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Abstract
Background: The mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R) encodes for
a multifunctional receptor involved in lysosomal enzyme trafficking, fetal organogenesis, cytotoxic
T cell-induced apoptosis and tumor suppression. The purpose of this investigation was to
determine if the M6P/IGF2R tumor suppressor gene is mutated in human head and neck cancer, and
if allelic loss is associated with poor patient prognosis.

Methods: M6P/IGF2R loss of heterozygosity in locally advanced squamous cell carcinoma of the
head and neck was assessed with six different gene-specific nucleotide polymorphisms. The patients
studied were enrolled in a phase 3 trial of twice daily radiotherapy with or without concurrent
chemotherapy; median follow-up for surviving patients is 76 months.

Results: M6P/IGF2R was polymorphic in 64% (56/87) of patients, and 54% (30/56) of the tumors
in these informative patients had loss of heterozygosity. M6P/IGF2R loss of heterozygosity was
associated with a significantly reduced 5 year relapse-free survival (23% vs. 69%, p = 0.02),
locoregional control (34% vs. 75%, p = 0.03) and cause specific survival (29% vs. 75%, p = 0.02) in
the patients treated with radiotherapy alone. Concomitant chemotherapy resulted in a better
outcome when compared to radiotherapy alone only in those patients whose tumors had M6P/
IGF2R loss of heterozygosity.

Conclusions: This study provides the first evidence that M6P/IGF2R loss of heterozygosity
predicts for poor therapeutic outcome in patients treated with radiotherapy alone. Our findings
also indicate that head and neck cancer patients with M6P/IGF2R allelic loss benefit most from
concurrent chemotherapy.
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Background
Squamous cell carcinoma of the head and neck is diag-
nosed in over 40,000 Americans each year, resulting in
over 12,000 annual deaths [1]. Carcinomas of the head
and neck are often associated with multiple areas of dys-
plasia or carcinoma in situ (CIS) in noncontiguous muco-
sa, as well as with the development of second primary
cancers of the aerodigestive tract. The concept of "field
cancerization" hypothesizes that regions of the mucosal
epithelium, although normal in appearance, are "precon-
ditioned" by chronic exposure to carcinogenic agents,
thus priming them for the subsequent development of in-
vasive lesions [2].

The use of modern molecular biological techniques has
supported and greatly expanded our understanding of the
"cancer field effect". Analysis of X-chromosome inactiva-
tion in female patients with multiple head and neck can-
cers shows that distinct tumors arise from regional clonal
growths of phenotypically normal, mutated preneoplastic
cells [3–5], a phenomenon similar to that also observed in
liver cancer patients with cirrhosis [6]. Long-term smok-
ing and alcohol abuse are strongly associated with these
clonal growths in the upper aerodigestive tract (reviewed
in [7]).

Frequent allelic loss at chromosomal locations 2q, 3p, 4q,
6p, 6q, 8p, 8q, 9p, 11q, 13q, 14q and 17q is observed in
head and neck cancer [4,8–11]. Molecular studies of hy-
perplastic, dysplastic, CIS, and invasive head and neck le-
sions indicate that loss of heterozygosity at chromosomal
locations 3p, 9p and 17p are early events in head and neck
carcinogenesis [4,12]. Specific tumor suppressor genes,
such as FHIT (3p14.2) p16 (9p21), p53 (17p13.1) and
RB1 (13q14.2) have also been shown to be mutated in
head and neck cancer [4,13]. Nevertheless, the large
number of additional chromosomal regions with high fre-
quencies of allelic loss in head and neck cancer strongly
suggests that many suppressor genes still remain to be
identified.

The mannose 6-phosphate/insulin-like growth factor 2 receptor
(M6P/IGF2R) maps to chromosome location 6q25-27
[14]; a chromosomal region predicted to contain a head
and neck tumor suppressor gene [10,11]. It encodes for a
receptor that functions in intracellular lysosomal enzyme
trafficking, transforming growth factor beta activation,
and IGF2 degradation (reviewed in [15,16]). Granzyme B
internalization by the M6P/IGF2R is also required for cy-
totoxic T cells to induce apoptosis in cells targeted for
death, resulting in this receptor being referred to as a
"death receptor" [17]. Elevated IGF2 levels during murine
development arising from M6P/IGF2R deficiency result in
cardiac abnormalities, cleft palate, fetal overgrowth and
perinatal lethality [15,18]. Furthermore, large offspring

syndrome frequently observed in cloned animals is asso-
ciated with epigenetic changes in gene regulation and de-
creased M6P/IGF2R expression [19]. Thus, the M6P/IGF2R
plays a crucial role in regulating mammalian fetal growth
and development.

