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Abstract
Background: Precise classification of cancer types is critically important for early cancer diagnosis and treatment. Numerous
efforts have been made to use gene expression profiles to improve precision of tumor classification. However, reliable cancer-
related signals are generally lacking.

Method: Using recent datasets on colon and prostate cancer, a data transformation procedure from single gene expression to
pair-wise gene expression ratio is proposed. Making use of the internal consistency of each expression profiling dataset this
transformation improves the signal to noise ratio of the dataset and uncovers new relevant cancer-related signals (features). The
efficiency in using the transformed dataset to perform normal/tumor classification was investigated using feature partitioning
with informative features (gene annotation) as discriminating axes (single gene expression or pair-wise gene expression ratio).
Classification results were compared to the original datasets for up to 10-feature model classifiers.

Results: 82 and 262 genes that have high correlation to tissue phenotype were selected from the colon and prostate datasets
respectively. Remarkably, data transformation of the highly noisy expression data successfully led to lower the coefficient of
variation (CV) for the within-class samples as well as improved the correlation with tissue phenotypes. The transformed dataset
exhibited lower CV when compared to that of single gene expression. In the colon cancer set, the minimum CV decreased from
45.3% to 16.5%. In prostate cancer, comparable CV was achieved with and without transformation. This improvement in CV,
coupled with the improved correlation between the pair-wise gene expression ratio and tissue phenotypes, yielded higher
classification efficiency, especially with the colon dataset – from 87.1% to 93.5%. Over 90% of the top ten discriminating axes in
both datasets showed significant improvement after data transformation. The high classification efficiency achieved suggested
that there exist some cancer-related signals in the form of pair-wise gene expression ratio.

Conclusion: The results from this study indicated that: 1) in the case when the pair-wise expression ratio transformation
achieves lower CV and higher correlation to tissue phenotypes, a better classification of tissue type will follow. 2) the
comparable classification accuracy achieved after data transformation suggested that pair-wise gene expression ratio between
some pairs of genes can identify reliable markers for cancer.
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Background
Tumor development is a process in which gene expression
is modified, causing abnormal cell behaviour [1]. Many
techniques have been developed to identify abnormalities
of gene expression, as reflected by abundance of mRNA
transcripts between normal and tumor. The completion of
the Human Genome Project and advances in DNA-array
technology have allowed highly parallel genetic analyses
to take place on a genome-wide scale. They have revolu-
tionized the way tumors are studied, and promised to pro-
vide a better and more thorough understanding of the
underlying mechanisms for tumorigenesis. Eventually,
they will lead to more comprehensive diagnosis/progno-
sis of tumor with more effective therapeutic interventions.

Despite its advantages, the DNA-array technology poses
three major challenges that render the interpretation of
expression data less efficient than expected. Firstly, the
gene expression data is inherently variable due to various
factors that either depend on biological factors that
remain difficult to control (cross-contaminated samples
of tumor and normal cells), or depend on difficulties in
setting up of the experiment (RNA extraction) [2]. These
drawbacks interfere with the subsequent array analysis
aimed to identify reliable markers that best correlate with
the tissue phenotypes. Efforts have been devoted to
address these drawbacks by incorporating various raw
data scaling, data filtering, normalization and improve-
ment of the classifier algorithm [3]. Promising results
have been reported claiming near-perfect classification
accuracy [4]. However, the usually small number of sam-
ples per class in most studies and the highly biased cross
validation procedures cast doubt on the classification
accuracy in terms of their statistical significance [5]. This
statistical constraint creates a further challenge for DNA-
array technology where the number of features in arrays is
in thousands while tissue samples are available in limited
number. This causes high probability for any classification
to be correct by chance alone. Thirdly, although it has
been recently established that genes segregate into clusters
of interacting networks [6] instead of acting as one single
entity, most cancer DNA-array studies have only investi-
gated single gene aberration (up/down-regulated) when
comparing tumor expression profiles to their correspond-
ing normal tissue controls. In an interesting study, B∅ and
Jonassen tried to circumvent some of these difficulties by
investigating genes in pairs. They demonstrated that gene
pairs can be used to improve discrimination between dif-
ferent tissue classes [7]. This idea of studying genes in
pairs, or even in higher order clusters, should be explored
further to reveal new features of complex expression pro-
filing datasets.

In this study, we introduced a novel data transformation
meant to investigate relationships between pair-wise gene

expression ratios and tissue phenotype within a given
experiment. With this procedure, we aimed to discover
strong cancer-related signals (features) that exist in the
form of pair-wise ratios (or higher order relationship
when we extend to N-feature model classifier for N>2) in
a given sample, while improving the signal to noise ratio
of the dataset by minimizing its coefficient of variation
(CV). The underlying concept for adopting pair-wise gene
expression ratios as the discriminating axes for tissue type
classification is that an experiment is self-consistent (in
terms of factors affected either by the biology of the phe-
nomenon of interest, or of the experimental setting, or
both). With this approach we could "subtract" correlated
variations by considering the sample as a whole, without
making inferences such as those needed for normaliza-
tion. Basically, we avoided studying gene expression in an
absolute term because this requires robust normalization
method to account for arrays from different experiments,
different platforms and different profiling technologies.
By resorting to analyze features in the form of ratios, we
attempted to minimize the effect of normalization and
look for co-varying signals in each experiment.

Methods
Colon and prostate cancer datasets
The 62 colon cancer sample dataset is composed of meas-
urements for 1,988 gene probes, of which 40 were
labelled as tumor and 22 were labelled as normal. The
samples were collected from patients, their RNAs were
extracted and hybridised to Affymetrix Hum6000 arrays.
Please refer to paper [8]. The normalized dataset can be
downloaded at http://microarray.princeton.edu/oncol
ogy/-affydata/index.html.

The 102 prostate cancer sample dataset is composed of
measurements for 12,600 gene probes, of which 52 were
labelled as tumor and 50 were labelled as normal. The
samples were collected from patients, their RNAs were
extracted and hybridised to Affymetrix U95Av2 arrays.
Please refer to paper [9]. The normalised dataset can be
downloaded at http://www-genome.wi.mit.edu/MPR/
Prostate.

Both datasets were pre-processed to eliminate those probe
pairs that showed significant fluctuation in their hybridi-
sation signals (those greater than 3 standard deviation
away from the mean for their ESTs, and the probes pairs
that showed an overall higher intensity in their mismatch
probe cells (MM) than their corresponding perfect match
probe cells (PM); these probe pairs indicate non-specific
hybridisation by background RNAs). Both datasets used
average intensity as quantitative measurements of the
level of gene expression. Base-10 logarithmic transforma-
tions were performed for each dataset.
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Initial gene selection
For downstream classification analysis, we extracted only
the genes whose expression pattern correlated strongly to
the tissue phenotype. To achieve this, we first calculated
the correlation coefficient ri (Equation 1) for each gene i
using the full dataset, and ranked the genes according to
their correlation coefficient ri. For the calculation of r, we
assigned a number to each tissue phenotype: 1 for normal
tissue and 10 for cancer tissue. After obtaining the correla-
tion coefficients for all genes, we used a simple threshold
value (|r|>0.4) to select the set of cancer-related genes.
There were two reasons for set the threshold value at 0.4.
When lower thresholds were used, we incorporated many
genes that were not known to be cancer-related (data not
shown). Furthermore, too many genes will later cause
computer tractability problem when we calculate their
pair-wise gene expression ratio for each tissue sample and
later the N-feature model classifier. At |r|>0.4, we were
able to account for most of previously known cancer
related genes.

where V1 is a vector representing the gene expression pat-
tern for gene #1; Vsample is the dichotomous representation
of tissues; SV1and Ssample standard deviation of V1, Vsample;

,  are the mean of V1, Vsample.

Transforming the gene expression data to investigate the 
expression equilibrium between genes pairs
The raw expression data within a sample tissue was trans-
formed into measurement of the pair-wise gene expres-
sion ratio for any combinatorial pairs of genes. For the
1,988 gene expression intensities for each sample (e1,

e2...e1988), there are 1988C2 combinations (e1/e2, e1/e3...) of
pair-wise gene expression ratios (Figure 1). This trans-
formed matrix is referred to as M. Each row/column corre-
sponds to a specific gene and the entry at the intersection
of row X and column Y corresponds to the expression
equilibrium between gene X and gene Y. Such matrix has
a diagonal entry of value 1 because e1/e1 equals to unity.

