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Abstract

MDA-MB-231BR cells in a mouse model.

development of brain metastases.

Background: Despite advances in the treatment of primary breast tumors, the outcome of metastatic breast cancer
remains dismal. Brain metastases present a particularly difficult therapeutic target due to the “sanctuary” status of
the brain, with resulting inability of most chemotherapeutic agents to effectively eliminate cancer cells in the brain
parenchyma. A large number of breast cancer patients receive various neuroactive drugs to combat complications
of systemic anti-tumor therapies and to treat concomitant diseases. One of the most prescribed groups of
neuroactive medications is anti-depressants, in particular selective serotonin reuptake inhibitors (SSRIs). Since

SSRIs have profound effects on the brain, it is possible that their use in breast cancer patients could affect the
development of brain metastases. This would provide important insight into the mechanisms underlying brain
metastasis. Surprisingly, this possibility has been poorly explored.

Methods: We studied the effect of fluoxetine, an SSRI, on the development of brain metastatic breast cancer using

Results: The data demonstrate that fluoxetine treatment increases the number of brain metastases, an effect
accompanied by elevated permeability of the blood-brain barrier, pro-inflammatory changes in the brain, and
glial activation. This suggests a possible role of brain-resident immune cells and glia in promoting increased

Conclusion: Our results offer experimental evidence that neuroactive substances may influence the pathogenesis
of brain metastatic disease. This provides a starting point for further investigations into possible mechanisms of
interaction between various neuroactive drugs, tumor cells, and the brain microenvironment, which may lead to
the discovery of compounds that inhibit metastasis to the brain.
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Background

Despite recent advances in the treatment of primary
breast cancer tumors, the incidence of fatal metastatic
events remains high. Brain metastasis represents a par-
ticularly challenging complication of breast cancer. It is
estimated that 10-15% of breast cancer patients have
symptomatic brain metastases [1,2] and as many as 30%
of patients reveal brain metastases on autopsy [3,4]. The
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brain provides a unique microenvironment for tumor
growth. It is a particularly difficult therapeutic target
due to the complexity of brain function as well as the
reduced ability of therapeutic agents to cross the blood—
brain barrier (BBB) [5]. In fact, many of the newest and
most effective treatments for primary tumors are in-
effective in treating breast tumor metastases in the brain
[1,5]. It is becoming increasingly clear that prevention
and treatment of metastatic brain tumors requires a
better understanding of the mechanisms that determine
complex interactions between this unique metastatic
milieu and tumor cells [2].

In this study we explore the mechanisms that underlie
brain metastases by investigating possible effects of
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antidepressant drug treatment on their development.
We present evidence that a selective serotonin reuptake
inhibitor (SSRI), fluoxetine, facilitates increased brain-
specific formation of breast cancer metastases in a
mouse model of the disease. This is accompanied by
increased permeability of the BBB and elevated produc-
tion of pro-inflammatory cytokines, indicating that
fluoxetine treatment may promote the entry of cancer
cells into the brain via changes in the function of the
BBB. This provides important insight into the mecha-
nisms governing breast tumor metastasis to the brain,
and possible ways to manipulate those mechanisms in
order to reduce brain metastases. This approach has
additional clinical relevance because it has been well
documented that up to 25% of women with breast
cancer suffer from clinical depression, a much higher
percentage compared to the incidence observed in the
general population [6,7]. As a result, antidepressant drug
use among breast cancer patients can be as high as 50%
[8]. The SSRIs in particular have found widespread use
in the clinical management of breast cancer-associated
depression, hot flashes, and chemo brain [9,10]. Re-
cently, however, there has been increasing concern about
pharmacologic interactions between several SSRI antide-
pressants and anti-tumor medications used in breast
cancer therapy [11,12]. Several studies indicate that
simultaneous administration of these drugs may lead to
decreased anti-tumor therapeutic effectiveness and
increased risk of recurrent breast cancer or death, due to
drug competition for binding sites at the relevant meta-
bolic liver enzymes [13,14]. Even though these reports
warrant further experimental validation that considers
genetic factors, patient drug compliance, and population
dynamics [15,16], there is no doubt that any clinical
approach to the prevention and treatment of primary
and metastatic breast cancer must take into account
possible adverse effects of prescription drug use.