The M6P/IGF2R is also mechanistically involved in the
genesis of human cancer [6,20–24]. M6P/IGF2R loss of
heterozygosity coupled with intragenic loss-of-function
mutations in the remaining allele is a common event in
human cancers [6,20–22]. Inheritance of a tandem repeat
polymorphism in the 3' UTR of M6P/IGF2R furthermore
predicts for enhanced susceptibility to oral cancer [25].
Moreover, tumor cell growth is inhibited when M6P/
IGF2R expression is restored to normal while it is in-
creased when gene expression is reduced [26–29]. The re-
sults of these mutational and functional studies clearly
demonstrate that the M6P/IGF2R possesses the character-
istics necessary to be classified as a tumor suppressor gene
[30].

We tested in this investigation the hypothesis that M6P/
IGF2R loss of heterozygosity in locally advanced, non-
metastatic squamous cell carcinomas of the head and
neck is associated with poorer patient prognosis. The pa-
tients used in this study were enrolled in a randomized tri-
al of twice daily radiotherapy with or without concurrent
chemotherapy [31]. We report herein that M6P/IGF2R
loss of heterozygosity occurs frequently in head and neck
cancer, and that it predicts for poor therapeutic outcome.

Methods
Patient Population and Treatment
Patients with locally advanced but non-metastatic squa-
mous carcinoma of the head and neck who participated in
or who met eligibility criteria but declined enrollment in
a phase 3 trial of hyperfractionated irradiation with or
without concurrent chemotherapy constituted the study
population. Details of their treatment and outcome have
been published previously [31]. Briefly, patients receiving
radiation therapy alone were given a continuous course of
125 cGy twice daily to a total dose of 75 Gy. Patients as-
signed to combined modality treatment received 70 Gy
via a split-course of 125 cGy twice daily. They also re-
ceived two cycles of cisplatin and 5-fluorouracil during
the first and sixth weeks of irradiation. All protocols were
approved by the Duke University Medical Center Institu-
tional Review Board.

Tissue Microdissection and M6P/IGF2R Loss of Heterozy-
gosity Analysis
Microdissection of malignant and surrounding normal
non-mucosal tissue was performed as previously de-
scribed [6,20,21]; tumor histology was confirmed by a pa-
thologist (R.T. Volmer). Paraffin-embedded sections (10
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µm in thickness) were microdissected following deparaffi-
nization, and the tissue was then digested by proteinase K
in tris-EDTA buffer at 55°C for 4 hr. Six different gene-spe-
cific polymorphisms were used to assess head and neck tu-
mors for M6P/IGF2R loss of heterozygosity [32,33].

A tetranucleotide (ACAA) insertion/deletion polymor-
phism in the 3'-UTR of the M6P/IGF2R [34] was detected
with 2 rounds of nested polymerase chain reaction (PCR).
The forward and reverse first round PCR primers were
KK*ACAA*F1: 5'-GGAGAGTTTGCCTGTTCTATGCC-3'
and KK*ACAA*R: 5'-CAAATCAATCTTTGGGC AGG-3', re-
spectively. The forward and reverse second round PCR
primers were KK*ACAA*F2: 5'-AGTCAGGAATGGCT-
GCACC-3'and KK*ACAA*R: 5'-CAAATCAATC TTT-
GGGCAGG-3', respectively; the KK*ACAA*F2 primer was
end-radiolabeled with 33P-dATP prior to PCR. Each round
of PCR consisted of 31 cycles at 94°C for 20 seconds,
55°C for 40 seconds, and 72°C for 45 seconds; Platinum®

Taq DNA polymerase (GibcoBRL, Baltimore, MD) was
used for DNA amplification. The PCR product (5 µl) con-
taining the 3'-UTR (ACAA) insertion/deletion polymor-
phism was mixed with 5 µl of formamide-based stop
buffer, heated to 95°C for 10 min, placed on ice, electro-
phoresed on a 6% acrylamide gel, and then exposed to
film.

