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Abstract

Background: There is emerging evidence that Wnt pathway activity may increase during the progression from
colorectal adenoma to carcinoma and that this increase is potentially an important step towards the invasive stage.
Here, we investigated whether epigenetic silencing of Wnt antagonists is the biological driver for this increased
Whnt activity in human tissues and how these methylation changes correlate with MSI (Microsatelite Instability) and
CIMP (CpG Island Methylator Phenotype) statuses as well as known mutations in genes driving colorectal neoplasia.

Methods: We conducted a systematic analysis by pyrosequencing, to determine the promoter methylation of CpG
islands associated with 17 Wnt signaling component genes. Methylation levels were correlated with MSI and CIMP
statuses and known mutations within the APC, BRAF and KRAS genes in 264 matched samples representing the
progression from normal to pre-invasive adenoma to colorectal carcinoma.

Results: We discovered widespread hypermethylation of the Wnt antagonists SFRP1, SFRP2, SFRP5, DKK2, WIF1

and SOX17 in the transition from normal to adenoma with only the Wnt antagonists SFRP1, SFRP2, DKK2 and WIF1
showing further significant increase in methylation from adenoma to carcinoma. We show this to be accompanied
by loss of expression of these Wnt antagonists, and by an increase in nuclear Wnt pathway activity. Mixed effects
models revealed that mutations in APC, BRAF and KRAS occur at the transition from normal to adenoma stages
whilst the hypermethylation of the Wnt antagonists continued to accumulate during the transitions from adenoma
to carcinoma stages.

Conclusion: Our study provides strong evidence for a correlation between progressive hypermethylation and
silencing of several Wnt antagonists with stepping-up in Wnt pathway activity beyond the APC loss associated
tumour-initiating Wnt signalling levels.

Background

Colorectal cancer (CRC) is the second most common
cause of cancer-related death in the UK accounting for
approximately 10% of all cancer deaths [1]. Known
genetic and epigenetic aberrations drive the formation of
a benign adenoma, and its progression to full-blown
colorectal carcinoma [2-4]. In particular, >90% of CRC
exhibit mutations in the Adenomatous polyposis coli
(APC) gene and in other Wnt signaling components that
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result in hyperactivation of the Wnt pathway, and these
mutations are the earliest known genetic alterations,
indicating that they represent the initiating event in the
path to CRC [2,5,6]. APC is a crucial negative regulator
of the Wnt pathway: as a component of the cytoplasmic
Axin degradasome complex, APC promotes the protea-
somal degradation of the Wnt effector B-catenin; if this
complex is dysfunctional as a consequence of mutational
inactivation of APC, B-catenin accumulates to high levels
and translocates into the nucleus where it operates a
transcriptional switch [7]. One of its direct transcrip-
tional targets is ¢-MYC, whose product is pivotal in
driving malignancy in both mice and humans [8,9].

© 2014 Silva et al, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain

Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,

unless otherwise stated.


mailto:aeki2@cam.ac.uk
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/

Silva et al. BMC Cancer 2014, 14:891
http://www.biomedcentral.com/1471-2407/14/891

The role of Wnt signaling in initiating CRC is there-
fore well documented. However, it is less clear whether
hyperactive Wnt signaling is also required for the pro-
gression from adenoma to carcinoma. Recent evidence
suggests that this may be the case, based on xenograft
models in mice and on the observation that p-catenin
accumulates to high levels in CRC samples [10]. Simi-
larly, our own data revealed that the levels of nuclear
[B-catenin tend to be elevated in early adenomas, but
show a further surge in levels in carcinomas, indicating
that the Wnt signaling levels increase during cancer
progression [11]. Furthermore, epigenetic inactivation of
extracellular Wnt signaling antagonists has also been ob-
served in colorectal carcinomas, which could boost Wnt
signaling to levels above those caused by the initial muta-
tional inactivation of APC [12]. All these are indications
that the level of Wnt signaling increases from the aden-
oma to the carcinoma stage, implying that the sustained
(or increased) activity of P-catenin could be critical
throughout CRC progression.

