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Abstract

Background: Recent evidence suggests that progesterone metabolites play important roles in regulating
breast cancer. Previous studies have shown that tumorous tissues have higher 5a-reductase (5aR) and
lower 3a-hydroxysteroid oxidoreductase (3c.-HSO) and 200-HSO activities. The resulting higher levels
of 5a-reduced progesterone metabolites such as 5c-pregnane-3,20-dione (50P) in tumorous tissue
promote cell proliferation and detachment, whereas the 4-pregnene metabolites, 4-pregnen-3a.-ol-20-one
(3aHP) and 4-pregnen-20a-ol-3-one (200DHP), more prominent in normal tissue, have the opposite
(anti-cancer-like) effects. The aim of this study was to determine if the differences in enzyme activities
between tumorous and nontumorous breast tissues are associated with differences in progesterone
metabolizing enzyme gene expression.

Methods: Semi-quantitative RT-PCR was used to compare relative expression (as a ratio of 185 rRNA)
of 50R type | (SRD5AI), 5aR type 2 (SRD5A2), 3a-HSO type 2 (AKRIC3), 30-HSO type 3 (AKR/C2) and
200.-HSO (AKRICI) mRNAs in paired (tumorous and nontumorous) breast tissues from || patients, and
unpaired tumor tissues from |7 patients and normal tissues from 10 reduction mammoplasty samples.

Results: Expression of 50RI and 50R2 in [I/11 patients was higher (mean of 4.9- and 3.5-fold,
respectively; p < 0.001) in the tumor as compared to the paired normal tissues. Conversely, expression
of 30-HSO2, 3a-HSO3 and 20a-HSO was higher (2.8-, 3.9- and 4.4-fold, respectively; p < 0.001) in normal
than in tumor sample. The mean tumor:normal expression ratios for 5aR1 and 5aR2 were about 35-85-
fold higher than the tumor:normal expression ratios for the HSOs. Similarly, in the unmatched samples,
the tumor:normal ratios for 5aR were significantly higher than the ratios for the HSOs.

Conclusions: The study shows changes in progesterone metabolizing enzyme gene expression in human
breast carcinoma. Expression of SRD5AI (5aR1) and SRD5A2 (5aR2) is elevated, and expression of
AKRICI (20a-HSO), AKRIC2 (30.-HSO3) and AKRIC3 (30-HSO?2) is reduced in tumorous as compared
to normal breast tissue. The changes in progesterone metabolizing enzyme expression levels help to
explain the increases in mitogen/metastasis inducing 5aP and decreases in mitogen/metastasis inhibiting
3aHP progesterone metabolites found in breast tumor tissues. Understanding what causes these changes
in expression could help in designing protocols to prevent or reverse the changes in progesterone
metabolism associated with breast cancer.
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Background

In vitro metabolism studies have shown that mammary
tissue from mouse [1,2], rat [3-5], cat [6], dog [6,7] and
human [8-10] can convert progesterone to metabolites
whose formation requires the action of the enzymes, 5a.-
reductase (5aR), 3o-hydroxysteroid oxidoreductase (3a-
HSO) and 20a-HSO. Differences between normal and
tumor mammary gland tissues in the progesterone metab-
olizing enzyme (PME) activities have been noted [2,3,8-
10]. Our recent observations indicate that 5a-reduced
metabolites (5a-pregnanes) are produced at a signifi-
cantly higher rate in tumorous than in nontumorous
human breast tissue, indicating increased 5aR activity in
the carcinoma. Conversely, the activities of 3a-HSO and
20a-HSO were higher in histologically non-tumorous
breast tissues which produce more 5-4-pregnenes [10].

These observations are of particular interest because the
5a-pregnanes and 4-pregnenes have been demonstrated
to exhibit opposing effects associated with breast neopla-
sia. Specifically, exposure of human breast cell lines to 5a.-
pregnanes results in increased proliferation and decreased
attachment [10], depolymerization of F-actin [11] and
decreases in adhesion plaque-associated vinculin [11]. In
contrast, exposure to the 4-pregnenes results, in general,
in opposite (anti-cancer-like) effects by causing suppres-
sion of cell proliferation and detachment [10,11]. Addi-
tionally, specific high-affinity receptors for the 5a-
pregnane, 5a-pregnane-3,20-dione (50P) and the 4-preg-
nene, 3a-hydroxy-4-pregnen-20-one (3aHP), have been
identified in the plasma membrane fractions but not in
the intracellular compartments of breast cancer cells [12].
The plasma membrane-associated 5aP and 3aHP recep-
tors are distinct from each other and from the classical
intracellular androgen, estrogen, progesterone and corti-
costeroid receptors [12]. These results suggest important
and distinct cancer regulating functions for endogenous
progesterone metabolites and emphasize a potentially
prominent role for the PMEs expressed in breast tissues.