Five identified single nucleotide polymorphisms, c.
901C>G (exon 6), c. 1197A>G (exon 9), c. 1737A>G (ex-
on 12), c. 2286A>G (exon 16), and c. 5002A>G (exon
34), were also analyzed following 2 rounds of nested PCR;
the exon specific forward and reverse primers have been
previously described [32,33]. The exons containing these
polymorphisms were PCR amplified from genomic DNA
using PCR conditions identical to those described above.
The single nucleotide polymorphisms used to determine
M6P/IGF2R loss of heterozygosity were assessed by direct
sequencing of PCR products according to the manufactur-
er's protocol (Thermo Sequenase, USB Corporation,
Cleveland, OH) (Figure 1). M6P/IGF2R loss of heterozy-
gosity frequency is independent of the polymorphism
used for its estimation (p = 0.3).

Taq DNA polymerase can introduce sequence errors dur-
ing PCR amplification, and unequal amplification of the
two alleles can result in false positive detection of loss of
heterozygosity. Thus, both the normal and tumor DNA
templates were amplified in three independent PCR reac-
tions, and assessed for tumor M6P/IGF2R loss of heterozy-
gosity. Due to the potential of contaminating the tumor
tissue sample with normal stroma, allele loss in informa-
tive patients was defined as a >50% decrease in the ratio
of the polymorphic band intensities in the tumor tissue
versus that in the surrounding normal stromal tissue; this
was quantified using a densitometer.

Figure 1
M6P/IGF2R loss of heterozygosity in human head and neck 
cancer. A single nucleotide polymorphism (c. 1197A>G tran-
sition) in exon 9 of the M6P/IGF2R was used to determine 
loss of heterozygosity in these representative samples 
[32,33]. (A) Informative head and neck cancer without M6P/
IGF2R loss of heterozygosity (i.e. both A and G polymor-
phisms expressed in tumor). (B) Informative head and neck 
cancer with M6P/IGF2R loss of heterozygosity (i.e. only G 
polymorphism expressed in tumor). (C) Non-informative 
head and neck cancer. Arrow, location of A>G polymor-
phism; arrowhead, A allele absent.
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Table 1: Clinical characteristics of head and neck cancer patients

Characteristics Mutated M6P/IGF2R 
(n = 30)

Non Mutated M6P/
IGF2R (n = 26)

Informative Patients 
(n = 56)

Excluded Patients
(n = 83)

Gender (No.) Male: 25 (83%) Male: 23 (89%) Male: 48 (86%) Male: 66 (80%)
p = 0.71; p = 0.42 Female: 5 (17%) Female: 3 (11%) Female: 8 (14%) Female: 17 (20%)
Age (Years) Median: 60.4 Median: 60.9 Median: 61 Median: 60
p = 1.0; p = 0.5 Range: 37–71 Range: 39 – 74 Range: 37 – 74 Range: 30 – 75
Race (No.) White: 25 (83%) White: 17 (65%) White: 42 (75%) White: 52 (63%)
p = 0.2; p = 0.3 Black: 5 (17%) Black: 8 (31%) Black: 13 (23%) Black: 30 (36%)

Native American: 1 (4%) Native American: 1 (2%) Native American: 1 (1%)
Smoking History Yes: 30 (100%) Yes: 23 (89%) Yes: 53 (95%) Yes: 76 (92%)
p = 0.1; p = 0.5 No: 0 (0%) No: 3 (11%) No: 3 (5%) No: 7 (8%)
Baseline Hgb (g/dL) Median: 14.2 Median: 14 Median: 14.2 Median: 13.5
p = 0.8; p = 0.06 Range: 11.5 – 17 Range: 9.9 – 16.9 Range: 9.9 – 17.3 Range: 10.8 – 25
Karnofsky Performance Median: 90 Median: 90 Median: 90 Median: 90
Status p = 0.9; p = 0.2 Range: 60–100 Range: 70 – 100 Range: 60 – 100 Range: 60 – 100
Tumor Resectability Yes: 18 (60%) Yes: 14 (53%) Yes: 32 (57%) Yes: 49 (59%)
p = 0.8; p = 0.5 No: 12 (40%) No: 12 (47%) No: 24 (43%) No: 34 (41%)
Follow-up (Months) Median: 29 Median: 52 Median: 38.6 Median: 28.2