Feature partitioning method [4] for classification of 
normal/tumor tissues using single gene expression
Regarding the Feature Partitioning Method (FPM), in
order to discriminate between the normal/tumor tissues
based on specific feature i (single gene expression), the
first step is to determine the threshold value, Ti, that can
optimally splits all the tissue samples into tumor and nor-
mal tissue. The FPM algorithm has a recursive version [4],
in which a decision tree depicting the classification rules
for tissue samples was generated recursively. Both meth-
ods differ in the way Tis are derived. Nonetheless, they are
very intuitive and non-parametric in nature. Also, they
restrict no priori distribution patterns for features used.
We adopted the simple FPM for tissue classification where
each feature was treated individually. There are two crite-
ria for deriving a valid threshold value Ti for each feature.
First, it has to delineate correctly (discriminating effi-
ciency = 100%) the one-dimensional region (Rfeature_i) for
either all the normal/tumor tissues using all tissue sam-
ples. Secondly, it has to minimize the percentage of false
prediction for the other tissue type. Take gene #1659 for
example. To fulfill the two aforementioned criteria, it was
determined that the region greater than 63.7 (R#1659)
incorporates all the tumor samples (Figure 2). It classified
correctly all tumors (discriminating efficiency = 100%)
with an overall false prediction of 13.9% in the normal
set. This was performed repeatedly for all features until all
the threshold values (Ti...all features) were determined.
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Transformation of gene expression dataFigure 1
Transformation of gene expression data.

Original Data 
(Subject +1)

Pair-wise gene 
expression ratio

Gene #1 8589.42 Gene #1 Gene #2 Gene #3 Gene #4 Gene #5 Gene #6 Gene #7 Gene #8 Gene #9
Gene #2 5468.24 Gene #1 1.00 1.57 2.01 2.11 4.30 1.63 3.96 3.10 1.14
Gene #3 4263.41 Gene #2 0.64 1.00 1.28 1.35 2.74 1.04 2.52 1.97 0.73
Gene #4 4064.94 Gene #3 0.50 0.78 1.00 1.05 2.13 0.81 1.96 1.54 0.57
Gene #5 1997.89 Gene #4 0.47 0.74 0.95 1.00 2.03 0.77 1.87 1.47 0.54
Gene #6 5282.33 Gene #5 0.23 0.37 0.47 0.49 1.00 0.38 0.92 0.72 0.27
Gene #7 2169.72 Gene #6 0.61 0.97 1.24 1.30 2.64 1.00 2.43 1.90 0.70
Gene #8 2773.42 Gene #7 0.25 0.40 0.51 0.53 1.09 0.41 1.00 0.78 0.29
Gene #9 7526.39 Gene #8 0.32 0.51 0.65 0.68 1.39 0.53 1.28 1.00 0.37

Gene #9 0.88 1.38 1.77 1.85 3.77 1.42 3.47 2.71 1.00
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Now, to classify an unknown sample using 2-feature
model classifier, a combination of any two features and
their corresponding pre-determined threshold values Tis
(selected from Ti...all features for each dataset) were recruited.
The outcome of the tissue class will be determined
depending on whether one/both the expression values of
the unknown sample fall completely in either the normal/
cancer region (Rfeature_i). This is to say that if any of the two
features from the unknown sample meets the criteria
(Rfeature_i) to be either normal/tumor tissue type (based on
our definition, Rfeature_i is a region with 100% discriminat-
ing efficiency for a specific tissue type), the unknown sam-
ple will be assigned to be normal/tumor respectively. This
is repeated exhaustively for all possible combinations
constituting of any two features. The procedure will be
repeated for all tissue samples to evaluate the overall clas-
sification accuracy for 2-feature model classifier. In total,
we evaluated the classification of tissue samples based on
different combinations of N genes and investigated the
classifiers up to 10-feature model classifier.

Classification of normal/tumor tissues using transformed 
datasets
The classification procedures and the two criteria for
determining the threshold value were the same as

explained in previous paragraph. The only difference here
is that the definition of "feature" refers to pair-wise gene
expression ratio derived from lower/upper triangular
matrix of M. Take the ratio #1537/#1831 for example. To
fulfill the two aforementioned criteria, it was determined
that the region greater than 0.755 (R#1537/#1831) incorpo-
rates all the tumor tissue samples (Figure 2). It classifies
correctly all tumor tissue samples with a false prediction
of 6.4%. This is performed repeatedly for all entries in M
until all the threshold values are determined.

Now, to classify an unknown sample using 2-feature
model classifier, a combination of any two features (pair-
wise gene expression ratio) and their corresponding pre-
determined threshold values Tis (selected from Ti...all features
for each dataset) were recruited. The outcome of the tissue
class will be determined depending on whether one/both
the expression values of the unknown sample fall com-
pletely in either the normal or cancer region (Rfeature_i).
This is to say that if any of the two features (pair-wise gene
expression ratio) from the unknown sample meets the cri-
teria (Rfeature_i) to be either normal/tumor (based on our
definition, Rfeature_i is a region with 100% discriminating
efficiency for a specific tissue type), the unknown sample
will be assigned to be normal/tumor respectively. This is
repeated exhaustively for all possible combinations con-
stituting of two features. The procedure will be repeated
for all tissue samples to evaluate the overall classification
accuracy for 2-feature model classifier. In total, we evalu-
ated the classification of tissue samples based on different
combinations of N genes and investigated the classifiers
up to 10-feature model classifier.

Constructing the relationship tree for the top 25 genes
We calculated the cross correlation coefficient r (Equation
1) for all pair combinations of the top 25 genes listed in
Table 6 and Table 7. Prior to the construction of a
relationship tree for the top 25 genes for colon and pros-
tate cancer, the cross-correlation coefficient was used to
construct the pair-wise distance matrix D. Each entry in
the pair-wise distance matrix was measured by the value
of (1-r). Each row/column corresponds to a specific gene
and an entry at the intersection of row X and column Y
corresponds to the distance of gene expression between
gene #X and gene #Y. Such matrix has a diagonal entry of
value 0. Only the lower/upper triangular matrix of D is
required to construct the relationship tree. After obtaining
lower/upper triangular matrix of D, the neighbor-joining
method (NJ) algorithm was used to construct the relation-
ship tree [10].

Computer hardware and software
A Sun Fire 6800 Server http://www.bioinfo.hku.hk with
24 CPUs (each running with a clock speed of 900 MHz)
was employed throughout this study. The computation of

Potential colon cancer gene markers: The expression of sin-gle gene and the transformed pair-wise gene expression ratioFigure 2
Potential colon cancer gene markers: The expression 
of single gene and the transformed pair-wise gene 
expression ratio. Potential gene marker for colon cancer 
tissue (#1659-Human monocyte-derived neutrophil-activat-
ing protein (MONAP) mRNA). However, we observed that 
the pair-wise gene expression ratio (#1537/#1831- ratio 
between vascular endothelial growth factor and gelsolin pre-
cursor) has better discriminating efficiency as tabulated in 
Table 7. ('*' and 'o' represent normal and cancer tissue type 
respectively).
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ancer-Transformed data
gene 

number 
on array

Threshold 
for normal 

tissue type, Ti

discriminating 
efficiency*/%

Ref

#1537/
#1831

<0.75512 93.6% [27,28]

#1831/
#1537

>1.3243 93.6% [27,28]

#1827/
#481

<0.074449 91.9% [14,15,
39]

#1537/
#1623

<1.0533 91.9% [27,40]

#1831/
#1759

>1.4003 91.9% [28]

#1623/
#1537

>0.94939 91.9% [27,40]

#365/
#1760

>3.3867 91.9% [41,42]

#1759/
#1831

<0.71414 91.9% [28]

#1760/
#365

<0.29528 91.9%

#481/
#1827

>13.432 91.9% [14,15,
39]
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2 Table 6: Colon cancer: the top 10 genes and pair-wise gene expression ratio used to discriminate the colon cancer tissue. This tab
efficiency. The threshold values Ti for normal tissues are also provided together with classification efficiency. The list of top 25 gen
~daniely/microarray.

Colon Cancer-Original data Colon C
Rank No. on

array
gene

accession
number

gene info Threshold for 
normal tissue 

type, Tj

discriminating 
efficiency*/%

Ref Rank

1 #1659 M26383 Human monocyte-derived neutrophil-activating protein 
(MONAP) mRNA, complete cds.

<62.7375 87.1% [12,13] 1

2 #753 M76378 Human cysteine-rich protein (CRP) gene, exons 5 and 6. >749.4075 83.9% [26] 2

3 #613 X12671 Human gene for heterogeneous nuclear ribonucleoprotein 
(hnRNP) core protein A1.

<233.4162 82.3% [33] 3

4 #569 T51571 P24480 CALGIZZARIN. SERINE/THREONINE-PROTEIN <309.3037 77.4% [34] 4

5 #1103 R97912 KINASE IPL1 (Saccharomyces cerevisiae) <70.2738 75.8% [35] 5

6 #1759 J05032 Human aspartyl-tRNA synthetase alpha-2 subunit mRNA, 
complete cds.