We have recently also shown that 5a-reductase activity is
higher, whereas 3a-HSO and 200-HSO activities are
lower in the tumorigenic cell lines, MCF-7, MDA-MB-231,
and T-47D, than in the nontumorigenic, MCF-10A, cell
line [13]. The differences in enzyme activities between the
tumorigenic and nontumorigenic cell lines are correlated
with differences in levels of mRNA expression [13] of 5a.-
reductase type 1 (50R1; SRD5A1), 20a-HSO (AKRIC1),
30-HSO type 2 (30-HSO2; AKR1C3) and 3a-HSO type 3
(30-HSO3; AKR1C2). A recent study [14] also noted that
30-HSO type 3 (AKR1C2) mRNA expression is lower in
prostatic adenocarcinoma than in normal human prostate
tissue.
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Taken together, these findings suggest important auto-
crine/paracrine cancer regulating functions for progester-
one metabolites and suggest regulatory roles for 5aR, 3a-
HSO and 200-HSO activities in human breast cancer pro-
gression. The etiology of PME activity changes during
breast carcinogenesis is not known. The objective of the
current studies was to determine if PME gene expression
levels have been altered in breast tumorigenesis. To this
end, reverse transcription (RT) polymerase chain reaction
(PCR) was used to quantify expression levels of 5aR1,
5aR2, 20a-HSO, 30-HSO2 and 3a-HSO3 in paired
(tumorous and nontumorous) tissues from 11 patients,
and unpaired tumor tissues from 17 patients and nontu-
morous breast tissues from 10 reduction mammoplasty
samples. The results provide the first evidence that expres-
sion levels of SRD5A1/2 are elevated whereas those of
AKR1-3 are markedly decreased in breast carcinoma. The
findings suggest that selective changes in specific PME
expression levels could lead to local increases in carci-
noma-promoting 5a.P and decreases in carcinoma-inhib-
iting 3aHP and 20aDHP in breast cancer tissue.

Methods

Breast tissues

Tissues were obtained from Tissue and Archives Commit-
tee, Department of Pathology, London Health Sciences
Centre, London, Ontario. They were previously collected
(1995-1999) tissues that had been stored in liquid nitro-
gen freezers. The tissues were provided after being ano-
nymized and their use for these studies was approved by
the Interagency Advisory Panel on Research Ethics and the
local Institutional Ethics Review Board. The tissues are
numbered arbitrarily for convenience in these investiga-
tions. Paired samples were obtained from 11 patients and
in each case consisted of a tissue sample from the tumor
biopsy and a sample of tissue away from the tumor (non-
tumor tissue). Histological examination of the grossly
normal breast tissue confirmed the absence of carcinoma
or significant lymphocyte infiltration. Pathologists graded
the tumors by the Scarff-Bloom-Richardson (SBR) histo-
logical grading system as part of their routine evaluation.
The degree of lymphocytic infiltration was evaluated sep-
arately using a semi-quantitative method. Estrogen (ER)
and progesterone (PR) receptors were assayed in cytosols
prepared from quick frozen tissues using quantitative
enzyme immunoassay kits purchased from Abbott Labo-
ratories (Abbott Park, IL). Table 1 gives details of patients
and tumor tissues of the paired samples. In addition, 17
tumor samples (without matching nontumor tissue) and
10 samples from reduction mammoplasty specimens
were also examined for enzyme messenger RNA (mRNA)
expression levels.
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Table I: Patient and biopsy information from the tumors of paired (tumor and normal from the same breast) tissue samples.

Patient No. Diagnosis? SBR Gradeb Age ER¢< PRe Malignant lymph nodes¢
| IDC 1/ 43 - - NS
2 IDC /i 55 - - 0/11
3 IDC 1/ 67 - - 0/17
4 IDC 1/ 49 - - NS
5 IDC /i 59 +++ +++ 0/9
6 IDC /i 75 - - 0/10
7 IDC 7111 60 - - 15/15
8 IDC i/ 34 - - 1715
9 IDC /i 70 ++++ - 0/5
10 IDC 1/ 69 na na 0/16
Il IDC i/ 49 ++ + 0/8

2|DC: infiltrating duct carcinoma b SBR: Scarff-Bloom-Richardson histological grading system <ER and PR concentration codes: - receptor values less
than 24 + receptor values between 25 and 99 ++ receptor values between 100 and 249 +++ receptor values between 250 and 549 ++++ receptor
values > 550 4 Number of lymph nodes assessed as malignant out of total number examined na: not available NS: No lymph nodes submitted with

specimen

RNA isolation and reverse transcription

RNA isolation and reverse transcription (RT) was as
described [13]. Briefly, the procedure was as follows. Total
RNA was isolated from the tissues by homogenization in
TRIzol® reagent (Invitrogen) and extraction following the
manufacturer's instructions. Prior to reverse transcription,
RNA was treated with DNase I for 30 minutes at 37°C
using a DNA-free™ kit (Ambion). Complementary DNA
(cDNA) was obtained from 2.0 ug of DNase treated total
RNA using 200 U Moloney Murine Leukemia Virus
(MMLV) reverse transcriptase (Invitrogen) and random
hexamer primers (Invitrogen) in a total volume of 20 pl
following the manufacturers instructions. To exclude any
amplification of genomic DNA, all experiments included
conditions in which the reverse transcriptase enzyme was
omitted. In addition, no template (NT) controls were run
for both the RT and PCR stages for each of the primer sets
and none showed any visible PCR product.