Range: 2 – 100 Range: 3–124 Range: 2 – 125 Range: 2 – 97
Treatment (No.)
p = 0.8; p = 0.8
RT alone 17 (57%) 16 (61%) 33 (59%) 46 (55%)
RT + Chemotherapy 13 (43%) 10 (39%) 23 (41%) 37 (45%)
Tumor Stage (No.)
p = 0.4; p = 0.3
T1 0 0 0 1 (1%)
T2 3 (10%) 6 (23%) 9 (16%) 6 (8%)
T3 14 (47%) 11 (42%) 25 (45%) 45 (54%)
T4 13 (43%) 9 (35%) 22 (39%) 30 (36%)
Tx 0 0 0 1 (1%)
Nodal Stage (No.)
p = 0.6; p = 0.2
N0 9 (30%) 8 (31%) 17 (30%) 24 (29%)
N1 7 (23%) 3 (12%) 10 (18%) 15 (18%)
N2 12 (40%) 14 (53%) 26 (46%) 30 (36%)
N3 2 (7%) 1 (4%) 3 (5%) 14 (17%)
Overall Staging (No.)
p = 0.4; p = 0.08
II 0 2 (8%) 2 (4%) 0
III 11 (37%) 7 (27%) 18 (32%) 24 (29%)
IVa 17 (57%) 16 (61%) 33 (59%) 45 (54%)
IVb 2 (7%) 1 (4%) 3 (5%) 14 (17%)
Primary Tumor Site (No.)
p = 0.1; p = 0.07
Base of tongue 7 (23%) 10 (38%) 17 (30%) 15 (18%)
Tonsil 7 (23%) 4 (16%) 11 (20%) 23 (27%)
Larynx 9 (30%) 3 (11%) 12 (21%) 11 (13%)
Hypopharynx 3 (10) 6 (23%) 9 (16%) 17 (21%)
Paranasal Sinuses 0 2 (8%) 2 (4%) 5 (6%)
Oral Cavity 4 (14%) 1 (4%) 5 (9%) 3 (4%)
Nasopharynx 0 0 0 8 (10%)
Unknown 0 0 0 1 (1%)

1p-value for comparison between patients with M6P/IGF2R mutated and non mutated tumors. 2p-value for comparison between the M6P/IGF2R 
informative patients and excluded patients.
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Statistical Analysis
Relapse-free survival represented the primary clinical end-
point. Locoregional control was evaluated as a secondary
endpoint since the vast majority of head and neck cancers
recur either locally at the primary site or regionally in the
neck; cause specific survival was also assessed. All curves
were computed using the Kaplan-Meier method starting
from the time of study entry. Curves for different sub-
groups were compared by the Cox-Mantel test. A chi-
squared test was used to compare the clinical characteris-
tics between M6P/IGF2R informative and excluded pa-
tients and informative patients with and without M6P/
IGF2R loss of heterozygosity. A p-value < 0.05 was consid-
ered to be statistically significant.

Results
M6P/IGF2R Loss of Heterozygosity Analysis
The study population consisted of 116 patients enrolled
in a phase III randomized clinical trial comparing radia-
tion alone versus radiation plus concurrent chemotherapy
for advanced head and neck cancer [31] plus an addition-
al 23 patients who met all the entrance criteria but de-
clined enrollment. A total of 52 tumors could not used in
this investigation because either the tissue slides were un-

available or the DNA could not be PCR amplified. Of the
remaining 87 patients, 56 (64%) were informative (i.e.
polymorphic), and the tumors in 54% (30/56) of these
patients had M6P/IGF2R loss of heterozygosity (Figure 1).
The M6P/IGF2R informative patients and those not used
in this study were insignificantly different from each other
for the clinical characteristics of gender, age, race, smok-
ing history, baseline hemoglobin, Karnofsky performance
status, tumor resectability, treatment, tumor stage, nodal
stage, overall staging and site of primary tumor (Table 1).