Epigenetic silencing by DNA hypermethylation of asso-
ciated CpG islands is a common mechanism by which
genes are inactivated during cancer development. In CRC,
epigenetic silencing has been observed not only for nega-
tive regulators of Wnt signaling upstream in the pathway,
such as the extracellular Wnt inhibitors SFRPI, SFRP2,
SFRP3, SFRP4, SFRPS5, WIF1, DKK1 and DKK3 [12-19]
and DACT3 [20] but also for negative regulators acting
further downstream in the pathway, including APC [21],
AXIN2 [22], CDH1 [23] and SOX17 [24]. However, none of
these studies entailed a systematic and comprehensive cha-
racterization of the synchronous changes of DNA me-
thylation patterns of Wnt antagonists and particularly how
these changes affect Wnt signalling transcriptional output
through the neoplastic progression from the pre-invasive
adenoma stage to the invasive carcinoma stage. In addition,
no data is available on: (i) the association of the methylation
changes of Wnt antagonists with microsatalite instability
(MSI)/CpG island methylator phenotype (CIMP) statuses
nor (i) its relationship to known mutations in genes
involved in the early progression of colorectal neoplasia.

We thus set out to analyze systematically the CpG me-
thylation patterns at gene promoters of 17 Wnt signaling
components (Additional file 1) and correlate these pat-
terns with expression levels of nuclear B-catenin and two
well-established Wnt target genes (AXIN2 and ¢-MYC). In
addition, we examined the correlation of the methylation
patterns of these Wnt genes with MSI/CIMP statuses, the
presence of known mutations within APC, BRAF and
KRAS, in a large set of matching normal, hyperplastic or
adenomatous polyps, primary and metastatic adenocarcin-
oma tissue samples. Finally, we asked if the identified pat-
terns of methylation of these Wnt genes impact patients’
survival.
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Methods

Clinical sample collection

Two independent sample sets were collected from colec-
tomy surgical specimens (the clinicopathological charac-
teristics are summarised in Additional file 2). The first
set of samples (CRC1, n =86) was obtained from 48 pa-
tients with invasive colorectal primary carcinoma with or
without evidence of metastatic cancer deposits. The CRC1
sample set comprised normal colonic mucosa (n = 20),
primary (n=51) and liver metastatic (n=15) adenocar-
cinomas. The second set (CRC2) comprised 172 samples
from a set of 49 patients presenting with synchronous
adenoma and invasive carcinoma. Normal tissue samples
(n=73) were collected at 5 cm and 20 cm (where avail-
able) away from the carcinoma and were defined as high-
risk normal mucosa (HRN), samples from hyperplastic
polyps (n =13), adenomatous polyps (n =39) and primary
adenocarcinoma (n = 47) were also collected. For compari-
son, we collected normal mucosa from patients undergo-
ing colectomy for diverticular disease (n=6) who had no
previous or present history of CRC. These samples were
defined as low-risk normal mucosa (LRN). The histo-
logical features and cellularity of all tissue samples were
assessed by microscopic examination of tissues sampled
immediately adjacent to the site of sampling fresh tissues
by a histopathologist with interest in CRC (AEKI). Samples
were collected within the Histopathology Department and
the Tissue Bank facility within Addenbrooke’s Hospital
(Cambridge, UK) and a subset of CRC1 cases (n =37) was
obtained from Ohio State University (OSU) where colonic
normal, primary and metastatic adenocarcinoma tissue
samples were microdissected. Ethical approval for all
the work conducted was obtained from both OSU insti-
tutional review board and Cambridgshire local research
ethics committee (LREC ref. 04/Q0108/125 and 06/
Q0108/307). Written informed consent was obtained from
the patient for the publication of this report and any
accompanying images.

DNA extraction and bisulfite modification

High molecular weight DNA was isolated using a pro-
teinase K/phenol extraction method. Sodium bisulfite
conversion of DNA was performed using the EZ DNA
Methylation-Gold Kit (ZymoResearch, Cambridge, UK),
following the manufacturer’s protocol.

Total RNA extraction and real-time PCR

Tissue samples were left in RNAlater-ICE at -20°C for
at least 24 hours prior to extraction. RNA was extracted
using both chloroform and column based protocols as
described in Additional file 2. Quality and quantity of
the extracted RNA was verity before storage at —80°C.
Full details of cDNA synthesis and Real-Time Quantita-
tive PCR (qRT-PCR) are described in Additional file 3.
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We used the Pfaffl method to calculate the expression
fold change [25].