Semi-quantitative reverse transcription polymerase chain

reaction (RT-PCR)

All PCR primers were purchased from Invitrogen Canada
(Burlington, ON) and primer sequences, PCR conditions,
PCR reaction kinetics and quantification were determined
as previously described [13]. The conditions were as fol-
lows: 95°C denature for 4 minutes followed by cycling,
each cycle with a 20 second denature at 94 °C, a 30 second
anneal at 62°C, and a 30 second extension at 72°C.
Cycling was followed by a final extension for 4 minutes at
72°C. For each reaction an aliquot of cDNA was amplified
in a 25 pl total volume using 1.25 U of Platinum Taq DNA
Polymerase (Invitrogen), 2 mM MgCl, 0.2 mM dNTP's,
and 2 mM primer. Samples were amplified in separate
reactions for 12 cycles with the 18S ribosomal RNA
(r1RNA) primers, 27 cycles with the 5aR1, 20a-HSD, 3a-

HSD1, 30-HSD2 and 3a-HSD3 primers, and 33 cycles
with the 5aR2 primers. Prior studies had shown that
under these cycling conditions, quantification was linear
over an 8-fold range [13]. The PCR products were sepa-
rated on 9% polyacrylamide gels and visualized using
ethidium bromide staining. The bands were quantified by
Quantity One 4.2.1 Gel Doc Software (BioRad Laborato-
ries). The quantity of each band is expressed as total pixel
value, based on intensity and number of pixels per band.
Results are given as ratios of the total pixel value of the
band of interest to the total pixel value of the 18S band.
Values were obtained from the average of duplicate PCRs
run on the same gel and assays were repeated three times
for each gene, using a fresh cDNA sample each time.

Statistics

Results are given as mean + SEM. Data were analyzed
either by Student's t test for two columns or by ANOVA
followed by Student-Newman-Keuls test comparing all
columns. Differences were considered significant if p <
0.05.

Results

Paired tissues

Table 1 summarizes information on the eleven patients
and the tumor portion from each paired tissue. The ages
of the women at the time of surgery ranged from 34 to 75
years. The tumorous tissues were diagnosed as infiltrating
ductal carcinomas of no special type. They were graded by
the Scarff-Bloom-Richardson (SBR) histological grading
system, whereby two carcinomas were Grade II/IIl and
nine were III/IIl. Estrogen (ER) and progesterone (PR)
receptor information was available for 10 of the tumor tis-
sues. Eight tumor tissues were ER- and PR-negative, two
were ER- and PR-positive, and one was ER-positive and
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(b)

Figure |

Visualization of reverse transcribed (RT) mRNA from human
breast tissue that was PCR amplified with primers specific for
progesterone metabolizing enzyme genes. (a) The PCR prod-
ucts were initially identified by separation on a 1.5% agarose
gel. The products and number of cycles are as follows: Lane
2, 18S rRNA (12 cycles), Lane 3, 5aR|1 (26 cycles), Lane 4,
50R2 (33 cycles), Lane 5, 20aHSO (27 cycles), Lane 6,
3aHSO2 (27 cycles), and Lane 7, 3aHSO3 (27 cycles). (b)
Restriction of the HSOs with Pvull and BamHI resulted in dif-
ferent fragments for 200.-HSO (lane 2; 423 bp, 142 bp), for
30-HSO2 (lane 3; 423 bp and 167 bp) and for 3a-HSO3 (lane
4; 567 bp) when separated on a 9% polyacrylamide gel. The
26 bp fragments for 20a.-HSO and 3a-HSO3 are not shown
on the gel image.

PR-negative. ER and PR concentrations were graded as
indicated in Table 1. Two of the patients had axillary
lymph nodes that contained metastases. On pathological
examination, tumor was found to occupy from 25% -
75% of the frozen tissue. Normal breast parenchyma
occupied from 5% - 15% of the normal breast sample
with the bulk of the tissue composed of fibrous tissue and
fat. Lymphocyte infiltration ranged from mild to heavy in
the tumor samples and was essentially absent in the nor-
mal (nontumorous) tissues.

Expression levels of progesterone metabolizing enzymes in paired
tissues

Figure 1 shows that mRNA expression of 5a4R1 (SRD5A1)
mRNA, 50R2 (SRD5A2) mRNA and 18S rRNA were
detected as single bands (368 bp for 5aR1; 315 bp for
5aR2 and 131 bp for 18S) by our RT-PCR protocol. Prod-
uct identities were confirmed by agarose gel electrophore-

http://www.biomedcentral.com/1471-2407/4/27

200HSO
30HSO2 [
3aHSO03

18S

Figure 2

Representative RT-PCR results (gels) for 5 of the || tumor
and paired normal breast tissue samples. For each tissue, 2
pg of total RNA was reverse transcribed using random prim-
ers, and aliquots of cDNA were PCR amplified, as described
in the methods, with each of 6 primer sets. For each tissue,
separate cDNA samples were amplified with primers specific
to 18S rRNA (12 cycles), 5aR | primers (27 cycles), 5aR2
(33 cycles), 200-HSO, 30-HSO2 and 3a-HSO3 (27 cycles
each). Products were separated on 9% polyacrylamide gels.
Note that intensity and abundance of 5aR| and 50R2 bands
is greater, whereas that of the HSO bands is less in tumor
than paired normal tissue samples.

sis and PCR product sequencing (Robarts Research
Institute sequencing facility, London, Ontario). Figure 1
also shows detection of 20aHSO (AKR1C1), 3aHSO type
3 (30-HSO3; AKR1C2) and 30HSO type 2 (3a-HSO2;
AKR1C3) mRNA's as single bands (591 bp for AKRICI,
and 590 bp for AKR1C2 and AKR1C3). AKR product iden-
tities were confirmed by agarose gel electrophoresis, PCR
product sequencing and double restriction enzyme diges-
tion with Pvull and BAMHI. Restriction digestion with
these enzymes produces three fragments for AKR1C1 (423
bp, 142 bp and 26 bp), two fragments for AKR1C2 (567
bp and 23 bp) and two fragments for AKR1C3 (423 bp
and 167 bp) as shown in Figure 1b.