Methods

Cells

For intracardiac and tail-vein injections, we used the
MDA-MB-231BR-GFP (231BR) human cell line that
exhibits an ability to metastasize to the brain [17], a
generous gift from Dr. P. Steeg. Cells were maintained in
DMEM supplemented with 1% penicillin-streptomycin
mixture. A YFP-expressing CNS-1 rat glioma cell line
was used for intracranial injections, a generous gift from
Dr. R. Mathews [18]. CNS-1 cells were grown in RPMI
1640 medium with 100 pg/ml of hygromycin B. All
cell growth media were supplemented with 10% fetal
bovine serum (FBS). Cells were regularly checked for
mycoplasma contamination, with consistently negative
test results.
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Fluoxetine administration and cell injection

All animal experimental protocols were approved by the
University of Rochester Committee for Animal Research.
Fluoxetine was added at 200 mg/L into drinking water
supplied to adult female Nu/Nu mice (Charles River
Laboratories) 21 days before either intracardiac or tail-
vein injections, and continued during the 3-week sur-
vival period. For stereotactic injections into the brain
parenchyma, animals were placed on dietary fluoxetine
at 200 mg/L for 4 weeks before the cell injections; fluo-
xetine administration continued for 1 additional week, at
which time brains were harvested. 231BR or CNS-1 cells
were re-suspended in cold DPBS containing 0.5% FBS,
and placed on ice prior to injection. Intracardiac injec-
tions: After anesthesia with Avertin, we injected 10°
231BR cells into the left cardiac ventricle. Placement of
the needle into the left ventricle was confirmed by the
presence of pulsating arterial blood. Tail vein injections:
Mice were placed into a mouse restrainer (Braintree
Scientific) and injected with 10° 231BR cells into a tail
vein. At the end of each series of injections, cell viability
was determined by Trypan Blue staining. Mice were
weighed before and after experiments and checked for
behavioral abnormalities every three days. No pathologic
changes were detected in this study. Intracranial injec-
tions: Animals were anesthetized with isoflurane and
placed into a stereotactic apparatus. A craniotomy was
made, and 10* CNS-1 cells were introduced into the
frontal cortex of Nu/Nu adult female mice.

Fluoxetine and norfluoxetine quantification by liquid
chromatography mass spectrometry (LC-MS/MS)

Mice were treated with 200 mg/L of fluoxetine in drinking
water for 30 days. 100 pl of serum was collected at day 0
and every 10 days throughout the fluoxetine treatment.
SRMs for fluoxetine and norfluoxetine were performed by
direct infusion in the positive mode using 50% methanol
with 0.1% formic acid. The parent ion m/z, fragment ion
m/z, collision energy, and tube lens voltage for the two
compounds were 296.1 m/z. 134.1 m/z, 5, 68 for fluoxet-
ine; and 310.1 m/z, 44.3 m/z, 13, 66 for norfluoxetine. To
extract the compounds from serum, 5 volumes of aceto-
nitrile (ACN) were added to the serum (500 pl of ACN to
100 pl of serum), followed by vortexing for 2 min and cen-
trifugation at 16,000 g for 5 min at 4°C. The supernatant
was collected and dried down in a SpeedVac. The dried
material was reconstituted in 100 ul of 50% methanol, and
10 pl was injected for the LC-MS/MS run. LC-MS/MS
runs was performed at 40°C on a Thermo Quantum
Access Max triple quadropole mass spectrometer, with a
Dionex Ultimate 3000 UPLC, configured with a 150 x
2.1 mm Accucore RP-MS column. The solvent system
used 0.1% formic acid as solvent A and 100% methanol as
solvent B, with a gradient elution run, beginning with 30%
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B for 0.5 minutes, ramping to 95% B over 1.5 minutes,
holding at 95% B for 1 minute, and returning to 30% B in
0.25 minutes, with a final 30% B equilibration step for
2 minutes. Raw data files were imported into LCQUAN
software, including a standard curve spanning concen-
trations of 10 nM - 3.16 uM, extracted from serum for
fluoxetine and norfluoxetine. Area under the curve ana-
lysis was used to quantify the compounds in unknown
samples.

