancer
cells, irrespective of whether the cancer cells were stimu-
lated by exposure to CXCL12. The abovementioned find-
ings are consistent with the view that metastatic cascades
involve several crucial steps, including multiple adhesive
events such as initial adhesion and localization of cancer
cells to vascular sites and subsequent stabilization
between cancer cells and endothelial cells in the face of
shear stress. The findings presented in this report suggest
that CD164 participates in the initial 'locking' of prostate
cancer cells to the endothelium and thereby facilitates the
invasion of tissue.

As noted previously, CD164 is both an adhesion receptor
on human CD34+ cell subsets in bone marrow and a
potent negative regulator of CD34+ hematopoietic pro-
genitor cell proliferation [46]. This is particularly interest-
ing in the light of the results of other studies in our
laboratory that revealed that long-term survival of stem
cells on osteoblasts in vitro (which may be the major
source of CXCL12 in marrow) depends on stable adhe-
sion. We demonstrated previously that neutralization of
CXCL12 in vitro or following intratibial injection in vivo
inhibited cell growth [45] demonstrated recently that
expression of CD164 in myoblast cell lines increased the
expression of biochemical markers of differentiation and
enhanced the formation of multinucleate myotubes. Sim-
ilarly, the expression of antisense CD164 or soluble extra-
cellular regions of CD164 inhibited myogenesis.
Treatment of cultured C2C12 myoblasts with the enzymes
sialidase or O-sialoglycoprotease (both of which destroy
functional epitopes on CD164) also inhibited differentia-
tion [45]. These data are consistent with the hypothesis
that CD164 may play a rate-limiting role in myogenic dif-
ferentiation in vitro [45]. We noted previously that in vitro
proliferation and intratibial growth of prostate cancers
depends on CXCL12 [8,9]. At present, we are in the proc-
ess of evaluating whether CD164 plays a similar role in
prostate cancer cells. If CD164 does regulate the growth of
prostate cancer cells, this would be a particularly attractive
therapeutic target for two reasons. First, because CXCL12
up regulates CD164 expression and stimulates prostate
cancer cell proliferation and adhesion, therapies designed
to disrupt CD164 or the CXCL12/CXCR4 axis could be
used to alter tumor progression via several mechanisms.
Second, because stem cell homing and niche localization
likely depends on multiple and redundant adhesive
mechanisms, therapies that target CD164 might have lit-
tle or no side effects on the host.

In summary, we demonstrated that full-length CD164 is
expressed by human prostate cancer cell lines and human

http://www.biomedcentral.com/1471-2407/6/195

prostate cancer tumors. CXCL12 enhanced the binding of
prostate cancer cells to bone marrow endothelial cells,
and CXCL12 up regulated the expression of CD164
mRNA and protein. Using monoclonal antibodies, we
determined that the neutralization of CD164 with anti-
bodies blocked the adhesion of prostate cancer cells to
human bone marrow endothelial cells and inhibited sub-
sequent invasion. Collectively, our data suggest that
CD164 plays an important role in prostate cancer metas-
tasis and the infiltration of bone marrow by cancer cells.
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