Clinical Outcome
The median follow-up for surviving patients enrolled on
this trial [31] is now 76 months (range: 2 to 128 months).
M6P/IGF2R loss of heterozygosity was associated with sig-
nificant reductions in 5 year relapse-free survival {37%
(95% CI: 20% to 54%) vs. 65% (95% CI: 46% to 84%); p
= 0.05}, locoregional control {46% (95% CI: 28% to
64%) vs. 76% (95% CI: 58% to 94%); p = 0.03} and a
non-significant reduction in cause-specific survival {43%
(95% CI: 25% to 61%) vs. 69% (95% CI: 49% to 89%); p
= 0.1}.

Figure 2
Kaplan-Meier estimates of relapse-free survival in patients 
with head and neck cancer. Tumors treated with radiother-
apy alone (solid lines) were either mutated (RT, LOH) or 
unmutated (RT, non LOH) at the M6P/IGF2R locus. Tumors 
treated with combined modality therapy (dashed lines) were 
also either mutated (CM, LOH) or unmutated (CM, non 
LOH) at the M6P/IGF2R locus. Patient number (n), patients 
that failed (parentheses), censored patients (angled bars), and 
median follow-up times are provided for each patient group. 
RT, radiotherapy; CM, combined modality therapy; LOH, 
loss of heterozygosity.

Figure 3
Kaplan-Meier estimates of locoregional control in patients 
with head and neck cancer. Tumors treated with radiother-
apy alone (solid lines) were either mutated (RT, LOH) or 
unmutated (RT, non LOH) at the M6P/IGF2R locus. Tumors 
treated with combined modality therapy (dashed lines) were 
also either mutated (CM, LOH) or unmutated (CM, non 
LOH) at the M6P/IGF2R locus. Patient number (n), patients 
that failed (parentheses), censored patients (angled bars), and 
median follow-up times are provided for each patient group. 
RT, radiotherapy; CM, combined modality therapy; LOH, 
loss of heterozygosity.
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Since the clinical trial demonstrated a significant benefit
for patients receiving radiotherapy and concurrent chem-
otherapy [31], outcome was also analyzed according to
whether or not patients received chemotherapy (Figures
2,3,4). Patients in the radiotherapy (RT), loss of heterozy-
gosity (LOH) group had significantly lower 5 year relapse-
free survival {23% (95% CI: 2% to 44%) vs. 69% (95%
CI: 46% to 92%); p = 0.02} (Figure 2), locoregional
control {34% (95% CI: 11% to 57%) vs. 75% (95% CI:
54% to 98%); p = 0.03} (Figure 3) and cause specific sur-
vival {29% (95% CI: 5% to 53%) vs. 75% (95% CI: 54%
to 96%); p = 0.02} (Figure 4) than those in the RT, non
LOH group. These results indicate that M6P/IGF2R allelic
loss results in poor patient outcome when RT alone is em-
ployed since all other measured clinical characteristics of
the head and neck cancer patients were comparable to
those in patients with a non-mutated M6P/IGF2R tumor
suppressor gene (Table 1).

Patients in the RT, LOH group also fared worse than those
in the combined modality (CM), LOH group, although
the differences were not statistically significant in these
smaller subgroups: 5 year relapse-free survival {23%
(95% CI: 2% to 44%) vs. 54% (95% CI: 26% to 82%); p

= 0.18}, locoregional control {34% (95% CI: 11% to
57%) vs. 61% (95% CI: 34% to 88%); p = 0.25} and cause
specific survival {29% (95% CI: 5% to 53%) vs. 59%
(95% CI: 30% to 88%); p = 0.12}. Patients in the CM,
LOH group had 5 year relapse-free survival, locoregional
control and cause specific survival that were statistically
indistinguishable from those in the CM, non LOH group
(p > 0.2). Combined modality therapy also did not
provide any significant benefit over radiation alone for
patients with a non-mutated tumor M6P/IGF2R (p > 0.2).
Thus, patients with a non-mutated M6P/IGF2R who re-
ceived RT alone had the same long-term outcome as the
overall population of patients who received RT and con-
current chemotherapy [31]. This implies that M6P/IGF2R
allelic loss may help to identify a group of head and neck
cancer patients who can be adequately treated with RT
alone without exposure to the added morbidity of com-
bined modality therapy.