Additional file 1: Figure S1A reveals that after 10 days
of treatment, the mean concentration of fluoxetine
reached 128 ng/ml, with the range of 55-243 + 16 ng/ml.
After 20 and 30 days of fluoxetine administration, the
mean fluoxetine levels were 160 and 178 ng/ml, with the
range of 80-306+25 and 24-363 +39 ng/ml, respec-
tively. The mean norfluoxetine concentration at the
10-day time point was 282 ng/ml, with the range of
140-479 + 41 ng/ml, whereas at the 20 and 30 day interval,
the mean norfluoxetine levels were 364 and 414 ng/ml,
with the range of 74-532 + 41 and 153-579 + 46 ng/ml, re-
spectively (Additional file 1: Figure S1B). The serum levels
of fluoxetine were within the range reported previously
for human serum samples [19]. However, norfluoxetine
concentration reached ~ twofold higher levels than in hu-
man populations [19], probably due to the differences in
metabolic transformation of the parent drug in mice ver-
sus humans.

Immunohistochemistry and image analysis

To quantify brain metastasis, mice injected intracardially
with 231BR cells were perfused with 4% paraformalde-
hyde. The brains were serially sectioned in the coronal
plane at 50 pm. Sections were viewed on an AX70 Micro-
scope (Olympus, Center Valley, PA) using an epifluo-
rescence setup. Digital images were obtained using a
MicroFire camera (Optronics, Muskogee, OK) and Image
Pro software (Media Cybernetics, Bethesda, MD). Images
were analyzed in Image] by a blinded observer. As re-
ported previously in the literature [20], we classified visible
metastases as “macrometastases” or “micrometastases” de-
pending upon their size. Specifically, a cluster of cells that
was greater than 100 pm in greatest extent was counted
as a single “macrometastasis” while any cells in a cluster
smaller than 100 pm in extent were defined as multiple
“micrometastases” and counted individually. To quantify
lung metastasis, lungs were perfused with 4% paraformal-
dehyde and embedded in paraffin. 5 um serial sections
were cut through the lungs at 300 pm intervals and
stained with hematoxylin-eosin. The number of lung me-
tastases was determined in 4—6 tissue sections per animal
by a blinded investigator using an AX70 Microscope
(Olympus, Center Valley, PA) in trans-illumination mode.
To investigate brain-resident tumor growth, the brains of
mice injected with CNS-1 tumors were serially sectioned
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at 50 pm. The sections were imaged by a blinded observer
as described for 231BR cells above, and images were ana-
lyzed in Image]. Three measures were used to quantify
CNS-1 tumor growth: the number of brain sections con-
taining cells, the total number of tumor-containing pixels
in the sections, and the maximum width that the cells
spread perpendicular to the initial injection track. Imaging
parameters and thresholds were kept constant between
sections.

For immunohistochemistry (IHC), sections were washed
in 0.1 M phosphate buffered saline (PBS), followed by in-
cubation in 1% hydrogen peroxide to block endogenous
peroxidase activity. Next, tissue was incubated in blocking
solution containing 0.3% Triton-X and 5% normal donkey
serum (NDS) in 0.1 M PBS. After an additional wash, the
sections were incubated for 48 h in a humidified chamber
at 4°C in primary antibody solution containing one of
the following antibodies: rabbit anti-Iba-1 (1:500, Wako
Pure Chemical Industries, Richmond, VA); mouse anti-
IA/IE (1:200, BD Pharminogen, San Jose, CA); mouse
anti-CD11b (1:200, AbD Serotec, Raleigh, NC); mouse
anti-CD45 (1:300, AbD Serotec, Raleigh, NC); mouse anti-
CD68 (1:800, Abcam, Cambridge, MA); rabbit anti-GFAP
(1:1500, Abcam, Cambridge, MA); and Wisteria Floribunda
Lectin (WFA) (1:500, Vector Laboratories). The sections
were subsequently washed and incubated for 4 h at room
temperature with either of the following secondary anti-
bodies: Alexa Fluor 594 donkey anti-rabbit IgG (1:500) or
Alexa Fluor 594 donkey anti-mouse IgG (1:500) (Molecular
Probes, Carlsbad, CA). The sections were washed, moun-
ted, and cover-slipped using ProLong Gold Antifade
Reagent (Molecular Probes, Carlsbad, CA).