Pyrosequencing assays

Bisulfite-modified DNA was amplified by PCR in a
50 pl reaction volume, using the primers described in
Additional file 4 and reagents supplied by Applied Bio-
systems. A 40 pl aliquot of each PCR product was used to
perform the pyrosequencing reaction following the
manufacturer’s protocol and as previously described [26].
Negative controls recommended by the manufacturer
were used, as well as positive controls that included (i)
DNA in vitro methylated using SssI CpG Methyltransfer-
ase (New England Biolabs, Hitchin, UK) following the
manufacturer’s instructions, (ii) hypomethylated DNA,
generated through PCR and a (iii) mixture of equal
volumes of the above methylated and unmethylated
controls. The methylation quantification was analysed by
Pyro Q-CpG Software (Biotage, Uppsala, Sweden).

MSI, APC, BRAF, KRAS mutations and CIMP assessment
MSI, BRAF and CIMP status of the tumours had been
previously reported [14]. Mutational analysis of APC [27]
and KRAS [28] were as previously reported.

Statistical analysis

A modified version of the R package ALL was used to
generate image plots of the methylation data within the
R statistical environment. We used the package KmlL
[29] within the R statistical environment [30] to identify
the clusters of the trajectories of methylation changes
during colorectal neoplastic progression.

Survival analysis was performed using the st functions
in Stata 11 [31]. A Cox regression was used to examine
the association between survival and average DNA me-
thylation, age, sex, pTMN stage, CIMP and MSI status,
and calculate the hazard ratio and the risk of death asso-
ciated with each variable. The average percentage methy-
lation and age were used as continuous variables and
sex, pTMN stage, CIMP and MSI statuses as categorical
variables in the Cox regression. The risk of death was
first examined by univariable Cox regression and then
by multivariable Cox regression to adjust the hazard ra-
tio of one variable in the presence of other variables in
the multivariable model. To determine the best predic-
tors of survival a multivariable Cox regression model
was constructed based only on the continuous variables
plus CIMP and MSI statuses using the stepwise selection
method with a p(entry) =0.049 and p(removal) = 0.05.
Log-rank tests were performed and Kaplan-Meier curves
constructed based on the significant variables in the
multivariable Cox regression model and used to show
the survival patterns of patients depending on the status
of these variables. The cut-off used to define high and
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low methylation for these two variables was based on
the literature and previous experience of this type of
data. For details of the mixed effects models analysis see
(Additional file 5). Where applicable, a Bonferroni ad-
justment was applied to the p-values from the survival
analysis in order to correct for multiple testing.

Results and discussion

Increased CpG methylation of multiple Wnt antagonists
during colorectal neoplastic progression

To gain systematic information regarding the epigene-
tic silencing of Wnt signalling during CRC progression,
we selected a panel of 17 genes encoding Wnt signalling
components for pyrosequencing (Additional file 1). We
examined the DNA methylation of 134 CpG dinucleotides
within promoter-CpG islands associated with these genes
(full details of individual CpGs are listed in Additional
file 4) in 264 matched normal, adenomatous or hyper-
plastic polyps and adenocarcinoma tissue samples
obtained from 126 patients. As the data represent the
different stages and time points along the progression
of colorectal neoplasia, we analysed our data by using a
k-means clustering algorithm that clusters the trajector-
ies of the matched pyrosequencing data points from the
different tissue samples in individual patients based on
the Calinski and Harabasz criterion [32]. This criterion
revealed two main clusters with significantly different
CpG patterns (P < 0.05, Fisher’s exact test) (Additional file
6), dependent on whether the genes encode Wnt antago-
nists or agonists (Figure 1).