<41.92 75.8% [36] 6

7 #241 M63391 Human desmin gene, complete cds. >2787.0425 75.8% [17] 7

8 #818 R75843 TRANSLATIONAL INITIATION FACTOR 2 GAMMA 
SUBUNIT (Homo sapiens)

<152.5662 74.2% [37] 8

9 #1960 T57468 FIBRILLARIN (HUMAN). <42.0225 74.2% [38] 9

10 #1281 H23544 GTP-BINDING NUCLEAR PROTEIN RNA (Homo 
sapiens)

<103.2488 74.2% [20] 10

*discriminating efficiency using only single gene as discriminating axis
B
M

C
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e Cancer-Transformed data
gene 

number 
n array

Threshold Ri discriminating 
efficiency* / %

Ref

#5840/
#6185

>0.37168 84.6% [18,3]

#6185/
#5840

<2.6905 84.6% [18,31]

#7775/
#205

<0.22928 82.7% [50,51]

#8631/
#10234

<5.4561 82.7% [52,53]

10749/
#11942

<0.34585 82.7% [54]

10234/
#8631

>0.18328 82.7% [52,53]

#8554/
#6185

>0.39823 82.7% [18]

11942/
#10749

>2.8914 82.7% [54,55]

#205/
#7775

>4.3614 82.7% [50,51]

#6185/
#8554

<2.5111 82.7% [18]
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2 Table 7: Prostate cancer: the top 10 genes and pair-wise gene expression ratio used to discriminate the prostate cancer tissues. T
also provided. The list of top 25 genes can be downloaded from http://web.hku.hk/~daniely/microarray.

Prostate Cancer-Original data Prostat
Rank No. on 

array
Probe no gene info Threshold Ri discriminating 

efficiency* / %
Ref Rank

o

1 6185 37639_at Cluster Incl. X07732:Human hepatoma mRNA for 
serine protease hepsin

<115 86.3% [18] 1

2 10537 33121_g_at Cluster Incl. AF045229:Homo sapiens regulator of G 
protein signaling 10 mRNA

<50 80.4% [43] 2

3 8965 37720_at Cluster Incl. M22382:Human mitochondrial matrix 
protein P1 (nuclear encoded) mRNA

<238 80.4% [44] 3

4 8554 36589_at Cluster Incl. X15414:Human mRNA for aldose 
reductase (EC 1.1.1.2)

>35 79.4% [45] 4

5 9172 38406_f_at Cluster Incl. AI207842:ao89h09.x1 Homo sapiens 
cDNA

>626 79.4% [46] 5 #

6 7067 40436_g_at Cluster Incl. J03592:Human ADP/ATP translocase 
mRNA

<234 78.4% [47] 6 #

7 9850 40282_s_at Cluster Incl. M84526:Human adipsin/complement factor 
D mRNA

>182 77.5% [30] 7

8 7066 40435_at Cluster Incl. J03592:Human ADP/ATP translocase 
mRNA, 3 end, clone pHAT8 M96233 /
FEATURE=expanded_cds/DEFINITION=HUMGSTM4A 
Human

<349 76.5% [47] 8 #

9 12153 556_s_at glutathione transferase class mu number 4(GSTM4) 
gene

>152 76.5% [48] 9

10 9093 38087_s_at Cluster Incl. W72186:zd69b10.s1 Homo sapiens cDNA >62 74.5% [49] 10

*discriminating efficiency using only single gene as discriminating axis
B
M

C
 C

http://web.hku.hk/~daniely/microarray


BMC Cancer 2004, 4:72 http://www.biomedcentral.com/1471-2407/4/72
correlation coefficient and classification procedures were
implemented using the Matlab Technical Programming
language (Matlab programs can be downloaded at http://
web.hku.hk/~daniely/microarray.

Results
After initial gene selection, respectively 82 and 262 genes
(|r|>0.4) were selected from the colon and prostate data-
set for downstream analysis (Table 1 and Table 2). Top-
ping the list in both tables were genes that have been
found to be either over-expressed/under-expressed in
tumors [11]. The first three genes most correlated to can-
cer in the colon dataset were heavy chain of non-muscle
myosin, human monocyte-derived neutrophil-activating
protein (MONAP) and human desmin genes. This agrees
with the findings from [12,13] that used other statistical
tests (z-score, t-test) in a comparable analysis. The heavy
chain of non-muscle myosin, denoted as the embryonic
smooth muscle myosin heavy chain (SMemb), was found
to be down-regulated in cancer. It was also determined
experimentally to be a target for the protein encoded by
the metastasis-related mts-1 gene [14]. Furthermore, it
was demonstrated recently by 5'RACE analysis that heavy
chain of non-muscle myosin interacts with ALK genes that
have tyrosine kinase activity and oncogenic properties
[15]. The human monocyte-derived neutrophil-activating
protein (MONAP, interleukin-8), was second on the list.
It was significantly up-regulated in the tumor compared to
the normal samples. This protein has been linked to the
progression of several human cancer types [16]. It was
believed that over-expression of MONAP plays an impor-
tant role in tumor angiogenesis and tumor aggression. The
human desmin gene is the third on the list, and it was
found to be down-regulated in tumor. Interestingly, this

gene also showed significantly reduced expression in
other cancer types such as the melanoma cell line [17].

From the prostate dataset, the most cancer-correlated gene
is the human hepatoma gene coding for serine protease
hepsin. Brief literature search in PubMed showed that
hepsin is a well-characterized transmembrane protease
that is expressed at high level in tumor. Three separate
studies identified hepsin as a significant cancer biomarker
that can be used for cancer diagnosis [18]. The second
gene on the list was the human mitochondrial matrix pro-
tein P1. This gene has been correlated to different cancer
types with consistent up-regulation in tumor [13]. The
third gene is the carcinoma-associated antigen GA733-2,
which was among the 216 cancer markers identified by
Ernst's group in Germany [19].

Effect of data transformation on coefficient of variation
To date, reliable markers with low coefficient of variation
(CV) are generally lacking. Discovering robust cancer
marker is crucial for the purpose of successful cancer diag-
nosis. We investigated the CV between samples after data
transformation: the lowest CVs decreased to 16.5% in the
colon dataset while it increased to 25.8% for the prostate
dataset (Table 3 and Table 4). Topping the list for both
dataset were the pair-wise gene expression ratio for genes
#119/#54 (elongation factor 1-delta and 40S ribosomal
protein S24) and #10614/#5871 (zq58b03.r1 Homo sapi-
ens cDNA and nuclear matrix protein NXP2), which
revealed informative pair-wise gene interaction in relation
with their corresponding tissue phenotypes. They
reflected how cell adjusts to their pair-wise product in
response to physiological changes. Based on these obser-
vations, we found that the relative abundance between the

Table 1: Colon cancer: the gene retained for classification of tissue types. This table contains the genes and their descriptions. The key 
genes are selected based on how correlated their average intensity to the normal and tumor tissues. The genes are placed in the order 
of descending correlation coefficient r. Ten key genes are reported, the complete table can be downloaded at http://web.hku.hk/
~daniely/microarray. Entire data for the experiment can be downloaded from http://microarray.princeton.edu/oncology/.

No. on array Gene accession number
with correlation >0.4
to cancer tissue type

Info Correlation

481 R87126 MYOSIN HEAVY CHAIN, NONMUSCLE (Gallus gallus) 0.6327
1659 M26383 Human monocyte-derived neutrophil-activating protein (MONAP) mRNA, complete cds. 0.5853
241 M63391 Human desmin gene, complete cds. 0.5848
1760 H08393 COLLAGEN ALPHA 2(XI) CHAIN (Homo sapiens) 0.5760
1030 R36977 P03001 TRANSCRIPTION FACTOR IIIA ;. 0.5741
1411 J02854 MYOSIN REGULATORY LIGHT CHAIN 2, SMOOTH MUSCLE ISOFORM 

(HUMAN);contains element TAR1 repetitive element
0.5680

1759 J05032 Human aspartyl-tRNA synthetase alpha-2 subunit mRNA, complete cds. 0.5670
613 X12671 Human gene for heterogeneous nuclear ribonucleoprotein (hnRNP) core protein A1. 0.5583
365 Z50753 H.sapiens mRNA for GCAP-II/uroguanylin precursor. 0.5494
753 M76378 Human cysteine-rich protein (CRP) gene, exons 5 and 6. 0.5354
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numerator and denominator exhibited a strong mutual
dependency, and had strong correlation to tissue pheno-
type. For pair-wise gene expression ratio #119/#54, the
elongation factor 1-delta is involved in a sequence of
events during the decoding of mRNA on the ribosome
[20]. For the ratio of #10614/#5871, it corresponds to
novel genes that do not yet have known function. A search
in the DNA non-redundant (nr) database for gene #10614
yielded 83% DNA identity to a segment on chromosome
9. On the other hand, a search in non-redundant (nr)
database for #5871 revealed 72.3% DNA identity to the

cDNA of mouse that incorporates proteins involved in
chromosome partitioning and cell decision [21].