Figure 2 shows examples of RT-PCR analyses of matched
tumorous and nontumorous tissues from five patients for
mRNA expression of 5aR1, 5aR2, 20a-HSO, 3a-HSO2
and 30-HSO3 in relation to 18S rRNA expression. The
images show that 5aR1 and 5aR2 mRNA expression was
higher in tumor tissue than in nontumor tissue, whereas
expression of 20a-HSO, 3a-HSO3 and 30-HSO2 mRNAs
was higher in nontumorous (normal) than in tumor
tissue.

Quantitative analyses of the enzyme mRNA expressions
(as ratios against respective 18S rRNA) from the paired tis-
sues (tumor and nontumor [normal]) from the 11

Page 4 of 12

(page number not for citation purposes)



BMC Cancer 2004, 4:27

http://www.biomedcentral.com/1471-2407/4/27

Table 2: Expression levels of progesterone metabolizing enzymes (standardized against 18S mRNA) in tumorous and non-tumorous
(Normal) resected breast tissues from || patients (described in Table ).

Patient S5aR| (SRD5AI) 2 50R2 (SRD5A2) b 200-HSO (AKRICI) 2 30-HSO-3 (AKRIC2) © 30-HSO-2 (AKRIC3) 2
No.
Normal Tumor Normal Tumor Normal Tumor Normal Tumor Normal Tumor
| 1.68 £0.06 551 +£030 099+002 182+0.10 076+005 079+0.11 0.16£0.02 0.1 £0.01¢ 125005 I.Il1 £0.09
2 020+ 001 3421044 O0.11 £0.02 349+0.03 3.77+026 031+003 324+009 0.18+0.02 381 +0.13 049 +£0.02
3 0.64 +0.06 126+008 048+0.05 1.79+0.09 431+£028 1.12+£005 3.78+033 0.89+0.05 401 £003 1.12+£0.20
4 088+0.12 268+0.12 028+0.05 020+0.02 741+025 042+002 720+£1.09 0.12+0.01 7.77+093 0.65+0.07
5 038+0.02 144+£0.10 092+0.16 4.06+0.33 6.07+040 0.19+003 694+041 0.17+0.02 654+028 299+0.17
6 0.66 +0.02 508+0.12 094+005 191+0.15 6.04+107 242+007 575+098 2.18+0.10 831 +048 1.97+£0.09
7 020+ 0.0l 440+046 026+0.02 228+0.12 479+060 1.78+006 6.01+1.09 239+0.03 607+027 252+0.15
8 0.58+0.08 470+0.12 065+0.10 0.77+0.02 I1.51£005 I[.71£0.13 1.89+006 526+0.88 283+035 6.05+042
9 020+ 0.0l 258+0.12 038+0.11 241 +024 470+083 [50+£0.16 559+025 0.67+0.14 6.63+054 [47+0.10
10 1.08 +0.28 432+022 061 +£009 234+0.14 550051 068+009 466+042 072+0.14 525+0.11 1.52+0.14
Il 1.32+0.18 3.08+026 122+0.15 246+0.09 6.04+095 056+007 632+101 042+0.07 578+0.10 1.04+0.08
Mean 0.709 3.496 0.614 2.139 4.627 1.044 4.685 1.191 5.296 1.905
(£SEM) (0.147) (0.43) (0.105) (0.326) (0.604) (0.217) (0.667) (0.472) (0.644) (0.473)

Values were obtained from the average of duplicate PCRs run on the same gel and assays were repeated three times for each gene, using a fresh
cDNA sample each time. Values are presented as mean + SEM, n = 3. 2 Values were obtained by dividing the calculated intensity of 5aR| or HSO
bands (27 cycles) by the calculated intensity of the 18S band (12 cycles). ® Values were obtained by dividing the calculated intensity of 5aR2 bands
(33 cycles) by the calculated intensity of the 18S band (12 cycles). ¢ Values obtained from very faint bands, calculated as <0.1, were adjusted to 0.1.

patients are shown in Table 2. Tissues from 11/11 patients
showed higher levels of 5aR1 (SRD5A1) expression in
tumor than in the normal tissue. The mean (+SEM)
expression value of 5aR1 for the tumorous tissues (3.496
+ 0.43) was significantly higher (p < 0.0001) than for the
paired nontumorous tissues (0.709 + 0.147). Tissues from
10/11 patients showed higher levels of 5aR2 (SRD5A2)
expression in tumor than in the normal tissue. The mean
(+SEM) expression value of 5aR2 for the 11 tumorous tis-
sues (2.139 + 0.326) was significantly higher (p = 0.0002)
than for the paired nontumorous tissues (0.614 + 0.105).
Tissues from 9/11 patients showed lower levels of 20a-
HSO (AKRIC1) expression in tumor than in the normal
tissue. The mean (+SEM) expression value of 20a.-HSO for
the 11 tumorous tissues (1.044 + 0.217) was significantly
lower (p = 0.0001) than for the paired normal tissues
(4.627 + 0.604). Tissues from 10/11 patients showed
lower levels of 3a-HSO3 (AKR1C2) expression in tumor-
ous than in the paired nontumorous tissue. The mean
(+SEM) expression value of 30-HSO3 for the 11 tumorous
tissues (1.191 + 0.472) was significantly lower (p =
0.0005) than for the paired nontumorous tissues (4.685 +
0.667). Tissues from 10/11 patients showed lower levels
of 3a-HSO2 (AKR1C3) expression in tumorous than in
the paired nontumorous tissue. The mean (+SEM) expres-
sion value of 30-HSO2 for the 11 tumorous tissues (1.905
+ 0.473) was significantly lower (p < 0.0001) than for the
paired nontumorous tissues (5.296 + 0.644).