Sections were viewed on an AX70 Microscope (Olympus,
Center Valley, PA) using an epifluorescence setup.
Digital images were obtained using a MicroFire camera
(Optronics, Muskogee, OK) and Image Pro software
(Media Cybernetics, Bethesda, MD). Images were analyzed
by a blinded observer using Image]. To determine the
amount of glial staining in relation to distance from 231BR
metastases, we created binary masks of tumors and glial
staining. The tumor mask was then expanded iteratively by
one pixel and the number of stained pixels within the re-
gion defined by the tumor mask was measured to produce
the fraction of stained pixels as a function of distance from
the edge of the tumor. All measurements were confined to
the brain area in which the tumor resided to correct for
differences in glial expression between brain areas. Tumors
in control and fluoxetine groups were not statistically dif-
ferent in size for all stains. WFA antibody was used to
visualize perineuronal nets in brain sections from animals
that were injected with 231BR cells. To quantify WFA
staining, background subtracted normalized average pixel
intensity value was determined for various brain regions
and compared between the control and fluoxetine groups.
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Thinned skull imaging

Chronic imaging of mouse visual cortex was performed
using a thinned skull preparation as previously described
[21], using GFP-M mice [22] that received 100 mg/L of
fluoxetine in drinking water for 4 weeks. Briefly, a two-
photon microscope with a Mai Tai laser (Spectra Physics)
and a modified Olympus Fluoview 300 confocal unit was
used. An Olympus LUMPlan fI/IR 20X/0.95NA was used
to identify the binocular visual cortex based on cortical
vasculature; an area containing brightly labeled neurons
was chosen for imaging. 3D image stacks were obtained at
high magnification to allow for dendritic spine reconstruc-
tion in layers 1 and 2 of the visual cortex. After the initial
imaging session, the scalp was sutured and the animals
were returned to the animal facility. The animals were re-
anesthetized 4 days later and the same area was identified
based on the blood vessel and dendritic patterns [21]. 3D
image stacks of the same dendritic regions were again ob-
tained at high magnification. The percentage of lost and
new spines was determined relative to the total number of
spines present in the initial imaging session using Image].

Proliferation and migration assay

For proliferation assays, 231BR cells were plated at 20,000
per well and incubated for 6 h to allow cells to adhere. The
medium was replaced with DMEM containing fluoxetine
at 1-5000 ng/ml. Cell numbers counted after 24, 48, and
72 h of incubation. Results are representative of two inde-
pendent experiments. A migration assay was performed
using the FluoroBlok 24-well insert system with 8.0 pm
pore size (BD Biosciences, Bedford, MA). 231BR cells were
grown for 48 h in DMEM containing various fluoxetine
concentrations, trypsinized, counted, and seeded in serum-
free DMEM/fluoxetine mixture onto the apical side of the
insert at 50,000 per well. DMEM/fluoxetine with 10% FBS
was added as a chemoattractant to the basal chamber. Fol-
lowing overnight incubation at 37°C in 5% CO,, cells were
stained with calcein AM and then read on a bottom rea-
ding fluorescent plate reader.

Evan’s Blue spectroscopy

Mice were injected via tail vein with 100 pl/10 g body
weight of 2% Evan’s Blue in PBS. 1 hour after the injection,
the animals were perfused with sterile isotonic saline, and
the brains were removed and dried in a vacuum oven for
24 hours. Brain tissue was subsequently homogenized in a
volume of PBS based on dry tissue weight, and then sub-
jected to protein precipitation with trichloroacetic acid.
The spectroscopic analysis of the supernatant was per-
formed at 620 nm to determine Evan’s Blue absorbance.

Quantitative RT-PCR
Animals were perfused with PBS containing 2 IU/ml of
heparin. RNA was isolated from the brain tissue using
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TRIzol reagent, and 1 pg of the purified RNA product
was subsequently reverse transcribed using Superscript
III reverse transcriptase kit (Invitrogen). PCR was per-
formed using TagMan® Gene Expression Assays from
Applied Biosystems, and the results were normalized to
the expression of G3PDH.