The first of these clusters contains seven genes (SFRP1,
SFRP2, SFRPS, DKK2, WIF1, WNT3A and SOX17) whose
CpG methylation increased significantly from normal to
adenoma (P < 0.001, Wilcoxon signed rank test or paired
t-test depending on data distribution and false discovery
rate adjusted for multiple testing (Additional file 7)): of
these, six encode Wnt antagonists (SFRPI, SFRP2, SFRPS,
DKK?2, WIFI and SOX17) with only the Wnt antagonists
SFRPI1, SFRP2, WIF1 and DKK2 showing further signifi-
cant increase in methylation from adenoma to carcinoma
(P<0.05 Wilcoxon signed rank test or paired t-test
depending on data distribution (Additional file 7)). This
indicates a strong tendency for Wnt signalling antagonists
to become hypermethylated during CRC progression,
suggesting that the Wnt signalling levels may increase
during the advancement of cancer. Interestingly, mixed
effects models analysis of known mutations in three
genes (APC, BRAF and KRAS) known to play an im-
portant role in colorectal neoplasia showed that most
mutations occur at the normal to adenoma transition
unlike hypermethylation of Wnt antagonists which con-
tinues to accumulate during the adenoma to carcinoma
transition (Additional file 8).
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Figure 1 Image plot showing CpG methylation data from 264 DNA samples as assessed by pyrosequencing. Samples are grouped by
pathological category from normal (bottom) to carcinoma (top). Rows represent individual samples. LRN: low-risk normal mucosa from patients
with no history of CRC; HRN: high-risk normal mucosa from patients with CRC; HP: hyperplastic polyps; Ad: adenomas; pT: primary colorectal
adenocarcinomas and M: metastatic adenocarcinomas to the liver. Columns show the methylation data for each of the CpG dinucleotides analyzed
grouped by gene. A scale shown on the right side of the figure represents the colour spectrum reflecting the percentage of CpG methylation
as detected by pyrosequencing. White spaces within the plot indicate missing values due to failure of samples to meet bisulfite conversion or
pyrosequencing controls or due to lack of DNA. The subset of CIMP and MSI positive primary colorectal carcinomas is highlighted on the plot.
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Slightly at odds with other members of the first cluster
is the presence of WNT3A (encoding a Wnt ligand that
triggers ‘canonical’ or B-catenin-dependent signalling),
[33] which shows the same tendency towards promoter
hypermethylation albeit not significantly at the adenoma
to the carcinoma stage (P=0.0678, Wilcoxon signed

rank test (Additional file 7)). This increase in methyla-
tion is somewhat unexpected as it suggests that this cano-
nical Wnt ligand decreases during progression, although
we have not shown this explicitly. We note that
several other Wnt ligands such as WNT2, WNT10A
and WNT6 are expressed at high levels in CRC
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samples, [34-37] which could substitute for the poten-
tially decreasing Wnt3a in the activation of B-catenin.

The second cluster contains 10 genes (SFRP4, DKKI,
DKK3, WNT5A, APC, AXIN2, GSK3b, CTNNB1, DVL2,
CDH1) whose methylation is less frequent, and at lower
levels. However, five of the genes in this cluster exhibit a
moderate level of progressive CpG methylation, and thus
form a distinct sub-group. This sub-group includes four
genes that encode further Wnt antagonists (SFRP4, DKK1,
DKK3, APC). The fifth gene encodes WNT5A, a ligand
that triggers p-catenin-independent (‘non-canonical))
signalling, which can be accompanied by an attenuation of
[-catenin-dependent Wnt signalling [38]. The remaining
five genes show no detectable promoter methylation, and
thus form a second sub-group. This sub-group includes
the two genes in our panel that encode positive Wnt
signalling components, namely DVL2 and [-catenin. It
also contains AXIN2, a gene universally activated by p-
catenin during Wnt signalling, [39] which is as expected
since this gene is strongly expressed during the progres-
sion of CRC [11] (see also below).

Interestingly, APC was amongst the subset of genes
with a considerable tendency for hypermethylation in car-
cinomas (Figure 1). Hypermethylation of APC was present
in carcinomas independently of whether or not the tu-
mours already bear APC mutations (Additional file 9).
Given that the great majority of APC mutations in CRC
cause APC truncations that retain partial function (e.g.
the binding to B-catenin), [40] this suggests that the ob-
served hypermethylation of APC could cause epigenetic
silencing and reduced expression of the mutant truncated
APC. This accounts for a further reduction of APC func-
tion, beyond the level that caused initiation of tumorigen-
esis. In other words, epigenetic silencing of APC could be
equivalent to epigenetic silencing of extracellular Wnt
inhibitors, boosting the levels of Wnt signalling activity
during CRC progression.