The changes in progesterone metabolizing enzyme
expression levels due to carcinoma are shown (Figure 3)
by the Tumor:Normal (T/N) ratios calculated for each of
the matched tissues. The mean T/N expression ratios
(+¢SEM) for 50R1 and 5aR2 were 7.838 (+2.026) and
6.055 (+2.667), respectively, which were significantly
higher (p < 0.01 for 5aR1 and p < 0.05 for 5aR2) than the
T/N ratios for 20a-HSO (0.355 + 0.116), 3a-HSO2 (0.48
+0.17) and 30-HSO3 (0.443 + 0.241). Based on the over-
all means (shown in Fig. 3), the T/N expression of 5aR1
was about 22-fold, 16-fold and 18-fold higher than the T/
N expression of 200-HSO, 3a-HSO2 and 3a-HSOS3,
respectively. When calculations are based on comparisons
within individual pairs of (tumor and normal) tissues, the
T/N expression of 5aR1 was 3-207-fold (mean + SEM:
52.5 + 18.5), 4-132-fold (mean + SEM: 32.9 + 11.6) and
3-308-fold (mean + SEM: 129.6 + 48.6) higher than the
T/N expression of 200-HSO, 3a-HSO2 and 3a-HSO3,
respectively (data not shown). Similarly, the T/N expres-
sion ratios for 5aR2 were on average 33-86-fold higher
than the T/N expression ratios of the HSOs.

The 5aR1/HSO expression ratios were less than 1.0 in
normal breast tissue and significantly (about 12-16-fold;
p < 0.001) higher in the paired tumorous breast tissues
(Figure 4). Similarly, 5aR2/HSO expression ratios were
significantly (p < 0.05) higher in tumorous than in nor-
mal tissues (data not shown).
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Figure 3

Gene expression levels of progesterone metabolizing
enzymes in paired (tumor versus normal) human breast biop-
sies. Expression level of each gene (in relation to 18S rRNA)
was calculated as a tumor/normal ratio for each patient. Each
bar and line represents the mean + SEM of || paired tissue
samples. * indicates significantly different from 5aR| at p <
0.0l and from 5aR2 at p < 0.05 (by ANOVA and Student-
Newman-Keuls test).

After the completion of the study a real-time PCR unit
(Rotor Gene 3000) became available and expression lev-
els of 5aR1 and 5aR2 (with respect to 18S rRNA) were
determined on the only remaining RNA samples (from
paired tissues of patients #1, #7 and #8). Expression of
5aR1 by real-time measurement, was 18.5-, 1061- and
12.5-fold higher in tumor than in normal samples from
#1, #7 and #8, respectively (compared to 3.3-, 22- and 8-
fold higher, respectively, by the semi-quantitative
method. 5aR2 expression was higher by 6.6-, 140- and
1.3-fold by real-time measurement, (compared to 1.8-,
8.8- and 1.2-fold higher by the semi-quantitative method)
in tumor than normal samples of #1, #7 and #8, respec-
tively. The real-time results confirmed the findings by the
semi-quantitative method that 5aR mRNA expression lev-
els are higher in tumor than in normal tissue. The differ-
ences between the two methods may be due to the fact
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Figure 4

Expression level of 5aR | with respect to expression level of
HSO (50R1/HSO ratio) in paired tumor and normal breast
tissues. Each bar and line represents the mean + SEM of the
ratio for normal (adjusted to 1.0) and tumor. *** indicates
significantly different from normal at p < 0.001, n = |1.

that the real-time measurements are linear over a much
wider range than the 8-fold limit of the semi-quantitative
method. The real-time determinations suggest that the
changes in progesterone metabolizing enzyme expression
that accompany breast carcinoma may be even greater
than indicated by the semi-quantitative results.

Unpaired tissues

The unpaired tissues consisted of breast carcinomas from
17 patients and normal (reduction mammoplasty) from
10 cases. The tumor tissues came from women whose ages
at the time of surgery ranged from 48 to 91 years. Four of
the tumor tissues were ER- and PR-negative, ten were ER-
positive and PR-positive at varying receptor levels, and
three were ER-positive and PR-negative. There were no
evident relationships between ER/PR status and enzyme
gene expression levels. Available SBR scores were Grade I
for two tissues, Grade II for two tissues and Grade III for
seven tissues. No apparent relationships between SBR
scores and enzyme gene expression levels were detected.
Of the ten samples of normal tissue three patients were
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just under 20 years, five were between 24 and 35 years and
two were between 47 and 53 years of age. No ER or PR
data were available for these tissues.

Expression levels of progesterone metabolizing enzymes in unpaired
tissues

Messenger RNA expression levels for progesterone metab-
olizing enzymes in tumor and reduction mammoplasty
('normal') tissues are presented in Figure 5. The calcula-
tions for expression levels of 5aR1, 200-HSO, 3a-HSO3
and 3a-HSO2 are based on 27 PCR cycles. Expression lev-
els of 5aR2 were considerably lower than expression of
mRNA for the other enzymes studied, requiring 34 cycles
instead of 27 to visualize in the linear calculation range.
The average level of expression of 5a4R1 mRNA was not
significantly different between tumor and normal tissues.
The average level of expression (mean + SEM) of 5aR2
mRNA was more than 2-fold higher (p < 0.01) in tumor
(1.28 + 0.17) than in normal (0.604 + 0.12) tissues. The
average level of expression of 200-HSO mRNA was signif-
icantly lower (p < 0.01) in tumor (0.374 + 0.048) than in
normal (1.942 + 0.691). The average level of expression of
30-HSO3 mRNA was significantly lower (p < 0.01) in
tumor (0.382 + 0.094) than in normal (1.793 £ 0.641).
The average level of expression of 30-HSO2 mRNA was
significantly lower (p < 0.01) in tumor (0.706 + 0.123)
than in normal (1.639 + 0.399).