Prior to data transformation the lowest coefficients of var-
iations for single gene expression were 45.3% and 24.5%
for colon and prostate datasets respectively. When using
the data transformation we proposed, significant
improvement was achieved in the colon dataset. Interest-
ingly, this was followed by an improved data correlation
to the tissue phenotype as well as to the classification effi-
ciency. We did not observe a similar improvement of the

Table 2: Prostate cancer: the key gene retained for classification of tissue types. This table contains the genes and their descriptions. 
The key genes are selected based on how correlated their average intensity to the normal and tumor tissues. The genes are placed in 
the order of descending correlation coefficient r. Ten key features were shown, the complete table can be downloaded at http://
web.hku.hk/~daniely/microarray. Entire data for the experiment can be downloaded from http://www-genome.wi.mit.edu/MPR/
Prostate.

No. on array Gene probe with
correlation >0.4

to cancer tissue type

Info Correlation

6185 37639_at Cluster Incl. X07732:Human hepatoma mRNA for serine protease hepsin 0.7119
8965 37720_at Cluster Incl. M22382:Human mitochondrial matrix protein P1 (nuclear encoded) mRNA, 

complete cds M93036 /FEATURE=mRNA /DEFINITION=HUMGA7A08
0.7018

12148 575_s_at Human (clone 21726) carcinoma-associated antigen GA733-2 (GA733-2) mRNA 0.6917
6462 38634_at Cluster Incl. M11433:Human cellular retinol-binding protein mRNA 0.6514
10138 41288_at Cluster Incl. AL036744:DKFZp564I1663_r1 Homo sapiens cDNA 0.6367
12153 556_s_at M96233 /FEATURE=expanded_cds/DEFINITION=HUMGSTM4A Human glutathione 

transferase class mu number 4 (GSTM4) gene
0.6217

6866 39756_g_at Cluster Incl. Z93930:Human DNA sequence from clone 292E10 on chromosome 22q11-12. 
Contains the XBP1 gene for X-box binding protein 1 (TREB5), ESTs, STSs, GSSs and a putative 
CpG island

0.6201

4365 41468_at Cluster Incl. M30894:Human T-cell receptor Ti rearranged gamma-chain mRNA V-J-C region 
X14885 /FEATURE=mRNA /DEFINITION=HSTGF31

0.6193

10956 1767_s_at H.sapiens gene for transforming growth factor-beta 3 (TGF- beta 3) 0.6160
9172 38406_f_at Cluster Incl. AI207842:ao89h09.x1 Homo sapiens cDNA, 3 end / 0.6155

Table 3: Colon cancer: the coefficient of variation (CV) for the original dataset and transformed dataset. This table shows ten features 
with lowest coefficient of variation, the complete table can be downloaded at http://web.hku.hk/~daniely/microarray.

Colon Cancer Colon Cancer (Transformed)

Rank No. on array Gene Acession 
Name

Coefficient of 
variation

Rank Gene Acession 
Number

Coefficient of 
variation

1 #39 T57619 45.33% 1 #119/#54 16.53%
2 #119 T51529 48.23% 2 #54/#119 17.19%
3 #54 T48804 48.61% 3 #39/#31 18.88%
4 #58 T71025 49.03% 4 #119/#31 19.85%
5 #365 Z50753 49.60% 5 #31/#39 19.86%
6 #26 T95018 49.79% 6 #31/#119 20.01%
7 #387 U30825 50.74% 7 #39/#119 20.64%
8 #64 H55758 52.48% 8 #119/#39 20.71%
9 #1760 H08393 52.92% 9 #54/#39 20.83%
10 #31 T61609 53.15% 10 #26/#119 21.50%
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CV, data correlation to tissue classes or classification effi-
ciency in the prostate dataset.

Correlations of the single gene expression and pair-wise 
gene expression ratio
The distribution of correlation coefficients between genes
and tissue phenotypes for the colon and prostate datasets
is shown in Figure 3. The distributions are positively and
negatively skewed for both datasets. The two red lines sep-
arate genes with |r| >0.4 from the bulk (Table 1 and 2).
They retained respectively 82 and 262 genes from the
colon and prostate datasets. To study the possible interac-
tion between pair-wise genes, we estimated the statistical
correlation of gene expressions. Both the distributions for
the correlation coefficient and the extreme cases are
shown in Figures 4 and 5. Both figures emphasize the true
nature of gene-gene co-regulations – a complex biological
mechanism, that most often has been over-simplified
when we treat the gene expression as an independent var-
iables [22]. For example, Figure 4 and Figure 5 suggested
that the expressions of genes belonging to a common sub-
set are most likely correlated to each other (e.g.: Gene #31
vs #119 in colon cancer (r = 0.95306) and gene #7775 vs
#10749 in prostate cancer (r = 0.92922)). It should be
pointed out that the two humps in the probability density
function are not zero-centered, but concentrated at non-
zero correlation r. For colon dataset, positive correlation
was the dominant type. For prostate dataset, a balanced
distribution in their gene correlation was observed. We
determined that some improvement in tissue classifica-
tion is achieved when pair-wise gene expression ratio was
used as discriminating axes instead of using a single gene
expression (Figure 2). The reason is that pair-wise gene
expression ratio has higher correlation to tissue pheno-
type with lower CV (Table 5).

Gene expression and tissue type correlation
Several previous studies have already endeavored to iden-
tify correlations between specific gene expression and can-
cerous transformation [4,13,23]. In the present study, we
identified several novel target genes that clearly
distinguish the two different tissue phenotypes with high
discriminating efficiency (>74%) (Table 6 and Table 8).
Some of those have previously been documented in stud-
ies that did not involve expression profiling as cancer
related genes (Human monocyte-derived neutrophil-acti-
vating protein (MONAP) and Human hepatoma mRNA
for serine protease hepsin), others (Human gene for het-
erogeneous nuclear ribonucleoprotein (hnRNP), P24480
CALGIZZARIN, Human mitochondrial matrix protein P1,
Human mRNA for aldose reductase and human adipsin)
have not been identified from in-silico studies of tissue
DNA-array expression data. The cancer related genes for
colon and prostate cancer were ranked according to their
discriminating predictive power. The list should provide
hints for researchers during selection of molecular target
for diagnostic, prognostic or attempts to cure the disease.
Overall classification results and accuracies for each N-fea-
ture model classifier across two datasets were reported in
Table 6, 7 and 8. In the following section, we will discuss
a few important genes or pair-wise gene expression ratios
from Table 6 and Table 7 that resulted in the optimum
classification accuracy (Table 8B). They are the most effi-
cient combination of discriminating axes for classifying
tissue types because they delineate correctly all the nor-
mal/tumor tissues with the lowest percentage of false
prediction.

For the sake of brevity, we will discuss three single gene
expressions and two pair-wise gene expression ratios from
colon cancer. For prostate cancer, two single gene

Table 4: Prostate cancer: the coefficient of variation (CV) for the original dataset and transformed dataset according to their rank. This 
table shows 20 data with lowest coefficient of variation, the complete table can be downloaded at http://web.hku.hk/~daniely/
microarray.

Prostate Cancer Prostate Cancer (transformed)

Rank No. on array Gene Accession 
Name

Coefficient of 
variation

Rank Gene Acession 
Number

Coefficient of 
variation

1 #5871 36845_at 24.54% 1 (#10614)/(#5871) 25.78%
2 #8965 37720_at 25.02% 2 (#7532)/(#6236) 26.75%
3 #8851 37367_at 26.75% 3 (#5871)/(#10614) 27.15%
4 #10614 33198_at 28.47% 4 (#5871)/(#10138) 27.52%
5 #8160 34877_at 28.98% 5 (#9599)/(#10138) 27.94%
6 #5840 36814_at 31.02% 6 (#7715)/(#8889) 27.98%
7 #5954 36928_at 31.77% 7 (#7532)/(#9288) 28.33%
8 #10138 41288_at 31.97% 8 (#8160)/(#10614) 28.41%
9 #6865 39755_at 32.00% 9 (#9424)/(#9599) 28.86%
10 #9599 39551_at 32.07% 10 (#7520)/(#10138) 29.14%
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expressions and two pair-wise gene expression ratios will
be discussed.