Our evidence supports the hypothesis that the select-
ive and progressive hypermethylation of Wnt antagonists
increases Wnt signalling during the progression of co-
lorectal cancer, beyond the initial Wnt hyperactivation
caused by the initiating mutations — typically APC. An
important implication is that Wnt signalling needs to be
at least sustained, if not boosted, in order for adenomas
to progress to colorectal carcinomas. This reinforces a
previous conclusion that Wnt signalling is critical not
only for the initiation of CRC, but also for its progres-
sion [10]. The presence of Polycomb marks in regula-
tory regions of genes that are de nmovo methylated in
cancer has been proposed to be the mechanism by which
certain genes become preferentially hypermethylated
in cancer [41-44]. The Wnt antagonists SFRPI, SFRP2,
SFRP4, SFRPS, DKK1, DKK2, SOX17 and WIFI have all
been reported to be Polycomb target genes in human
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embryonic stem cells, embryonic fibroblasts, lymphoblasts
and murine embryonic stem cells, [45,46] raising the pos-
sibility that Polycomb-induced epigenetic silencing may
be the underlying mechanism for the selective hyperme-
thylation of these Wnt antagonists. However, CTNNBI
and AXIN2 have also been reported to be Polycomb target
genes, [41,45,47] but showed no detectable hypermethy-
lation during colorectal neoplastic progression in our
sample set, suggesting that factors in addition to the
Polycomb determine whether or not the promoter of a
Wnt gene becomes epigenetically silenced.

We have shown previously that CIMP correlates with
the pattern of global CpG methylation and MSI status in
CRC [14]. We have also reported that a small subset of
the carcinomas, but none of the normal, hyperplastic
polyp nor adenoma samples used in this study, are
CIMP or MSI positive, [14] so we asked whether some
of the observed hypermethylation correlated with the
CIMP and/or MSI status of the corresponding carcino-
mas. Indeed, several loci showed correlation with CIMP
positive state (Additional file 10) but only three the loci
(SFRP4, DKK1 and WNT5A) showed significant correl-
ation with both CIMP and MSI positive status (Figure 1;
Additional file 10), suggesting that hypermethylation at
these three loci may have been exacerbated by the MSI
status of these carcinomas and that it may share a com-
mon mechanism leading to hypermethylation of the
CIMP genes. Importantly though, the three loci also show
a tendency for moderate hypermethylation amongst the
remaining CIMP- and MSI-negative tumours (Figure 1).
This reinforces the notion that these three genes belong to
the sub-group of genes with a moderate tendency for
hypermethylation during CRC progression.