The 5aR1 expression level was compared with each of the
HSO expression levels for each tissue and the mean ratios
(5aR1/HSO) were significantly higher (p < 0.001 or p <
0.01) for tumor tissues than for normal tissues (Figure 6).
The ratio of 5aR1:200-HSO was greater than 1.0 in 17/17
tumor tissues (mean = 3.186; 95% CI = 2.285 and 4.086)
and less than 1.0 in 6/10 normal tissues (mean = 0.867;
95% CI = 0.499 and 1.235). The ratio of 5aR1:3a-HSO3
was greater than 1.0 in 16/17 tumor tissues (mean =
4.732; 95% CI = 2.833 and 6.63) and less than 1.0 in 5/
10 normal tissues (mean = 1.205; 95% CI = 0.432 and
1.978). The ratio of 5aR1:3a-HSO2 was greater than 1.0
in 12/17 tumor tissues (mean = 2.34; 95% CI = 1.433 and
3.247) and less than 1.0 in 9/10 normal tissues (mean =
0.683; 95% CI = 0.462 and 0.903). Similarly, in the non-
paired tissues, 5a4R2/HSO ratios were greater than 1.0 in
tumor and less than 1.0 in normal tissues and the differ-
ences were significant at p < 0.001 (data not shown).

Discussion

Metabolism studies have shown that mammary tissues
from several species [1-6] including human [8-10] and
several human breast cell lines [13,15] exhibit 5aR, 3a-
HSO, 3B-HSO and 20a-HSO progesterone metabolizing
activities. Differences between tumorous and nontumor-
ous breast tissue in terms of relative activities of 5aR, 3a.-
HSO and 200-HSO have been observed [2,8-10]. Signifi-
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Figure 5

Gene expression of progesterone metabolizing enzymes in
unpaired breast carcinoma and normal (mammoplasty) tissue
samples. Expression level of each gene (in relation to 18S
rRNA) from |7 tumor and 10 normal tissue samples is pre-
sented as mean + SEM. ** indicates significantly different
from normal at p < 0.01.

cantly higher levels of 5a-reduced progesterone metabo-
lites (5a-pregnanes) and significantly lower levels of
delta-4 metabolites (4-pregnenes) are produced in tumor-
ous than in nontumorous human breast tissue [10]. Sim-
ilarly, tumor-inducing breast cell lines produce
significantly higher ratios of 5a-pregnanes:4-pregnenes
than do nontumorigenic cell lines [13]. In the
progesterone conversion pathway, the first 5a-reduced
metabolite is 5aP, catalyzed by 5a-reductase activity (Fig-
ure 7). The two 4-pregnenes resulting from direct proges-
terone conversion are 4-pregnen-3o.-ol-20-one (3aHP)
and 4-pregnen-20a-o0l-3-one (20cDHP), catalyzed by the
actions of 30-HSO and 20a-HSO, respectively (Figure 7).
The conversion to 5aP is irreversible. The conversions to
30HP and 20aDHP are reversible and depend on the rel-
ative reductive or oxidative activities of each enzyme.

The potential significance for breast cancer of the changes
in progesterone metabolizing enzyme activities is that the
metabolites appear to be directly involved in promoting
or inhibiting tumor growth in this tissue. The 5a-preg-
nane, 5a.P, which is produced at higher levels in tumorous
tissues, stimulates cell proliferation and inhibits cell
anchorage [10,11]. The action of the neoplasia-promoting
5aP involves novel, specific, high-affinity receptors in the
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Figure 6

Expression level of 5aR| as a ratio of HSO expression level
in unpaired tumor and normal (mammoplasty) breast tissues.
Each bar and line represents the mean + SEM of the ratio for
normal (adjusted to 1.0; n = 10) and tumor (n = 17) tissues.
*#* indicates significantly different from normal at p < 0.001.

cell membrane [12] and results in marked alteration of
the cell's cytoskeletal and adhesion complexes normally
involved in cell replication and attachment [11]. On the
other hand, the 4-pregnene, 3aHP, which is produced at
higher levels in the normal breast tissue, has the opposite
effect by suppressing cell proliferation and detachment
[10,11] via separate and distinct membrane receptors
[12].

Changes in enzyme activity can result from changes in the
milieu in which the enzymes operate (such as temperature
and pH, and concentrations of cofactors, substrates, prod-
ucts, competitors, ions, phospholipids and other mole-
cules). Changes can also occur because of changes in
actual enzyme amounts due to changes in the expression
of the mRNA coding for the enzyme. Since the progester-
one metabolizing enzyme activity studies [10] on tumor-
ous and nontumorous breast tissue were carried out in
vitro in identical milieus, the observed differences can be
more easily ascribed to differences in enzyme amounts
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Progesterone metabolizing enzyme pathways and primary
metabolites affected by altered gene expression in breast car-
cinoma tissue. (3aHP: 4-pregnen-3a-ol-20-one; 200DHP: 4-
pregnen-20a.-ol-3-one; 5aP: 50.-pregnane-3,20-dione).

resulting from altered expression. A recent study on breast
cell lines has shown that differences in progesterone
metabolizing enzyme activity can be correlated with
changes in enzyme mRNA expression [13]. The present
study indicates that changes in the mRNA expression of
various progesterone metabolizing enzymes may be
responsible for the previously reported [10] higher levels
of 5a-pregnanes and lower levels of 3a- and/or 20a-
hydroxy 4-pregnenes produced by tumorous human
breast tissue.