For colon cancer single gene expression, three axes for dis-
criminating tissue types are: 1) Human monocyte-derived
neutrophil-activating protein (MONAP); 2) Human
desmin gene and 3) Human cysteine-rich protein (CRP)
gene. Their threshold values were determined to be 62.73,
2787.0 and 749.4 respectively.

For colon cancer pair-wise gene expression ratio, the two
axes for discriminating tissue types are: 1) #1831/#1537
and 2) #753/#768. Their threshold values were reported
to be 1.32 and 1.85 respectively.

For prostate cancer individual gene expression, the two
axes for discriminating tissue types are: 1) Human
hepatoma mRNA for serine protease hepsin and 2)
Human adipsin. Their threshold values were reported to
be 115.0 and 182.0 respectively.

For prostate cancer pair-wise gene expression ratio, the
two axes for discriminating tissue types are: 1) #6185/
#5840 and 2) #6185/#6749. Their threshold values were
reported to be 2.69 and 2.55 respectively.

To illustrate graphically the result of tissue classification,
two examples, each based on three genes or pair-wise gene
expression ratios that altogether yielded the optimum

The histogram for correlation of coefficient r between single gene expression and the tissue types for the colon and pros-tate tissue cancerFigure 3
The histogram for correlation of coefficient r 
between single gene expression and the tissue types 
for the colon and prostate tissue cancer. The distribu-
tion shows coefficient of correlation between single gene 
expression and cancer phenotype. Their extrema of correla-
tion coefficient |r|>0.4 (represented in red lines) were 
extracted for downstream data analysis.

The distribution of cross-correlation between two single gene expression patterns in colon datasetFigure 4
The distribution of cross-correlation between two 
single gene expression patterns in colon dataset. The 
distribution shows the coefficient of correlation between 
expression patterns for any pair of gene markers. Their 
extrema scenarios were also plotted with their correspond-
ing r value.

The distribution of cross-correlation between two genes expression patterns in prostate datasetFigure 5
The distribution of cross-correlation between two 
genes expression patterns in prostate dataset. The 
distribution shows coefficient of correlation between any 
pair of gene markers. Their extrema plots of correlation 
coefficient were also plotted with corresponding r value.
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Table 5: Colon and prostate cancer: Ten key pair-wise gene expression ratios that are most correlated to tissue phenotype, the 
complete table can be downloaded at http://web.hku.hk/~daniely/microarray. They were determined to be accurate discriminating 
axes.

Colon Cancer Prostate Cancer
Gene Number Correlation Gene Number Correlation

#481/#67 0.7866 #4751/#6185 0.7454
#1831/#1537 0.7662 #9288/#6185 0.7393
#481/#269 0.7632 #8892/#6185 0.7383
#255/#1760 0.7545 #6185/#8851 0.7371
#481/#508 0.7534 #7532/#6185 0.7349
#481/#768 0.7495 #8136/#6185 0.7335

#1831/#1244 0.7482 #205/#5954 0.7291
#237/#1760 0.7468 #9059/#6185 0.7241
#1482/#1537 0.7460 #4432/#6185 0.7236
#481/#613 0.7369 #8965/#10614 0.721

Table 8: Accuracy of N-feature model classifier. The optimum classification accuracy, the mean classification accuracy and the standard 
deviation for the N-feature classifier (N<11).

Colon cancer–Original expression data Colon cancer–Transformed expression data

Order or 
classifier

Optimum 
Accuracy* / %

Mean 
Accuracy* / %

Standard 
Deviation

Order or 
classifier

Optimum 
Accuracy* / %

Mean 
Accuracy* / %

Standard 
Deviation

1 87.10% 76.77% 4.17% 1 93.55% 91.24% 1.22%
2 91.94% 83.33% 4.38% 2 98.39% 95.00% 1.95%
3 95.16% 87.07% 4.06% 3 98.39% 96.47% 1.53%
4 95.16% 89.37% 3.58% 4 98.39% 97.20% 1.23%
5 95.16% 90.88% 3.10% 5 98.39% 97.60% 0.99%
6 95.16% 91.94% 2.70% 6 98.39% 97.84% 0.83%
7 95.16% 92.72% 2.38% 7 98.39% 98.00% 0.70%
8 95.16% 93.31% 2.09% 8 98.39% 98.12% 0.60%
9 95.16% 93.78% 1.83% 9 98.39% 98.21% 0.50%
10 95.16% 94.15% 1.57% 10 98.39% 98.28% 0.40%

Prostate cancer–Original expression data Prostate cancer–Transformed expression data

Order or 
classifier

Optimum 
Accuracy* / %

Mean 
Accuracy* / %

Standard 
Deviation

Order or 
classifier

Optimum 
Accuracy* / %

Mean 
Accuracy* / %

Standard 
Deviation

1 86.27% 75.82% 4.31% 1 84.62% 81.92% 2.28%
2 100.00% 91.27% 7.89% 2 98.39% 90.84% 4.18%
3 100.00% 95.98% 5.53% 3 100.00% 93.64% 3.40%
4 100.00% 97.91% 3.87% 4 100.00% 95.00% 2.94%
5 100.00% 98.86% 2.76% 5 100.00% 95.90% 2.68%
6 100.00% 99.38% 1.98% 6 100.00% 96.59% 2.51%
7 100.00% 99.67% 1.41% 7 100.00% 97.16% 2.36%
8 100.00% 99.83% 0.99% 8 100.00% 97.66% 2.23%
9 100.00% 99.90% 0.67% 9 100.00% 98.10% 2.09%
10 100.00% 99.96% 0.43% 10 100.00% 98.49% 1.94%
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classification efficiency for the prostate cancer are shown
(Figure 6, Figure 7).

Constructing the relationship tree for top 25 gene for 
colon and prostate cancer
The relationship tree for top 25 genes listed in Table 6 and
Table 7 were constructed based on the cross-correlation
between gene expressions (Figure 8). We employed the
established 'neighbor-joining' clustering method [10] to
group different genes based on their correlated expression
patterns across all tissue samples (meaning that genes
expression that are correlated will appear in the same
branch of the clustering tree), using a novel distance
measurement to quantify how change in the expression
for one gene interfered with that of another gene. The
principle of this method is to cluster pairs of operational
taxonomic units (OTUs [=neighbors of similar gene
expression]) that minimize the total branch length at each
stage of clustering of OTUs starting with a star-like tree.
Figure 8 revealed two major clusters of genes. The first
cluster corresponded to down-regulated genes, the second
cluster represented up-regulated genes. Also, the most
efficient discriminating axes (feature genes) reside at the
basal position for each cluster. In bacteria many genes are
co-expressed as single transcription units. This was used as
a control study to validate the methodology of grouping
genes, we implemented this distance measurement on

bacteria gene arrays (B. subtilis and E. coli) and successfully
determined the co-regulated operon gene structures (sup-
plementary file #1).

Discussion
Data transformation to investigate pair-wise gene 
expression ratios
As the expression profiling technologies mature, the iden-
tification of significant cancer-related signals from noisy
datasets (characterized by a high CV) remains a major
challenge. In particular, a robust normalization method is
critical to ascertain that arrays from two experiments are
comparable with minimum noise prior downstream anal-
ysis. However, the existing normalization methods pose
limitations due to the lack of good models to account for
sources of experimental and biological variations [24].
Hoffmann et al. [25] employed different normalization
methods to analyse the same dataset, and demonstrated
that the numbers of genes detected as differentially
expressed differed by a huge factor depending on which
normalization methods used. The problem is exacerbated
further by the presence of different array formats, experi-
mental designs and methods.

Here, instead of resolving to single gene expression, that
depends heavily on normalization, for tissue classifica-
tion, we presented a transformation method that uses
pair-wise gene expression ratios within the same experi-
ment as the discriminating axes. By doing so, we aimed to

Prostate dataset: an example showing the projection of 102 tissue samples on the top three discriminating axes of the single gene expression patternsFigure 6
Prostate dataset: an example showing the projection 
of 102 tissue samples on the top three discriminating 
axes of the single gene expression patterns. The gene 
numbers are shown as the axis labels. The threshold values Ti 
for normal tissues on each axis are tabulated on Table 7.

Prostate dataset: an example showing the projection of 102 tissue samples on the top three discriminating axes of the pair-wise gene expression ratioFigure 7
Prostate dataset: an example showing the projection 
of 102 tissue samples on the top three discriminating 
axes of the pair-wise gene expression ratio. The gene 
numbers are shown as the axis labels. The threshold values Ti 
for normal tissues on each axis are tabulated on Table 7.
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minimize the influence of different normalization meth-
ods considering that an experiment is self-consistent with
the same factors affecting all genes in the same fashion.
The rationale is that even when the normalization meth-
ods differ between two array experiments, their pair-wise
gene expression ratios within the same experiment will
remain relatively stable. If reliable cancer-related signal,
exist in the form of pair-wise gene expression ratio, were
indeed discovered successfully, they will be relatively
independent from the normalization method used on a
dataset.