Correlation of Wnt antagonist hypermethylation with loss
of gene expression

To establish whether the observed DNA hypermethy-
lation is functionally relevant, we examined the levels of
gene expression of five of the Wnt antagonists (SFRPI,
SFRP2, SFRPS, DKK2 and WIFI) with progressive hyper-
methylation during neoplastic development of CRC. To
do this, we used quantitative RT-PCR on total RNA ex-
tracted from a subset of matched normal, hyperplastic
polyps/adenomas and adenocarcinoma tissue samples
and determine the expression fold-change of these five
genes. We observed a significant negative correlation be-
tween the expression fold-change and the DNA methy-
lation levels for SFRPI (r=-0.584, P <0.001 Pearson
correlation test), SFRP2 (r = -0.340, P =0.032 Pearson
correlation test), SFRP5 (r=-0.375, P=0.038 Pearson
correlation test) and WIFI (r=-0.384, P =0.048 Pearson
correlation test) (Figure 2). This parallels previous re-
sults, which revealed an overall decrease in SFRPI,
SFRP2 and SERPS5 expression correlating with promoter
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Figure 2 Shown in the top row are the plots of the correlation between the expression fold-change along the x-axis and the
corresponding average levels of methylation percentage along the y-axis for SFRP1, SFRP2, SFRP5, WIF1 and DKK2 in a subset of tissue
samples that included normal (n =16, HRN), hyperplastic polyps (n =3, HP), adenomas (n =10, Ad) and adenocarcinomas (n =12, pT).
The bottom row shows the corresponding correlations in the CRC cell line HCT116 following 5-azadeoxycytidine treatment as well as untreated
controls. The dotted lines across the plots show the fitted linear model for the data from the corresponding gene. Note that the scale of the
x-axis varies between the plots depending on the range of the expression fold-change for each of the genes.
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Figure 3 Bean-plots representing on the y-axis, the relative expression data for the two Wnt downstream targets (AXIN2, cMYC) and
the levels of immunohistochemical expression of 3-catenin (as described previously [11]) and along the x-axis the progression pattern
by type of tissue (high-risk normal (HRN) mucosa, hyperplastic polyps (HP)/adenomatous tissue (Ad) and primary (pT) adenocarcinoma
tissues). Individual observations are shown as small horizontal lines in a one-dimensional scatter plot. The estimated density of the distributions
(visible as a diamond-shaped outline) together with the average for each sample subset (solid horizontal line) and the overall average (solid
horizontal line across all samples) are shown. Overall there is progressive increase in the levels of expression of these genes relative to normal
tissue. Expression of AXIN2 and cMYC was investigated in 13 cases, which included: normal (n = 16), hyperplastic polyp/adenoma (n = 13) and
carcinoma (n=12) samples.
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hypermethylation of these genes [12]. Only DKK2 (which
is expressed at relatively low levels in the normal colorec-
tal mucosa and whose methylation levels are low) showed
no significant correlation between methylation and
expression levels (r=-0.16, P=0.36, Pearson correl-
ation test). Either, our analysis was not sensitive enough
to detect such a correlation, or the hypermethylation of
DKK2 is simply a bystander effect, and functionally
irrelevant.

To support the observed correlations between DNA
methylation and expression levels in the tissue samples, we
examined the effect of 5'-aza-2'-deoxycytidine (5-azaDC)
treatment on the levels of DNA methylation associated
with the same set of five genes (SFRPI, SFRP2, SFRPS,
DKK?2 and WIFI) in the colorectal cancer cell line HCT-
116 (bearing an activating mutation of p-catenin). Un-
treated cells showed high levels of CpG methylation for
each of the five genes, correlating with low levels or absent
mRNA expression (Figure 2). However, 5-azaDC treat-
ment not only decreased the levels of methylation, but also
increased the corresponding levels of mRNA expression
(Figure 2). Thus, the levels of Wnt antagonist expression
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depended in each case on de-methylation of their CpG
islands. This provides strong evidence that the majority
of the observed hypermethylation in tumours (Figure 1)
is functionally relevant, reducing the expression of the
linked genes.

Hypermethylation of Wnt antagonists correlates with
nuclear accumulation of B-catenin

We have previously shown that, in the same set of
matched tumour samples examined here for hyper-
methylation, the levels of nuclear p-catenin increase
step-wise from normal tissues to hyperplastic polyps and
adenomas to adenocarcinomas [11].

To confirm the functional relevance of the observed
increases in the levels of nuclear -catenin, we examined
the expression levels of two well-established Wnt target
genes, AXIN2 and ¢-MYC. There was a significant increase
in their levels of expression during colorectal neoplastic
progression (P =0.008 and P < 0.001 respectively, Wilcoxon
signed rank test) (Figure 3), and for ¢-MYC this signifi-
cantly and strongly correlated with the levels of nuclear
B-catenin (r=0.751, P<0.001, Pearson correlation test).
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Figure 4 Kaplan-Meier plots were constructed with methylation level cut-off values of 10.5 for DKK1 and 16.7 for SFPR4 respectively
and log-rank tests were also performed using these cut-offs. There was a significant difference in the survival pattern of those patients
above and below the methylation level cut-off for DKKT but not for SFPR4 (unadjusted log-rank p = 0.046 and 0.404 respectively) as shown in
A and B. With the MSI- and CIMP-positive carcinomas are excluded from this analysis, it remains the case that the hypermethylation of DKK1
and SFRP4 was significantly associated with poor survival for DKKT and improved survival for SFRP4 as shown in € and D. The cut-off values for
SFRP4=16.7 and DKKT =10.5 were defined as the average adenocarcinoma group methylation level for these genes.
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The expression levels of these two genes also correlated
significantly with the methylation levels of SERPI (r = 0.456,
P=0.003 and r = 0.494, P =0.001 respectively, Pearson cor-
relation test) and SFRP2 (r = 0.448, P =0.003 and r = 0.491,
P=0.001 respectively, Pearson correlation test). These
results suggest that these SFRPs are the two functionally
most relevant Wnt antagonists underlying the mechanism
of progressive accumulation of nuclear -catenin and in-
creased Wnt target gene expression during CRC progres-
sion. Their epigenetic silencing could be one of the key
factors driving the neoplastic progression in CRC.