5 o~reductase expression

The enzyme responsible for the conversion of 4-ene ster-
oids to 5a-reduced steroids is 5o-reductase (5aR; EC
1.3.99.5). Two isoforms of 5aR have been cloned and
characterized in mammals, namely type 1 (5aR1) and
type 2 (5aR2) [16,17]. 5aR1, which is encoded by the
SRD5A1 gene has an optimum pH of 6-9, whereas 5aR2,
encoded by the SRD5A2 gene, has an optimum pH of 5.5
[18]. 5aR1 has been detected in various androgen-inde-
pendent organs, such as the liver and brain [19]. 5aR2 has
been found predominantly in androgen-dependent
organs, such as epididymis and prostate [17,19]. Recently
5aR1 and 5aR2 have also been located in human breast
carcinoma where they were studied in relation to 5a-
reduction of testosterone [20]. In the present study we
observed mRNA expression for both 5aR1 and 5aR2 in all
tissues examined.

The studies on the paired samples show significantly
higher levels of expression of 5aR1 and 5aR2 in tumorous
than in the normal (nontumorous) breast tissue biopsies
(Table 2 and Fig 3). Such an increase in expression of 5aR
could account for the higher levels of progesterone 5a
reduction in the tumorous portion of matched breast
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samples that resulted in significantly higher levels of 5aP
production [10].

In breast cell lines the higher 5aR activity level in the tum-
origenic cells [13], appeared to be attributable to 5aR1
since its mRNA expression was several hundred fold
greater than that of 5aR2; seven more PCR cycles were
required for 5aR2 in order to show band intensity approx-
imately equivalent to 5aR1. Moreover, 50R1 mRNA
expression was significantly greater, whereas 5a4R2 mRNA
expression was no higher, in tumorigenic than in nontu-
morigenic cells [13]. Similarly, in the present studies 33
cycles were required for 5aR2 in contrast to only 26 cycles
for 5aR1 indicating that mRNA levels for 5aR1 greatly
exceed those of 5aR2 in human breast tissue. It was also
recently demonstrated by immunohistochemistry and RT-
PCR that 5aR1 is the main isoform expressed in human
breast carcinoma [20]. Together the observations provide
strong evidence that 5aR1 may be the primary 5a-reduct-
ase expressed in breast tissue. However, in contrast to
prostate where no differences were found in 5aR2 expres-
sion between tumor and matched normal tissue [14] we
saw significantly higher levels of expression of 5aR2 in
tumor than in normal breast tissue in both the matched
and unmatched breast samples. Therefore it is still
possible that changes in 5aR2 mRNA expression have
some relevance to progesterone metabolism in breast
cancer.

In the unmatched samples the levels of 5aR1 expression
were not significantly different between normal (mostly
reduction mammoplasty) and tumor tissues. Normal
samples required large amounts of tissue to obtain suffi-
cient levels of RNA for PCR analysis. Also, the unmatched
tissues had been collected separately and the records do
not provide information to determine if storage factors
such as interval between excision and freezing may have
been different. Another important factor may be the
difference in age between tumor and normal samples;
eight of the normal samples were derived from premeno-
pausal women, between the ages of 19 and 35, a time
when levels of steroid hormones and enzymes vary mark-
edly during the menstrual cycle. Further investigations
will be required to resolve differences in 5aR expression at
different ages and different stages of the cycle.

Hydroxysteroid oxidoreductase expression

Mammalian 30-HSO and 20a-HSO activities result in
stereospecific and positional keto/hydroxy interconver-
sions. The isozymes responsible for these catalytic actions
have been cloned and they belong to the AKRIC sub-
family or the AKR (aldo-keto-reductase) superfamily [21].
Human 20a-HSO is formally AKR1C1, human 3a-HSO
type 3 is formally AKR1C2 and human 3a-HSO type 2
(identical to type 5 17B-HSD) is formally AKR1C3. These
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human isoforms share common properties and 83 to 97%
sequence homology [21,22]. Despite their high
homology, these isoforms display distinct differences in
reactivity and substrate specificity and are expressed at dif-
ferent levels in different human tissues [23-26]. The
expression of AKR1C1, AKR1C2 and AKR1C3 mRNAs has
been detected in human mammary gland [24,27-29].
AKR1C1 has predominantly 200-HSO (but also some 3a.-
HSO) activity, AKR1C2 has predominantly 3a-HSO (but
also some 17B-HSO and 20a-HSO) activity, and AKR1C3
has substantial 173-HSO (and lesser 3a-HSO and 20a-
HSO) activity [14,28].

Our results show that the level of expression of these three
HSO isozymes is significantly less in neoplastic than in
normal (nontumorous) breast tissue from both matched
and unmatched samples. On average, the level of expres-
sion of 200-HSO and 3a-HSO3 is 4-5-fold lower and that
of 30-HSO2 is about 2.5-fold lower in tumor than in nor-
mal samples. In a preliminary report in which tumorous
tissue was compared to normal tissue in 24 paired cases,
Stolz and co-workers, using real-time PCR, also observed
that the expression of 200-HSO (relative to RNase P) was
significantly lower (>5-fold) in the tumor portion of the
majority of the cases and nearly half of these also showed
decreased 3a-HSO3 expression [30]. Their results are thus
potentially similar to ours with respect to AKR1C1 and
AKR1C2. Moreover, they provided evidence that the
reduced AKRI1CI gene expression is associated with
decreased immunohistochemical staining in tumor com-
pared to paired normal tissue. The reduction in 3a-HSO
mRNA expression may not be confined to breast cancer.
In a recent study [14] it was demonstrated that 30-HSO3
mRNA expression is also lower in tumor versus normal
human prostate tissue samples.