The improvement in CV (Table 3) and overall classifica-
tion accuracy (Table 7) for colon dataset after introduc-
tion of data transformation signifies two implications:
First, the transformation is able to increase the signal to
noise ratio (SNR) of the cancer related signal because the
resulted pair-wise gene expression ratios correlate stronger
to tissue phenotype. Second, because the pair-wise gene
expression ratios are less dispersed than single gene
expression, using the pair-wise gene expression ratios to
classify tissue types will be much more reliable and
accurate (Table 8). Despite the benefits mentioned, this
data transformation introduced a computational limita-

Inter-relationship of gene expression gene expression for top 25 prostate cancer genes extracted from Table 8Figure 8
Inter-relationship of gene expression gene expression for top 25 prostate cancer genes extracted from Table 
8. The tree structure was derived using neighbor-joining algorithm [10]. Two clusters of gene expression were observed, 
namely the up-regulated (#6185) and down – regulated (#8554) genes in cancer tissues.
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tion due to the enormous amount of feature
combinations to be processed, especially when N-feature
model classifiers for N>4 are considered (If 100 features
are selected, and 10-feature model classifier is investi-
gated, the search space will be 100C10=
1.731030945644000 × 1013 different combination of fea-
tures). As a result, more computation time will be
required to search all possibilities. As an example, the dis-
criminating axes that accounted for the optimum accuracy
in 1 to 3-feature model classifier are reported in Table 9.

Regarding the high classification accuracy reported in
Table 8, it should be stressed that this was achieved by
involving all tissue samples during the derivation of the
threshold value, Ti, in the feature selection procedure. In
other word, instead of adopting the more conservative
classification accuracy test where only a subset of tissue
samples are used to derive a set of classification criteria
(threshold values), we adjusted our methodology to use
all tissue samples so that our results are unbiased (when
comparing the outcome from single gene and pair-wise
gene ratio) and in-line with our objective that is to com-
pare the classification efficiency between single gene and
pair-wise gene ratio. Admittedly, we have a noisy dataset
whereby selecting a subset of tissue samples that are a rep-
resentable population for the entire dataset remains a
challenge [5] (given that we have a small and unbalanced
dataset, particularly the colon dataset). Eventually, we
might run into ambiguous/contradicting results using a
different population subset of tissue samples.
Furthermore, we might miss important features (single
gene expression/ pair-wise gene expression ratio) because
of the biased training dataset. By including all tissue sam-
ples for both studies (single gene and pair-wise gene
ratio), we aimed to derive the most reliable threshold val-

ues and classified tissue samples based on them. Since the
same methodology was applied for both studies, the
comparison of classification efficiency is valid and will
reflect how well each feature (single gene and pair-wise
gene ratio) can be used to delineate tissue samples.

The implication derived from the classification results
For colon dataset, three axes for discriminating tissues are:
1) Human monocyte-derived neutrophil-activating pro-
tein (MONAP); 2) Human desmin gene and 3) Human
cysteine-rich protein (CRP) gene. The association of the
first two genes and cancer biology had been discussed
earlier. We will discuss the Human cysteine-rich protein
gene. The expression and induction of this protein has
been associated with protection against DNA damage,
oxidative stress and apoptosis [26]. In the colon dataset,
we observed down-regulation of this protein in tumor.
This suggested lack of protection against DNA damage.

For colon cancer pair-wise gene expression ratio, the two
axes for discriminating tissues are: 1) #1831/#1537 and 2)
#753/#768. Using these two axes, 98.4% of the tissue
samples can be classified correctly. The expression ratio
between #1831 (gelsolin precursor) and #1537 (vascular
endothelial growth factor) was able to discriminate 93.6%
of the total tissue data. The vascular endothelial growth
factor was determined recently to be a plausible biomar-
ker for colon cancer [27]. Gelsolin had been found to
suppress tumorigenicity in different cancer samples,
including lung, bladder and breast [28]. When they were
used individually as a discriminating axis, they were only
able to classify correctly 66.1% and 67.7% of all tissue
samples. Furthermore, the expression ratio between #753
(Human cysteine-rich protein) and #768 (the
macrophage migration inhibitory factor) was able to dis-

Table 9: The discriminating axes. The discriminating axes that accounted for the optimum accuracy in 1 to 3-feature model classifier.

Order or 
classifier

Optimum
Accuracy* / %

Discriminating axes Order or 
classifier

Optimum
Accuracy* / %

Discriminating axes

1 87.10% #1659 1 93.55% #1831/#1537
2 91.94% (#241)&(#1659) 2 98.39% (#753/#768) & (#1831/#1537)
3 95.16% (#241)&(#1659)&(#1759) 3 98.39% (#753/#768) & (#1831/#1537)&(#481/#1394)

Prostate cancer–Original expression data Prostate cancer–Transformed expression data

Order or
classifier

Optimum 
Accuracy* / %

Discriminating axes Order or 
classifier

Optimum 
Accuracy* / %

Discriminating axes

1 86.27% (#6185) 1 84.62% (#6185/#5840)
2 100.00% (#6185)&(#9850) 2 100.00% (#6185/#5840)&(#6185/#6749)
3 100.00% (#6185)&(#9850)&(#12148) 3 100.00% (#6185/#5840)&(#6185/#6749)&(#7247/#7067)

* : best accuracy based on the specified number of gene/gene ratio as discriminating axes ****Please do not delete from here on, needed for the 
correct order of reference list****** [32-54]
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criminate 90.3% of total tissue type. The human cysteine-
rich protein was discussed in the previous section. The
macrophage migration inhibitory factor (MIF) functions
as a pluripotent cytokine involved in broad-spectrum
pathophysiological events in association with inflamma-
tion and immune responses. Several reports, including
ours, have suggested that MIF is also involved in tumori-
genesis [29]. When they were used individually as single
discriminating axis, they were only able to classify cor-
rectly 83.9% and 66.1% of all tissues.

For prostate cancer single gene expression, the two axes for
discriminating tissues are: 1) Human hepatoma mRNA for
serine protease hepsin, and 2) Human adipsin. The first
gene was discussed in the previous paragraph. For the sec-
ond gene, adipsin had also been suggested by Chow et al.
[30] as a good cancer marker for studying the basic biol-
ogy of cancer.

For prostate cancer pair-wise gene expression ratio, the
two axes for discriminating tissues are: 1) #6185/#5840
and 2) #6185/#6749. Using these two axes, all tissue sam-
ples can be classified correctly. The expression ratio
between #6185 (Human hepatoma mRNA for serine pro-
tease hepsin) and #5840 (Homo sapiens mRNA for
KIAA1109 protein) was able to discriminate 92.2% of
total tissues. The human hepatoma mRNA for serine pro-
tease hepsin had been determined to be an important
marker for cancer cell development [11,18]. The
KIAA1109 protein is an unknown protein in human chro-
mosome four [31]. A homology search against the non-
redundant databases yielded no significant hit to known
genes. When they were used individually as a discriminat-
ing axis, they were only able to classify correctly 86.3%
and 61.8% of all tissues. On the other hand, the expres-
sion ratio between #6185 (Human hepatoma mRNA for
serine protease hepsin) and #6749 (Homo sapiens mRNA
for KIAA1055 protein) was able to discriminate 90.10%
of total tissues. The human hepatoma mRNA for serine
protease hepsin was discussed in the previous section. The
KIAA1055 protein is an unknown protein in human chro-
mosome 15 [21,31]. A homology search against the non-
redundant databases yielded 40.7% DNA identity to a
novel human cDNA that had been found to function as a
cancer inhibiting protein [21]. When they were used indi-
vidually as a discriminating axis, they were only able to
classify correctly 86.3% and 62.8% of all tissues.

Conclusion
By comparing the tissue classification methods based on
the single gene expression and the pair-wise gene expres-
sion ratio in two microarray datasets, we reached the fol-
lowing conclusions:

1. The minimum coefficient of variation decreased from
45.33% to 16.53% for colon dataset but increased mar-
ginally from 24.54% to 25.78% in prostate dataset.

2. The correlation coefficient, r, of the discriminating axis
that correlates maximally to the tissue phenotype
improves from 0.63 to 0.79 and 0.71 to 0.75 in colon and
prostate dataset respectively.