Cytokine immunoassay

Mice were perfused with PBS. Brain tissue was homoge-
nized in RIPA buffer containing protease inhibitors
(Thermo Scientific). 25 pl of protein extract was used in
the subsequent immunoassay to determine cytokine ex-
pression. For the multiplex assay, a custom-made plate of
mouse cytokines was used according to manufacturer’s in-
structions (EMD Millipore). Data were acquired on a
FLEXMAP 3D system and analyzed with MILLIPLEX
Analyst (EMD Millipore). Cytokine expression was deter-
mined in duplicate and subsequently normalized to sam-
ple protein concentration.

Statistical analysis

Means and standard errors of the mean are presented,
and significance was established using either Student’s ¢-
test or analysis of variance (ANOVA). When ANOVA
revealed statistical significance, multiple comparison post
hoc analysis was performed to confirm differences be-
tween experimental groups. P < 0.05 was considered sta-
tistically significant.

Results

Fluoxetine increases the ability of breast cancer cells to
metastasize to the brain

To study the effects of fluoxetine on the ability of breast
cancer cells to metastasize to the brain, we pretreated
Nu/Nu mice with fluoxetine for three weeks prior to the
intracardiac injection of 231BR breast cancer cells. Ad-
ministration of fluoxetine in drinking water resulted in
therapeutic concentrations in the serum as explain in the
methods (Figure 1). Three weeks post-injection, metasta-
ses in fixed brain sections appeared either as isolated cells
that could be readily distinguished and counted, which we
term “micrometastases”, or as large groups of intercon-
nected cells which could not be accurately distinguished
and hence were counted as a single “macrometastasis” by
our blinded observer (Figure 1A). Animals that received
fluoxetine demonstrated a 52% increase in the total num-
ber of brain metastases compared with control: fluoxetine
(n =11), 35.54+3.90 vs. control (n =12), 23.33 +2.46
tumors/section, p =0.02 (Figure 1B). This significant
change in brain metastatic ability was largely due to in-
creased incidence of micrometastases: fluoxetine, 32.59 +
3.64 vs. control, 21.43 + 3.64 tumors/section, p =0.03, a
52% increase (Figure 1C). While not statistically signi-
ficant, the same trend was evident for the number of
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Figure 1 Fluoxetine increases breast tumor metastasis to the brain. Nu/Nu mice were treated with fluoxetine and injected with 231BR cells as
described. A) Representative images of micrometastases (upper panel) and a macrometastasis (lower panel) in the brain of Nu/Nu mice 3 weeks after
cell injection. Metastases were visualized in brain tissue by fluorescent microscopy. Note that the cells exhibited a tendency to localize perivascularly
and form “sleeves” around blood vessels. Fluoxetine treatment increased the total number of metastases observed within the brain (B) as well as the
number of brain micrometastases (C), p < 0.05, t-test. D) While there was a trend towards an increase in the number of macrometastases, it did not
reach statistical significance, p = 0.08, t-test. E) The diameter of macrometastases did not differ between the fluoxetine and control group. n =11-12
per group. Scale bar: 50 pm.

macrometastases, with a 56% increase in the fluoxetine
group: fluoxetine, 2.95+ 0.49 vs. control, 1.89+0.39 tu-
mors/section, p =0.08 (Figure 1D). The same outcomes
have been observed in two independent experiments
which have been pooled to produce the results described
above.

Fluoxetine is a neuroactive substance suggesting that
its effects may be brain-specific. In addition, 231BR cells
have been selected for their preferential metastatic affin-
ity to the brain. However, fluoxetine treatment may have
altered metastatic targeting of 231BR cells and modified
their potential to produce tumor growth elsewhere. To
investigate this, we determined whether metastasis to
another organ, the lung, was affected by fluoxetine treat-
ment. Animals were treated as above and 231BR cells
were then injected via the tail vein. Mouse lungs were
removed after a 3 week survival period during which the
animals continued to receive fluoxetine treatment. The
tissue was fixed, paraffin embedded, serially sectioned,
and stained with hematoxylin/eosin. The number of me-
tastases in the lungs (Figure 2A) was determined using
light microscopy. As shown in Figure 2B, fluoxetine
treatment did not affect the ability of breast cancer
cells to produce lung metastases, with 1.06 £ 0.22 vs.
0.93 £ 0.10 tumors/section in the fluoxetine and control
groups, respectively, p =0.31, suggesting that fluoxetine

affects the entry of cells specifically into the brain rather
than causing a non-specific increase in the cancer cells’
ability to survive within and/or extravasate from the
vasculature.

