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Abstract
Background: Gene expression data is abundantly available from the Gene Expression Omnibus
(GEO) and various websites. Pathway specific analyses of gene-gene correlations across these
datasets remain relatively unexplored, though they could be informative.

Methods: Folate gene expression data is explored here in two ways: (1) directly, using gene-gene
scatter plots and gene expression time course plots; and (2) indirectly, using de novo purine
synthesis (DNPS) and de novo thymidylate synthesis (DNTS) flux predictions of a folate model
perturbed by relative gene expression modulations of its Vmax parameters.

Results: Positive correlations within and between the DNPS and DNTS folate cycles are observed
in the folate gene expression data. For steady state measurements across childhood leukemia
patients, positive correlations between DNPS and DNTS are consistent with higher proliferative
fractions requiring higher levels of both fluxes. For cells exposed to ionizing radiation, transient
increases in both pathways are consistent with DNA damage driven dNTP demand, and a steadily
decreasing backdrop is consistent with radiation induced cell cycle arrest. By and large, folate
model based flux predictions paralleled these findings, the main differences being a gain of
correlation information for the TEL-AML1 leukemia data, and the loss of one interesting inference,
namely, that RNA repair driven DNPS precedes DNA repair driven DNTS after a 10 gray dose of
ionizing radiation.

Conclusion: Pathway focused correlation analyses of DNA microarray data can be informative,
with or without a mathematical model. Conceptual models are essential. Mathematical model
based analyses should supplement, but should not replace, direct data analyses.

Background
The folate system (Figure 1A) is central to de novo purine
synthesis (DNPS) and de novo thymidylate synthesis
(DNTS) and is a key target of several anti-cancer agents.
For example, methotrexate (MTX), in its polyglutamated
forms, inhibits dihydrofolate [DHF] reductase (DHFR),
thymidylate synthetase (TS), glycinamide ribonucleotide
formyltransferase (GART), and other folate system
enzymes (see the MTX containing reaction equations [1]

in Methods); the novel multi-targeted anti-folate ALIMTA
has similar targets [2] though with a very different spec-
trum of inhibition constants Ki such that GART inhibition
is dominant [3]; the anti-folate raltitrexed (Tomudex)
mostly inhibits TS [4]; and 5-fluorouracil also inhibits TS
(as FdUMP), though it also kills cells via incorporation
into DNA and RNA [5].
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Folates convert serine side chains into tetrahydrofolate
(THF; Figure 1B) held reactive single-carbons with the fol-
lowing uses: 5-methyl-THF (CH3THF) is used to convert
homocysteine into methionine; 5,10 methylene-THF
(CH2THF) is used by TS of DNTS to convert dUMP (deox-
yuridylate) into dTMP (thymidylate) for the sole purpose
of DNA synthesis, be it scheduled (i.e. DNA replication
driven) or unscheduled (i.e. DNA damage driven); and
10-formyl-THF (CHOTHF) is used to set up the purine

ring closure reactions of DNPS for many purposes, includ-
ing the synthesis of RNA, DNA, ATP, GTP and many other
molecules, all of which are subject to purine base oxida-
tion and thus replacement after irradiation. These three
single-carbon consuming folate functions interact via
competition for CH2THF. Using publicly available DNA
microarray data, this study explores folate cycle interac-
tions at the higher level of mRNA. To assess the added
value to analyses of a published mathematical model of

The folate cycle model of Morrison and Allegra [1] (A) and the molecular structure of tetrahydrofolate (B)Figure 1
The folate cycle model of Morrison and Allegra [1] (A) and the molecular structure of tetrahydrofolate (B).
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the folate system [1], inferences obtained directly from the
DNA microarray data are compared here to those
obtained indirectly using folate model predictions of
DNPS and DNTS based on the same DNA microarray
data.