3. The optimum accuracy for 1-feature model classifier
(using single gene or pair-wise gene expression ratio as
discriminating axis) improved from 87.1% to 93.55% in
colon dataset. In prostate dataset, nine out of the top 10
discriminating axes showed significant improvement. The
mean accuracy for 1-gene classifier improved from 76.8%
to 91.2% and 75.8% to 81.9% in both datasets.

4. The comparable classification accuracy achieved after
data transformation suggested that there exist some can-
cer-related signals in the form of pair-wise gene expression
ratio, especially prominent in the colon dataset.

5. Through the single gene analysis, we identified key
biomarkers that agree with the findings by other research-
ers. In addition, study on gene-to-gene correlation and the
classification outcome based on the pair-wise gene expres-
sion ratio suggested that genetic network within a cluster
of cancer-related genes should be explored further.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
YLY proposed the idea, participated in the design, per-
formed the statistical analysis and wrote the first draft of
the manuscript.

AD participated in the design and overall coordination of
this study as well as in the writing of the manuscript.

XWZ participated in the design of the study.

YCW, XHW and MTL participated during the revision
phase of this study.

All authors read and approved the final manuscript.

Acknowledgements
Indispensable support was provided by the doctoral fellowship from The 
University of Hong Kong (HKU) and well as the Hong Kong Innovation and 
Technology Fund (ITF), BIOSUPPORT Programme. Finally, we wish to 
thank Dr Ralf Altmeyer for his critical interest for this work as he came at 
the head of the HKU-Pasteur Research Centre.
Page 15 of 17
(page number not for citation purposes)



BMC Cancer 2004, 4:72 http://www.biomedcentral.com/1471-2407/4/72
References
1. Hanahan D, Weinberg RA: The hallmarks of cancer. Cell 2000,

100:57-70.
2. Simon R, Radmacher MD, Dobbin K, McShane LM: Pitfalls in the

use of DNA microarray data for diagnostic and prognostic
classification. J Natl Cancer Inst 2003, 95:14-18.

3. Krajewski P, Bocianowski J: Statistical methods for microarray
assays. J Appl Genet 2002, 43:269-278.

4. Zhang H, Yu CY, Singer B, Xiong M: Recursive partitioning for
tumor classification with gene expression microarray data.
Proc Natl Acad Sci U S A 2001, 98:6730-6735.

5. Ambroise C, McLachlan GJ: Selection bias in gene extraction on
the basis of microarray gene-expression data. Proc Natl Acad Sci
U S A 2002, 99:6562-6566.

6. Gardner TS, di Bernardo D, Lorenz D, Collins JJ: Inferring genetic
networks and identifying compound mode of action via
expression profiling. Science 2003, 301:102-105.

7. Bo T, Jonassen I: New feature subset selection procedures for
classification of expression profiles. Genome Biol 2002,
3:RESEARCH0017.

8. Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine
AJ: Broad patterns of gene expression revealed by clustering
analysis of tumor and normal colon tissues probed by oligo-
nucleotide arrays. Proc Natl Acad Sci U S A 1999, 96:6745-6750.

9. Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C, Tamayo P,
Renshaw AA, D'Amico AV, Richie JP, Lander ES, Loda M, Kantoff PW,
Golub TR, Sellers WR: Gene expression correlates of clinical
prostate cancer behavior. Cancer Cell 2002, 1:203-209.

10. Saitou N, Nei M: The neighbor-joining method: a new method
for reconstructing phylogenetic trees. Mol Biol Evol 1987,
4:406-425.

11. Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kura-
chi K, Pienta KJ, Rubin MA, Chinnaiyan AM: Delineation of prog-
nostic biomarkers in prostate cancer. Nature 2001,
412:822-826.

12. Li L, Darden TA, Weinberg CR, Levine AJ, Pedersen LG: Gene
assessment and sample classification for gene expression
data using a genetic algorithm/k-nearest neighbor method.
Comb Chem High Throughput Screen 2001, 4:727-739.

13. Kishino H, Waddell PJ: Correspondence analysis of genes and
tissue types and finding genetic links from microarray data.
Genome Inform Ser Workshop Genome Inform 2000, 11:83-95.

14. Kriajevska MV, Cardenas MN, Grigorian MS, Ambartsumian NS,
Georgiev GP, Lukanidin EM: Non-muscle myosin heavy chain as
a possible target for protein encoded by metastasis-related
mts-1 gene. J Biol Chem 1994, 269:19679-19682.

15. Lamant L, Gascoyne RD, Duplantier MM, Armstrong F, Raghab A,
Chhanabhai M, Rajcan-Separovic E, Raghab J, Delsol G, Espinos E:
Non-muscle myosin heavy chain (MYH9): a new partner
fused to ALK in anaplastic large cell lymphoma. Genes Chromo-
somes Cancer 2003, 37:427-432.

16. Xu L, Xie K, Mukaida N, Matsushima K, Fidler IJ: Hypoxia-induced
elevation in interleukin-8 expression by human ovarian car-
cinoma cells. Cancer Res 1999, 59:5822-5829.

17. Gutgemann A, Golob M, Muller S, Buettner R, Bosserhoff AK: Isola-
tion of invasion-associated cDNAs in melanoma. Arch Dermatol
Res 2001, 293:283-290.

18.  .;, .;, .;, .;, .;, .;, .;, .;, .;, ;, , Stephan C, Yousef GM, Scorilas A, Jung K,
Jung M, Kristiansen G, Hauptmann S, Kishi T, Nakamura T, Loening
SA, Diamandis EP: Hepsin is highly over expressed in and a new
candidate for a prognostic indicator in prostate cancer. J Urol
2004, 171:187-191.

19. Ernst T, Hergenhahn M, Kenzelmann M, Cohen CD, Ikinger U, Kret-
zler M, Hollstein M, Grone HJ: [Gene expression profiling in pro-
static cancer]. Verh Dtsch Ges Pathol 2002, 86:165-175.

20. Valle M, Zavialov A, Li W, Stagg SM, Sengupta J, Nielsen RC, Nissen
P, Harvey SC, Ehrenberg M, Frank J: Corrigendum: Incorporation
of aminoacyl-tRNA into the ribosome as seen by cryo-elec-
tron microscopy. Nat Struct Biol 2003, 10:1074.

21. Kikuno R, Nagase T, Waki M, Ohara O: HUGE: a database for
human large proteins identified in the Kazusa cDNA
sequencing project. Nucleic Acids Res 2002, 30:166-168.

22. Nakayama M, Kikuno R, Ohara O: Protein-protein interactions
between large proteins: two-hybrid screening using a func-
tionally classified library composed of long cDNAs. Genome
Res 2002, 12:1773-1784.

23. Bektic J, Wrulich OA, Dobler G, Kofler K, Ueberall F, Culig Z, Bartsch
G, Klocker H: Identification of genes involved in estrogenic
action in the human prostate using microarray analysis.
Genomics 2004, 83:34-44.

24. Quackenbush J: Microarray data normalization and
transformation. Nat Genet 2002, 32 Suppl:496-501.

25. Hoffmann R, Seidl T, Dugas M: Profound effect of normalization
on detection of differentially expressed genes in oligonucle-
otide microarray data analysis. Genome Biol 2002,
3:RESEARCH0033.

26. Cherian MG, Jayasurya A, Bay BH: Metallothioneins in human
tumors and potential roles in carcinogenesis. Mutat Res 2003,
533:201-209.

27. Saad RS, Liu YL, Nathan G, Celebrezze J, Medich D, Silverman JF:
Endoglin (CD105) and vascular endothelial growth factor as
prognostic markers in colorectal cancer. Mod Pathol 2004,
17:197-203.

28. Haga K: [The mechanism for reduced expression of gelsolin,
tumor suppressor protein, in bladder cancer]. Hokkaido Igaku
Zasshi 2003, 78:29-37.

29. Campa MJ, Wang MZ, Howard B, Fitzgerald MC, Patz E. F., Jr.: Pro-
tein expression profiling identifies macrophage migration
inhibitory factor and cyclophilin a as potential molecular tar-
gets in non-small cell lung cancer. Cancer Res 2003,
63:1652-1656.

30. Chow ML, Moler EJ, Mian IS: Identifying marker genes in tran-
scription profiling data using a mixture of feature relevance
experts. Physiol Genomics 2001, 5:99-111.

31. Nagase T, Ishikawa K, Miyajima N, Tanaka A, Kotani H, Nomura N,
Ohara O: Prediction of the coding sequences of unidentified
human genes. IX. The complete sequences of 100 new cDNA
clones from brain which can code for large proteins in vitro.
DNA Res 1998, 5:31-39.

32. Ghigna C, Moroni M, Porta C, Riva S, Biamonti G: Altered expres-
sion of heterogenous nuclear ribonucleoproteins and SR fac-
tors in human colon adenocarcinomas. Cancer Res 1998,
58:5818-5824.