The reduced expression of 3a(20a)-HSO isozymes and
increased expression of 50R isozymes in breast tumor
reported here help to explain the lower and higher level of
activity, respectively, of these enzymes observed in tumor
versus paired normal breast tissue [10]. Similarly, tumor-
igenic breast cancer cell lines (MCF-7, MDA-MB-231, T-
47D) also exhibited lower 3a-HSO and 20a-HSO and
higher 50R expression than a non-tumorigenic (MCF-
10A) cell line [13] and these differences in expression cor-
related with differences in respective enzyme activities
[13]. Both in the tissues [10] and cell lines [unpublished],
the differences in activity were reflected primarily in
higher amounts of 5aP and lower amounts of 3aHP and
200DHP produced in the neoplastic versus the normal
condition.

Others [14,28-31] have considered 3a- and 20a-reduc-
tion as catabolic pathways resulting in less active (or inac-
tive) metabolites, thereby decreasing the amount of
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biologically active ligand available for androgen and pro-
gesterone receptor binding, respectively. Thus reduced
expression of AKR1C2 in prostate cancer has been consid-
ered to be associated with reduced conversion of 5a-dihy-
drotestosterone to 5a-androstane-3a,17p-diol, thereby
maintaining higher levels of 5a-dihydrotestosterone
which is considered to have higher growth-promoting
action [14]. Similarly, conversion of progesterone to
200DHP has been considered a means of decreasing the
local progesterone concentrations [26]. Instead of viewing
the enzymes as regulators of progesterone concentration
and the progesterone metabolites as inactive by-products
of this catabolism in breast tissue, we propose that the pri-
mary function of the enzymes is to regulate the relative
levels of the active 5a-pregnane and 4-pregnene proges-
terone metabolites. At least two of these metabolites,
3a0HP and 5aP, have been shown to have independent
specific and opposing activity with respect to breast cell
proliferation, adhesion and cell cytoskeletal components
[10,11]. In addition, 3aHP and 5aP have separate specific
membrane-associated receptors on mammary cells, which
are distinct from estrogen, androgen, progesterone or cor-
ticosteroid receptors [12]. Moreover, 3o0HP has been dem-
onstrated to exhibit meiosis regulating activity in rat testis
[32], inhibition of follicle-stimulating hormone release in
pituitary cells [33] via nongenomic mechanisms [34-37],
and analgesic [38] and anxiolytic [39] actions in the brain.
It appears, therefore, appropriate to consider at least some
of the progesterone metabolites produced in breast tissue
as active independent hormones, potentially involved in
regulating breast cancer.

5a-Reductase and reductive 30-HSO and 20a-HSO activ-
ities provide the major (if not exclusive) catabolic path-
ways of progesterone in breast tissues (Figure 7). The
relative activities of these enzymes will determine the ratio
of cancer-promoting 5a.P with respect to cancer-inhibiting
3aHP and 20aDHP concentrations. The current findings
of the decline in expression of the HSO isozymes in tumor
tissue explain the lower levels of the cancer-inhibiting
steroids in relation to the cancer-promoting 5aP.
Increased expression in 5aR mRNA would further
increase the ratio in favor of cancer-promoting progester-
one metabolites. We have previously suggested that the
change from normal to carcinoma and/or the promotion
of the carcinoma may involve an increase in the local 5a-
pregnane/4-pregnene ratio, in particular the 5aP/3aHP
ratio. The current findings suggest that higher levels of
5aR expression and/or lower levels of 3a- and 20a-HSO
expression in the tumor (as compared to the normal
breast tissue) result in increases in local concentrations of
cancer-promoting, 5aP, and simultaneous decreases in
actively anti-neoplastic hormones such as 3aHP. The con-
trol of the expression level of individual progesterone
metabolizing enzymes might therefore provide a mecha-
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nism of controlling breast cancer by controlling local con-
centrations of progesterone metabolites with opposite
activities.

Conclusions

It is known that the progesterone metabolite, 5aP, stimu-
lates proliferation and detachment of breast cell lines, and
thus potentially promotes mitogenesis and metastasis.
The progesterone metabolites, 3aHP and 20aDHP, have
the opposite effects by suppressing proliferation and
detachment. Conversion of progesterone to 5a.P is higher,
whereas conversion to 3aHP and 200DHP is lower in
tumor than in normal breast tissue. Progesterone conver-
sion to 5a.P requires the action of 5aR (SRD5A) and con-
version to 3aHP and 20aDHP requires the actions of
AKR1C1-AKR1C3 (30-HSO and 20a-HSO) isozymes. The
results of this study show for the first time that expression
of 5aR mRNA is significantly elevated whereas expression
of AKR1C1-AKR1C3 mRNA is significantly decreased in
tumor compared to normal breast tissue. The findings
suggest that the shift in pattern of progesterone metabo-
lism occurring in breast carcinoma may be due to altered
expression levels of the progesterone metabolizing
enzymes. Understanding what causes these changes in
expression could help in designing protocols to prevent or
reverse the changes in progesterone metabolism associ-
ated with breast cancer.
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