The development of second primaries was independent of
the M6P/IGF2R mutation status in the primary tumor (p =
0.8). Three of the 30 (10%) patients with M6P/IGF2R loss
of heterozygosity and two of the 26 (8%) patients without
loss of heterozygosity at this locus developed second
primaries.

Discussion
M6P/IGF2R loss of heterozygosity occurs frequently in hu-
man breast, liver and lung cancer [6,20–22], and the re-
maining allele of 30 to 50% of these tumors contains an
intragenic loss-of-function point mutation in the ligand
binding domains [35]. The M6P/IGF2R is also commonly
mutated in gastrointestinal and endometrial malignancies
because its coding sequence contains a poly-G region that
is a mutational target in tumors with mismatch repair de-
ficiencies and microsatellite instability [23,24].
Functional studies show that the introduction of an exog-
enous wild-type M6P/IGF2R into human colorectal cancer
cells with a single inactivated allele significantly decreases
growth rate and enhances apoptosis [26]. Conversely, loss
of M6P/IGF2R expression promotes cancer cell growth by
increasing intracellular signaling from both the insulin-
like growth factor I receptor and the insulin receptors [36].

We demonstrate herein that loss of heterozygosity at the
M6P/IGF2R locus in head and neck cancer is also associat-
ed with poor patient prognosis. Loss of heterozygosity in
cancer can occur either because of chromosomal deletion
or somatic recombination resulting in uniparental dis-
omy [37]. Comparative genomic hybridization studies in
head and neck cancer [10,38] demonstrate that 6q dele-
tion frequency (> 50%) is similar to that which we ob-
served at the M6P/IGF2R locus. This provides evidence
that M6P/IGF2R loss of heterozygosity in head and neck

Figure 4
Kaplan-Meier estimates of cause specific survival in patients 
with head and neck cancer. Tumors treated with radiother-
apy alone (solid lines) were either mutated (RT, LOH) or 
unmutated (RT, non LOH) at the M6P/IGF2R locus. Tumors 
treated with combined modality therapy (dashed lines) were 
also either mutated (CM, LOH) or unmutated (CM, non 
LOH) at the M6P/IGF2R locus. Patient number (n), patients 
that failed (parentheses), censored patients (angled bars), and 
median follow-up times are provided for each patient group. 
RT, radiotherapy; CM, combined modality therapy; LOH, 
loss of heterozygosity.
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cancer is due primarily to either gene deletion or chromo-
somal loss rather than somatic recombination.

Since chromosomal deletion can affect more than one
gene, M6P/IGF2R loss of heterozygosity alone does not
rule out the possibility that other adjacent genes also have
a tumor suppressor function in head and neck cancer.
However, our previous finding, that both alleles of the
M6P/IGF2R are mutated in greater than 50% of squamous
cell carcinomas of the lung [22], supports our postulate
that the M6P/IGF2R is a key head and neck cancer tumor
suppressor gene at chromosome location 6q.

The clinical trial from which the tumor specimens used in
this study were derived showed improvements in relapse-
free survival, locoregional control, and overall survival for
those patients randomized to combined modality therapy
[31]. This investigation established that patients whose tu-
mors had M6P/IGF2R loss of heterozygosity and were
treated with radiotherapy alone had a significantly worse
prognosis than their counterparts with a non-mutated
allele. Conversely, patients with an intact M6P/IGF2R had
a similar prognosis whether they received radiotherapy
alone or combined modality treatment. Thus, our find-
ings suggest that head and neck cancer patients with tu-
mor M6P/IGF2R loss of heterozygosity would benefit
most from combined modality treatment.