Correlation between hypermethylation of Wnt
antagonists and patient survival

To evaluate the association between methylation of the
Wnt components and patient survival, we used the aver-
age DNA methylation of each gene and analysed them
in this study as dichotamous variables using log-rank tests,
and as continuous variables in univariable and multi-
variable Cox regression models. Only the methylation
values relative to the adenocarcinoma samples were
used. We had survival data available for only 70 pa-
tients with a median follow-up time of 59.3 months
(range 2-122.3 months) during which 36 patients
(51.43%) died. In univariable Cox regression, DKKI and
SFRP4 methylation levels had similar hazard ratios of
slightly greater than 1, though neither result was signifi-
cant after adjustment for multiple testing (HR = 1.026 and
1.006 and adjusted P =0.280 and 1.000 respectively), this
could be due to the small number of patients included in
the analysis. Despite these results, when included in multi-
variable Cox regression, increase in DKKI methylation
showed a significant association with poor prognosis
(HR =1.094, P =0.002) whilst increase in SERP4 methyla-
tion showed a significant association with improved prog-
nosis (HR=0.942, P=0.017). The directional change of
the hazard ratio for SFRP4 between the univariable and
multivariable Cox regression models is attributed to the
adjustment for DKKI and WNTS5A in the multivariable
model. After adjusting for the hazard of death associated
with DKK1 and WNTS5A, increases in SFRP4 methylation
appear to be protective rather than hazardous, this un-
expected finding could be due to the small sample size
analysed and further studies are required to validate these
findings. WNTS5A was included in the multivariable Cox
regression model as a covariate of interest but was not
found to be significantly associated with survival.

To represent the data for DKKI and SFPR4 graphic-
ally, Kaplan-Meier plots were constructed with methyla-
tion level cut-off values of 10.5 for DKKI and 16.7 for
SFPR4 respectively (Figure 4A and B), and log-rank tests
were also performed using these cut-offs. There was a sig-
nificant difference in the survival pattern of those patients
above and below the methylation level cut-off for DKKI
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but not for SFPR4 (unadjusted log-rank P =0.046 and
0.404 respectively).

Recall that both genes belong to the sub-group of mo-
derately methylated genes, and that both are prone to
hypermethylation in MSI- and CIMP-positive carcinomas
(Figure 1). Therefore we repeated the survival analysis
after excluding the MSI- and CIMP-positive carcinomas
and this showed that the hypermethylation of DKKI and
SFRP4 was no longer significantly associated with survival
((Figure 4C and D), (unadjusted log-rank P=0.812 and
0.650 respectively)). This suggests that the changes in sur-
vival patterns associated with hypermethylation of DKK1
and SFRP4 are caused by their association with MSI and
CIMP status.

Conclusions

Analysing the promoters of Wnt signalling antagonists
in a large matched sample set of various stages of
CRC showed that the frequency and levels of hyper-
methylation increased with neoplastic progression, in
a progressive multistep pattern from normal epithe-
lium to adenoma to adenocarcinoma. Therefore, DNA
hypermethylation of the Wnt antagonists SFRPI, SFRP2,
SFRP5, DKK2, WIF1 and SOXI17 could provide useful
biomarkers for early detection of CRC in screening studies
involving DNA methylation, either in stool or plasma
samples. Furthermore, two of the Wnt antagonists that are
prone to methylation (DKKI and SFRP4) appear to have
prognostic significance, and so it may prove informative to
assess their methylation status upon diagnosis of CRC.
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