Proliferative and migration capacity of 231BR cells is not
affected by fluoxetine

While the lack of a fluoxetine effect on lung metastasis
suggests a brain-specific mechanism, we wanted to further
rule out the possibility that fluoxetine interacts directly
with 231BR cells to increase their proliferation and/or
migration. Therefore, we performed in vitro proliferation
assays in the presence of 1, 10, 100, 1000 or 5000 ng/ml of
fluoxetine and measured 231BR proliferative activity at 24,
48, and 72 hours. Fluoxetine did not increase 231BR pro-
liferation in vitro (Figure 3A). Incubation with 5000 ng/ml
of fluoxetine caused an arrest in cellular proliferation
starting at 48 hours (Figure 3A), with higher fluoxetine
doses - 20 pg/ml, 100 pg/ml, 500 pg/ml, and 1000 pg/ml -
exhibiting a clear toxic effect on 231BR cells (Figure 3C).
Additionally, incubation with various concentrations of
fluoxetine did not increase migration of 231BR cells
in vitro (Figure 3B). These assays demonstrate that
fluoxetine does not increase proliferation or migration of
231BR cells, thereby supporting our hypothesis that fluo-
xetine specifically affects the brain microenvironment.
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Figure 2 Fluoxetine has no effect on breast tumor metastasis to the lungs. Nu/Nu mice were treated with fluoxetine and injected with
231BR cells as described. A) Representative image of H&E staining of lung tissue containing metastasis 3 weeks after cell injection. B) Fluoxetine
treatment did not affect lung metastasis development, p =0.31, t-test. n =5 per group.
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metastatic cells to penetrate the BBB. To examine the

former possibility we examined the extracellular envi-
ronment of the brain after fluoxetine treatment. Fluo-
xetine has been shown to modulate synaptic plasticity
[23], a process that is dependent on remodeling of the
brain extracellular matrix (ECM) [24]. ECM changes
have the potential to influence breast tumor growth
within the brain, since the invasion process is critically
dependent upon the extracellular substrate [25]. To
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determine whether fluoxetine treatment altered the extra-
cellular brain environment, we first assayed dendritic
spine turnover in vivo, a process that is highly sensitive to
brain ECM composition [26,27]. GFP-M mice [22] were
treated with fluoxetine for 4 weeks. Dendritic spines,
which are the postsynaptic structures of the majority of
excitatory synapses in the central nervous system, were
imaged in vivo through a thinned-skull window on two
separate imaging sessions spaced four days apart. As ex-
pected, examination of dendritic spine turnover revealed
that animals in both the control (Figure 4A) and fluo-
xetine (Figure 4B) group demonstrate dynamic gain and
loss of spines. However, quantitative analysis showed no
significant difference in the percentages of either new or
lost spines between the experimental groups (Figure 4C),
suggesting that fluoxetine does not enhance structural
plasticity at cortical synapses.

We also evaluated the direct effect of fluoxetine treat-
ment on ECM composition, in particular on perineuronal
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nets (PNNs), a major component of the brain ECM that is
rich in chondroitin sulfate proteoglycans [28]. PNNs have
been implicated in modulating neuronal plasticity [29],
and thus could be a prime target of fluoxetine action.
Brain tissue of mice that received fluoxetine and were
injected with 231BR cells was examined using a wis-
teria floribunda antibody (WFA) that recognizes PNNs
(Figure 4D). The average fluorescent intensity of WFA
staining was determined quantitatively across brain re-
gions and compared between the control and fluoxetine
groups. As shown in Figure 4E, WFA staining was highly
variable throughout different brain regions, with primary
and secondary somatosensory cortex exhibiting the
highest level of PNN expression. Areas of primary and
secondary motor cortex, as well as cingulate cortex, de-
monstrated somewhat lower WFA staining intensity, with
hippocampus having the lowest expression of PNNs.
However, a comparison within individual brain regions
failed to reveal any difference between the control and
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Figure 4 The effects of fluoxetine treatment on dendritic spine turnover and PNNs. A-C: Dendritic spine turnover was measured in adult
mouse visual cortex in vivo, by imaging cortical dendrites four days apart using 2-photon microscopy. A) Representative images of dendritic spine
turnover in control mice display both gain and loss of spines between imaging sessions (green arrows - new spines, red arrows - lost spines).