Methods
Mathematical model of Morrison and Allegra
The folate cycle model of Morrison and Allegra [1] has the
following mathematical form:

These equations restate the system configuration informa-
tion of Figure 1A, i.e. they state that the rate at which a
metabolite concentration increases equals the sum of the
synthesis reaction fluxes (arrows into a node) minus the
sum of the degradation reaction fluxes (arrows leaving a
node). The ri in these equations are:

where DHFT-DHF (total DHF minus free DHF) is the con-
centration of DHF bound to DHFR, xi is the concentration
of i-glutamated MTX, and all folates are assumed to be
penta-glutamated. Not shown are 10 additional differen-
tial equations for up to penta-glutamation of MTX either
free or bound to DHFR. These 10 equations are irrelevant
when MTX = 0 as in the microarray data analyses below;
they were used here only to validate the current imple-
mentation of the model against its previously published
responses, see Figure 2[1].

Model limitations
Since the model has only one compartment, the cytosol,
it cannot handle changes in the mitochondrial enzymes

MTHFD2 and SHMT2, nor can it handle changes in the
extra-cellular folate hydrolase gene FOLH1 (the gene that
codes for prostate-specific membrane antigen, PSMA), so
these genes were ignored in the analyses. Further, the
folate genes GGH (polyglutamate hydrolase), FPGS (pol-
yglutamate synthase), and RFC (reduced folate carrier),
were not considered in the microarray analyses because
these reactions are included in the model only for MTX
and not folate, and because MTX = 0 for the microarray
data.

Model modifications
Flux boundary conditions for dUMP and GAR synthesis in
the original model [1] were replaced by downstream con-
centration boundary conditions set to their initial values.
This was done because steady state flux differences across
patients would otherwise be nullified; e.g. if the flux into
GAR were fixed, the steady state flux through GART would
also be fixed, and artificially then, there would be no var-
iation in predictions of this flux across patients.

Model-data linkage
For steady state flux predictions of leukemia patient diag-
nostic samples, MAS5 microarray measurements of Ross
et al [6] and Yeoh et al [7] were normalized by dividing by
the mean of the leukemia subtype medians. Step func-
tions from 1 (for t < 0) to the resulting metrics (for t ≥ 0)
were then used as modulators of the baseline folate model
Vmax values, i.e. microarray data normalization values
were equated to the steady state of the model. Individual-
ized patient steady states were then computed as simula-
tion endpoints 40 hours after the Vmax perturbations; all
time courses were inspected visually to assure settled
steady states at 40 hours. For radiation response data [8],
initial measurements were equated to the steady state of
the model, so the data was normalized by its values at t =
0. Linear interpolations of the normalized data were then
used as time-varying Vmax modulators. For both the steady
state leukemia data and the time course radiation
response data, proportionality between mRNA levels and
protein levels was assumed. This assumption was moti-
vated by simplicity and a lack of better alternatives. As
proteomic-transcriptomic combined dynamic response
data (e.g. [9]) accrues, it will likely be replaced by a set of
gene specific lead-lag filter [10] assumptions. In the mean-
time, it can be viewed and used as a first order approxima-
tion, or as a temporary crutch.

Computational details
The computational environment R [11] was used with R
packages of Bioconductor [12] to implement this study.
Specifically, the package Biobase was used to manipulate
microarray data as expression set (class eset) objects and
SBMLR [13,14] was used to simulate a systems biology
markup language (SBML) [15-17] representation of the
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folate metabolism model [1]. R scripts reproducing fig-
ures 2, 3, 4, 5, 6, 7, 8 are included with SBMLR as an illus-
trative example of package use. For convenience, array
data used in this study have been repackaged as eset
objects in R data packages available from the author's

website [14]. Throughout, genes with multiple probe sets
were represented by the set with the highest average value.