The mechanism by which M6P/IGF2R allelic loss in head
and neck tumors increases the effectiveness of adjuvant
chemotherapy is presently unknown, but it is clearly of
clinical importance. A primary function of this receptor in
placental mammals involves the degradation of extracel-
lular IGF2. M6P/IGF2R allelic loss would therefore result
in enhanced cellular bioavailability of this potent growth
factor, thereby potentially increasing both cell prolifera-
tion and resistance to apoptosis [29]. The M6P/IGF2R also
facilitates the activation of TGFβ, a potent cell growth in-
hibitor that is secreted in an inactive form (reviewed in
[15,16]). M6P/IGF2R mutation is therefore one
mechanism by which cancer cells can become refractory
to TGFβ's mitoinhibitory effect.

We have previously shown that M6P/IGF2R mutation in
squamous cell carcinoma of the lung is highly correlated
with increased TGFβ concentrations in both the tumor
and patient plasma [39]. Elevated TGFβ in the latter stages
of tumor progression directly contributes to enhanced tu-
mor angiogenesis, metastasis formation and a decreased
host immune response (reviewed in [40]). Together these
findings predict that tumors with a mutated M6P/IGF2R
would be more resistant to therapy than those with an in-
tact receptor. Moreover, if some chemotherapeutic agents
are not only directly cytotoxic to cancer cells, but also re-
duce tumor production of growth factors, such as IGF2

and TGFβ, adjuvant chemotherapy would be more useful
in treating tumors with a mutated M6P/IGF2R, as ob-
served in this study.

M6P/IGF2R is normally imprinted in mice with only the
maternal copy of the gene being expressed [41]. In con-
trast, both copies of the M6P/IGF2R are expressed in hu-
mans because genomic imprinting at this locus was lost in
the primate lineage approximately 75 million years ago
[42]. Importantly, restoration of biallelic M6P/IGF2R ex-
pression in mice results in a marked reduction in offspring
weight late in embryonic development that persists into
adulthood [43]. This demonstrates that M6P/IGF2R allelic
loss or haploid insufficiency markedly enhances cell pro-
liferation and/or survival during fetal development.
Therefore, mutation of even a single allele of the M6P/
IGF2R in human somatic cells is predicted to also pro-
mote cell growth.

Haploid insufficiency for tumor suppressor genes, such as
Nf2, p27Kip1, p53, Ptch, Pten and TGFβ, is known to pro-
mote tumor formation (reviewed in [44,45]). Yamada et
al. [6] demonstrated that in patients chronically infected
with hepatitis B and/or hepatitis C viruses, the M6P/IGF2R
is mutated not only in hepatocellular carcinomas (HCCs),
but also in the phenotypically normal hepatocytes adja-
cent to these tumors. Interestingly, only one M6P/IGF2R
allele is inactivated in the adjacent cirrhotic tissue even
when both alleles are mutated in the HCC. These findings
are consistent with normal appearing, preneoplastic hepa-
tocytes forming clonal masses in the liver because M6P/
IGF2R haploid insufficiency affords them with a selective
growth and/or survival advantage relative to normal hepa-
tocytes [46].

The liver is not the only organ in which regions of normal
appearing tissue have a clonal origin. Entire lobules and
large ducts of normal breast tissue can be derived from a
single progenitor cell [47], and LOH at various chromo-
somal locations is frequently detectable in
morphologically normal lobules adjacent to breast tu-
mors [48]. Lung tumors and head and neck tumors that
develop in a localized region also often have a common
clonal origin [3,4,49]. The high frequency of M6P/IGF2R
loss of heterozygosity observed in the head and neck tu-
mors in this study suggests that the phenomenon of "field
cancerization", first described by Slaughter and his col-
leagues [2] in 1953, may in part result from the clonal pro-
liferation of mucosal epithelial cells with M6P/IGF2R
allelic loss.

Conclusions
The observations in this study raise the intriguing possi-
bility that selection of head and neck cancer patients for
concurrent chemotherapy can be based upon the
Page 7 of 9
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intratumoral mutational status of M6P/IGF2R. Further-
more, since M6P/IGF2R loss of heterozygosity in squa-
mous cell carcinomas is highly correlated with an elevated
plasma TGFβ level [39], patient prognosis may potentially
be assessed by a simple blood test. This would be desira-
ble since the morbidity of combined modality therapy is
greater than that of radiotherapy alone [50,51].
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