B) Fluoxetine treated mice demonstrated similar numbers of new spines and lost spines. White asterisks denote reference spines between images.
C) Quantification of dendritic spine turnover showed no significant difference between the percentage of new and lost spines in fluoxetine and
control groups. Data are mean + SEM, n =4-5 per group. D-E: WFA antibody was used to visualize PNNs. D) PNNs are revealed around neuronal
cell bodies in mouse cerebral cortex. E) Quantitative analysis of WFA staining in the control and fluoxetine groups was performed in primary (1°)
and secondary (2°) somatosensory cortex (somat), 1> and 2° motor cortex (motor), cingulate cortex (cingulate), and the hippocampus (HPC). No
significant changes were observed. n = 5-6 per group. Scale bar: A-B, 5 um, D, 50 um.
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fluoxetine experimental groups (Figure 4E). These results
suggest that the increase in brain metastatic ability of
breast cancer cells elicited by fluoxetine treatment is not
modulated via large-scale changes in ECM either at synap-
tic sites or in PNNs.

Effect of fluoxetine on tumor growth within the brain
parenchyma

The lack of changes in dendritic spine dynamics and ECM
structure suggests that fluoxetine may facilitate the entry
of cancer cells into the brain rather than their subsequent
growth within the brain parenchyma. This predicts that
tumors growth is not altered by fluoxetine once cells are
established within the brain. In support of this view, fluo-
xetine treatment did not affect the size of 231BR macro-
metastases: the average diameter was 1599 + 17 a.u. in the
fluoxetine group vs. 1547 +49 a.u. in the control group,
p =0.19 (Figure 1E). We hypothesized that if fluoxetine
was changing the brain microenvironment to foster
growth of established brain tumors, this should enhance
the ability of any brain-resident tumors to grow within the
brain. To test this, we performed stereotactic injections of
a rat glioma cell line, CNS-1, into the frontal cortex of
Nu/Nu mice, in order to examine whether fluoxetine
would affect brain tumor development after introduction
of malignant cells directly into the brain parenchyma.
While intracranial injection of CNS-1 cells led to the de-
velopment of brain tumors in mice (Figure 5A), 4 weeks
of pre-surgical treatment with 200 mg/L of fluoxetine,
followed by a 1 week survival period, did not affect brain
tumor size when compared to the control group. Tumor
spread, assayed by the number of sections containing
CNS-1 cells, was comparable between the fluoxetine and
control groups, 47.56 + 3.24 and 49.8 + 5.98, respectively,
p =0.76 (Figure 5B), as was the distance traveled by
infiltrating tumor cells (771+51 pm in the fluoxetine
group vs. 7514+ 92 pym in the control group, p =0.86,
Figure 5C). The overall tumor size (total image pixel count
per tumor), which may reflect the ability of tumor cells to
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proliferate within the brain, was comparable between
treated and untreated groups, 2.148 + 0.49 x10° vs. 2.148 +
0.38 x10°, respectively, p = 0.66 (Figure 5D). These findings
suggest that fluoxetine may impact the ability of breast
cancer cells to enter the brain, without altering their ability
to infiltrate and spread once they have established meta-
static foci within the brain parenchyma.

Effect of fluoxetine on blood-brain barrier permeability

A possible mechanism of increased brain metastatic breast
cancer modulated by fluoxetine administration is a direct
effect on BBB permeability. The BBB plays a critical role
in the process of extravasation of cancer cells and deter-
mines their ability to seed the brain parenchyma [30,31].
After a 3-week treatment with fluoxetine, we analyzed
Evan’s Blue absorbance in brain extracts after tail vein in-
jection of the dye to examine whether fluoxetine has any
effect on BBB permeability. Brain extracts from animals
that were treated with fluoxetine for 3 weeks demonstrate
a statistically significant 54% increase in Evan’s Blue
absorbance compared to the control group, p <0.0001
(Figure 6). Thus, fluoxetine administration leads to
changes in the BBB that promote increased permeability
and may facilitate the increased entry of breast cancer
cells into the brain.