Morrison and Allegra's model [1] responding to 1 µM MTX applied continuously after t = 0Figure 2
Morrison and Allegra's model [1] responding to 1 µM MTX applied continuously after t = 0. Concentrations are in µM (top 6 
plots) and fluxes are in µM/hour (bottom 3 plots).
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Results
Folate system correlations across childhood leukemias
Childhood acute lymphoblastic leukemia (ALL) microar-
ray data of Ross et al [6] and Yeoh et al [7] is shown in Fig-
ures 3 and 4. Several points can be made regarding this

steady state diagnostic bone marrow data. Firstly, since
TYMS and DHFR (similarly MTHFD1, GART and ATIC)
operate in series, it makes sense that the system would
attempt to match these throughput capabilities as closely
as possible to avoid the costs of maintaining unneeded

MAS5 U133a folate gene expression data of Ross et al [7]Figure 3
MAS5 U133a folate gene expression data of Ross et al [7]. Symbols are TEL-AML1 (B), BCR-ABL (b) and T-cell (T). In mirrored 
positions relative to the main diagonal, corresponding Pearson correlation coefficients r are given with their P values.
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excess "equipment." Thus, positive correlations within the
DNPS and DNTS branches are expected. Secondly,
growing cells require commensurate increases in both
DNTSand DNPS, so positive correlations between these

cycles are also expected. Finally, DNPS genes are higher in
T cell leukemic cells than in B-cell leukemic cells, consist-
ent with measured DNPS fluxes being three fold higher in
T cells than in B cells [18].

MAS5 U95av2 folate gene expression data of Yeoh et al [8]Figure 4
MAS5 U95av2 folate gene expression data of Yeoh et al [8]. Only the Yeoh et al [8] patients who are also in the Ross et al 
dataset [7] are considered. MAS5 summary measures were computed from cel files using Bioconductor's AFFY package. Sym-
bols are as in Figure 3.
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To assess the added value of the folate model, since
MTHFD1 and TYMS are the gatekeepers of DNPS and
DNTS, respectively, correlation plots for these genes were
compared to corresponding flux predictions in Figure 5.
The plots show that, for the most part, model predicted
fluxes are more correlated than measured MTHFD1 vs.

TYMS mRNA. To estimate the amount of correlation
attributable to steady state flux constraints alone, 1000
uncorrelated normally distributed (µ = 1; σ = 0.30) ran-
dom numbers were applied to the model as Vmax modula-
tors. The amount of correlation (r = 0.18, Figure 6) is
more than that induced by the model (beyond gatekeeper

Comparisons of measured MTHFD1 vsFigure 5
Comparisons of measured MTHFD1 vs. TYMS versus predicted DNPS vs. DNTS.
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correlations) for BCR-ABL and T cell leukemias (Figure 5),
but less than induced for TEL-AML1 leukemias. Thus, for
TEL-AML leukemias additional information must have
been contributed by the other folate genes inputted into
the model, suggesting more folate system coordination in
this more curable leukemia subtype.

Folate system analysis of radiation time course data
Folate system correlations in radiation response time
course data [8] were also investigated. The data (Fig. 7)
shows that TS, DHFR, GARFT and MTHFD each have a
dose-dependent transient increase after irradiation, con-
sistent with radiation induced DNA damage causing a

DNPS vsFigure 6
DNPS vs. DNTS predicted with random numbers replacing Figures 3 and 4.
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transient rise and fall in P53 activity [19] with subsequent
induction of ribonucleotide reductase subunit P53R2 [20]
causing a transient increase in de novo deoxynucleotide
synthesis for DNA repair; a 17-fold increase in R2 protein

24 h after irradiation [21] is radioprotective [22], further
supporting this conjecture. The data also shows a steady
decline in many of the gene expression time courses, pos-
sibly due to radiation induced cell cycle arrest. At 10 gray,

Lymphocyte radiation response data of Jen and Cheung [8]Figure 7
Lymphocyte radiation response data of Jen and Cheung [8]. SHMT1 and MTHFR were not applied to the folate model, see 
text. Time is in hours.
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inspection of TS, DHFR, GARFT and MTHFD further sug-
gests that RNA repair driven DNPS (peak at 2 hours) pre-
cedes DNA repair driven DNTS (peak at 6 hours).