33. Chaurand P, DaGue BB, Pearsall RS, Threadgill DW, Caprioli RM:
Profiling proteins from azoxymethane-induced colon
tumors at the molecular level by matrix-assisted laser des-
orption/ionization mass spectrometry. Proteomics 2001,
1:1320-1326.

34. Nicholson KM, Anderson NG: The protein kinase B/Akt signal-
ling pathway in human malignancy. Cell Signal 2002, 14:381-395.

35. Cheong HK, Park JY, Kim EH, Lee C, Kim S, Kim Y, Choi BS, Cheong
C: Structure of the N-terminal extension of human aspartyl-
tRNA synthetase: implications for its biological function. Int J
Biochem Cell Biol 2003, 35:1548-1557.

36. DeFatta RJ, Chervenak RP, De Benedetti A: A cancer gene therapy
approach through translational control of a suicide gene. Can-
cer Gene Ther 2002, 9:505-512.

37. Derenzini M, Trere D, Pession A, Montanaro L, Sirri V, Ochs RL:
Nucleolar function and size in cancer cells. Am J Pathol 1998,
152:1291-1297.

38. Eray M, Tuomikoski T, Wu H, Nordstrom T, Andersson LC, Knuutila
S, Kaartinen M: Cross-linking of surface IgG induces apoptosis
in a bcl-2 expressing human follicular lymphoma line of
mature B cell phenotype. Int Immunol 1994, 6:1817-1827.

39. Sreedharan SP, Huang JX, Cheung MC, Goetzl EJ: Structure,
expression, and chromosomal localization of the type I
human vasoactive intestinal peptide receptor gene. Proc Natl
Acad Sci U S A 1995, 92:2939-2943.

40.  .;, .;, .;, .;, .;, .;, .;Currie, .;, ., Shailubhai K, Yu HH, Karunanandaa K,
Wang JY, Eber S. L, Wang Y, Joo NS, Kim HD, Miedema BW, Abbas
SZ, Boddupalli SS, Currie MG, Forte LR: Uroguanylin treatment
suppresses polyp formation in the Apc(Min/+) mouse and
induces apoptosis in human colon adenocarcinoma cells via
cyclic GMP. Cancer Res 2000, 60:5151-5157.

41. Gali H, Sieckman GL, Hoffman TJ, Kiefer GE, Chin DT, Forte LR,
Volkert WA: Synthesis and in vitro evaluation of an 111In-
labeled ST-peptide enterotoxin (ST) analogue for specific
targeting of guanylin receptors on human colonic cancers.
Anticancer Res 2001, 21:2785-2792.

42. Adhami VM, Ahmad N, Mukhtar H: Molecular targets for green
tea in prostate cancer prevention. J Nutr 2003,
133:2417S-2424S.
Page 16 of 17
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10647931
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12509396
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12509396
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12509396
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12177516
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12177516
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11381113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11381113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11983868
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11983868
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12843395
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12843395
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12843395
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11983058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11983058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10359783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10359783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10359783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12086878
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12086878
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3447015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3447015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11518967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11518967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11894805
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11894805
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11700590
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11700590
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8051043
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8051043
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8051043
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12800156
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12800156
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12800156
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10582705
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10582705
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10582705
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11480587
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11480587
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14665873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14665873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12647366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12647366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752282
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752282
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752282
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12421765
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12421765
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12421765
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14667807
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14667807
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12454644
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12454644
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12184807
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12184807
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12184807
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14643421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14643421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14657950
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14657950
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14657950
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12613021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12613021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12670919
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12670919
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12670919
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11242594
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11242594
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11242594
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9628581
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9628581
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9865741
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9865741
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9865741
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11721643
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11721643
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11721643
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11882383
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11882383
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824064
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824064
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12032661
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12032661
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9588897
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9588897
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7696202
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7696202
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7696202
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7708752
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7708752
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7708752
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11016642
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11016642
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11016642
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11724355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11724355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12840218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12840218


BMC Cancer 2004, 4:72 http://www.biomedcentral.com/1471-2407/4/72
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

43. Melendez JA, Davies KJ: Manganese superoxide dismutase mod-
ulates interleukin-1alpha levels in HT-1080 fibrosarcoma
cells. J Biol Chem 1996, 271:18898-18903.

44. Costantino L, Ferrari AM, Gamberini MC, Rastelli G: Nitrophenyl
derivatives as aldose reductase inhibitors. Bioorg Med Chem
2002, 10:3923-3931.

45. Nithipatikom K, Isbell MA, Lindholm PF, Kajdacsy-Balla A, Kaul S,
Campell WB: Requirement of cyclooxygenase-2 expression
and prostaglandins for human prostate cancer cell invasion.
Clin Exp Metastasis 2002, 19:593-601.

46. Zhang JP, Ying K, Xiao ZY, Zhou B, Huang QS, Wu HM, Yin M, Xie
Y, Mao YM, Rui YC: Analysis of gene expression profiles in
human HL-60 cell exposed to cantharidin using cDNA
microarray. Int J Cancer 2004, 108:212-218.

47. Ricci G, Caccuri AM, Lo Bello M, Parker MW, Nuccetelli M, Turella
P, Stella L, Di Iorio EE, Federici G: Glutathione transferase P1-1:
self-preservation of an anti-cancer enzyme. Biochem J 2003,
376:71-76.

48. Eder IE, Haag P, Basik M, Mousses S, Bektic J, Bartsch G, Klocker H:
Gene expression changes following androgen receptor elim-
ination in LNCaP prostate cancer cells. Mol Carcinog 2003,
37:181-191.

49. Stahl JA, Leone A, Rosengard AM, Porter L, King CR, Steeg PS: Iden-
tification of a second human nm23 gene, nm23-H2. Cancer Res
1991, 51:445-449.

50. Carollo M, Parente L, D'Alessandro N: Dexamethasone-induced
cytotoxic activity and drug resistance effects in androgen-
independent prostate tumor PC-3 cells are mediated by
lipocortin 1. Oncol Res 1998, 10:245-254.

51. Matsui H, Kubochi K, Okazaki I, Yoshino K, Ishibiki K, Kitajima M:
Collagen biosynthesis in gastric cancer: immunohistochemi-
cal analysis of prolyl 4-hydroxylase. J Surg Oncol 1999,
70:239-246.

52. Chesi M, Bergsagel PL, Shonukan OO, Martelli ML, Brents LA, Chen
T, Schrock E, Ried T, Kuehl WM: Frequent dysregulation of the
c-maf proto-oncogene at 16q23 by translocation to an Ig
locus in multiple myeloma. Blood 1998, 91:4457-4463.

53. Postel EH, Berberich SJ, Flint SJ, Ferrone CA: Human c-myc tran-
scription factor PuF identified as nm23-H2 nucleoside
diphosphate kinase, a candidate suppressor of tumor
metastasis. Science 1993, 261:478-480.

54. Huang KS, Wallner BP, Mattaliano RJ, Tizard R, Burne C, Frey A, Hes-
sion C, McGray P, Sinclair LK, Chow EP: Two human 35 kd inhib-
itors of phospholipase A2 are related to substrates of pp60v-
src and of the epidermal growth factor receptor/kinase. Cell
1986, 46:191-199.

Pre-publication history
The pre-publication history for this paper can be accessed
here:

http://www.biomedcentral.com/1471-2407/4/72/prepub
Page 17 of 17
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8702551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8702551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8702551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12413844
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12413844
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12498388
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12498388
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14639605
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14639605
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14639605
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12877654
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12877654
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12891627
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12891627
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12891627
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1988104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1988104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9802059
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9802059
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9802059
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10219020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10219020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10219020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9616139
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9616139
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9616139
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8392752
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8392752
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8392752
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3013422
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3013422
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3013422
http://www.biomedcentral.com/1471-2407/4/72/prepub
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Method
	Results
	Conclusion

	Background
	Methods
	Colon and prostate cancer datasets
	Initial gene selection
	Transforming the gene expression data to investigate the expression equilibrium between genes pairs
	Feature partitioning method 
	Classification of normal/tumor tissues using transformed datasets
	Table 6
	Table 7

	Constructing the relationship tree for the top 25 genes
	Computer hardware and software
	Table 1


	Results
	Table 2
	Effect of data transformation on coefficient of variation
	Table 3
	Table 4

	Correlations of the single gene expression and pair-wise gene expression ratio
	Gene expression and tissue type correlation
	Table 5
	Table 8

	Constructing the relationship tree for top 25 gene for colon and prostate cancer

	Discussion
	Data transformation to investigate pair-wise gene expression ratios
	Table 9

	The implication derived from the classification results

	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	References
	Pre-publication history