In Figure 7, gene expression time courses are more likely
to be signals if they differ between 3 and 10 gray only in

terms of minor time shifts and dose ordered amplitude
changes. Based on this, MTHFR and SHMT1 were dis-
missed as noise. The remaining six gene expression time
courses were normalized by their values at t = 0 and
applied to the folate model as linearly interpolated time-
varying modulators of corresponding Vmax parameters.

The folate model's response to the radiation time course dataFigure 8
The folate model's response to the radiation time course data. Fluxes are in µM/hr.
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The resulting model-based predicted time courses are
shown in Figure 8. These plots affirm the "dose-depend-
ent spike resting on a decreasing backdrop" response of
DNPS and DNTS that was qualitatively inferred from Fig-
ure 7. In contrast to the data itself, however, at 10 gray,
RNA repair driven DNPS (peak at 12 hours) and DNA
repair driven DNTS (peak at 10 hours) are reverse ordered
and delayed. Since NTP production tends to be in high
gear full time, compared to dNTP production, it likely has
a greater ability to respond rapidly to oxidative damage.
Further, a dNTP synthesis flux peak at 6 hours compared
to 10 hours is more consistent with a P53 spike at 5 hours
[19]. Thus, until measurements of DNPS and DNTS sug-
gest otherwise, the data-based inference that RNA repair
precedes DNA repair is tentatively more credible than its
model-based counterpart.

Discussion
Pathway focused analyses are essential for gene-gene cor-
relation studies because the number of possible correla-
tions would otherwise be too large to investigate. For
example, if a chip carries 10,000 genes, the number of 2D
plots requiring correlation tests is then 10,000 choose 2,
or ~50 million, i.e. a multiple testing problem not
encountered in pathway focused studies.

Although TS and DHFR are predominantly controlled at
the level of protein translation [23], Figures 3, 4 and 7
indicate that some control effort is also exerted at the
mRNA level. Thus, protein level control may dominate a
particular regulatory system, but mRNA signals may still
be informative of what the overall system is trying to
accomplish. That DNPS and DNTS are correlated in a con-
sistent manner across disparate steady state-and transient
datasets lends credence to the view that DNA microarray
data is a valid source of biochemical system coordination
and control information. Characterization of cancer dif-
ferences in coordination and control could be relevant to
future treatment designs and should thus be further
explored.

Conclusion
The main conclusion of this paper is that interesting infer-
ences can be gleaned from genome-wide microarray data
(with or without mathematical models) if gene-gene cor-
relations are analyzed in a pathway specific manner. The
added value of analyzing microarray data using Morrison
and Allegra's folate model, relative to simply eye-balling
the gene expression data, was minimal. For example, in
Figure 5, save the model's ability to identify TEL-AML1
leukemias as being additionally coordinated, gate-keeper
focused gene expression scatter plots are almost as reveal-
ing as model-predicted DNPS vs. DNTS scatter plots. Sim-
ilarly, for the radiation time course data in Figures 7 and
8, the spike increase in DNPS and DNTS and the baseline

downward trend at larger times are apparent using either
approach.

This study used conceptual models of folates and the bio-
logical effects of ionizing radiation to guide, focus, vali-
date and discriminate microarray data inferences. Further,
knowledge of system scope was used to reduce the analy-
sis to a manageable dimension correlated subspace. This
suggests that pathway focused analyses are more likely to
be successful if they are applied to biochemical systems
and experimental perturbations that are well understood.

To go beyond qualitative statements and to actually plot
predictions (Figures 5 and 8), quantitative models are
needed. Further, as biochemical system knowledge
expands in scope and complexity, gedanken experiments
underlying eye-ball data analyses will become increasingly
difficult to carry out. Thus, model-based approaches must
continue to be developed. At the same time, since the
inference that RNA repair precedes DNA repair was lost in
the model-based approach, such approaches should sup-
plement, but should not replace, direct data analyses.
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