Fluoxetine stimulates production of pro-inflammatory
cytokines

A possible mechanism for changes in BBB permeability is
production of cytokines that have been shown to modu-
late BBB function in models of injury, ischemia, and neu-
rodegeneration [32,33]. To determine whether fluoxetine
treatment leads to increased expression of pro-inflamma-
tory markers, mice were treated with fluoxetine, and brain
extracts were analyzed using real-time PCR and multiplex
ELISA. PCR analysis revealed that fluoxetine admi-
nistration induced mRNA expression of several pro-
inflammatory cytokines such as TNF-«, IL-1a, and IL-1p
as well as an adhesion molecule ICAM-1, with levels
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Figure 5 Fluoxetine does not increase brain-resident tumor growth. Nu/Nu mice treated with fluoxetine were injected with CNS-1 cells into
the frontal cortex, as described. A) A representative image of a tumor formed after intracranial injection of CNS-1 cells. Scale bar: 200 um. Three
separate measures were used to quantify tumor growth. None of them showed significant effects of fluoxetine administration: number of sections
containing CNS-1 tumors, p = 0.76 (B); total pixel count analysis of brain sections with CNS-1 tumors, p = 0.68 (C); tumor width, as determined by
the average of four largest values from each animal, p = 0.86 (D). n =9-10 per group. Scale bar, 100 pm.
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Figure 6 Fluoxetine administration increases BBB permeability.
Fluoxetine was administered for 3 weeks before animals were
injected intravenously with 2% Evan’s Blue solution. One hour after
the injection, brain tissue was collected and processed as described.
Tissue supernatants were analyzed by spectroscopy at 620 nm to

determine Evan’s Blue absorbance. The results show significant
effects of fluoxetine treatment. n =6-7 per group, p < 0.0001.

Fluox

increasing 4.96-, 2.27-, 3.76-, and 4.44-fold, respectively,
p <0.05 (Figure 7A). Transcription of two other pro-
inflammatory molecules, IL-6 and MHC-II, was not sig-
nificantly altered by fluoxetine treatment, p =0.52 and
0.87, respectively. Protein analysis confirmed significantly
elevated levels of TNF-o, IL-1a, and IL-1B, and demon-
strated high levels of other cytokines - MCP-1, MIP-2,
and RANTES, p <0.05 (Figure 7B). The results of mRNA
and protein expression assays demonstrate that fluoxetine
can alter the inflammatory environment within the brain
and stimulates cytokine production. This in turn may
affect BBB permeability and lead to increased brain metas-
tasis of circulating breast cancer cells.

Fluoxetine enhances glial activation in the vicinity of
brain metastatic tumors

Microglia and astrocytes are two possible sources of pro-
inflammatory markers that may affect the functioning of
the BBB and thereby facilitate enhanced entry of tumor
cells to the brain. To determine whether fluoxetine altered
the activation pattern of glia around tumors, we stained
brain sections with a number of antibodies specific for
microglia and astrocytes (Figure 8). Both microglial and
astrocytic markers were markedly elevated in proximity to
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the tumor in control animals, indicating an inflammatory
response around metastases. Interestingly, fluoxetine
treatment elevated the expression of both microglial and
astrocytic markers showing that fluoxetine altered in-
flammatory signaling in response to metastasis (Figure 9).
Signal intensity for microglial markers IA-IE and CD68
was significantly higher in the fluoxetine group through-
out the entire area we examined (up to 400 um distance
from the tumor, p <0.001). Other microglia-specific anti-
bodies, Iba-1 and CD45, exhibited higher expression levels
closer to the tumor, following fluoxetine administration
(p <0.001 and p <0.01), whereas CD11b levels were
higher between 200 and 400 pm away from the tumor
(p <0.01). In addition, staining intensity for GFAP, an
astrocytic marker, was significantly higher between 100—
400 pm in the fluoxetine treated animals compared to
control, p <0.01 (Figure 9). In each case the tumors exa-
mined were not significantly different in size in control
and fluoxetine groups (Figure 10).

Discussion

In this study we describe fluoxetine’s ability to increase
the number, but not the size, of metastases in a murine
model of breast tumor metastasis to the brain. This
increase is accompanied by changes in the BBB and the
inflammatory environment of the brain, with no detec-
table changes in the properties of the brain ECM. These
results provide several insights into the possible mecha-
nisms by which fluoxetine alters brain metastasis, and
hence possible avenues for future therapeutic manipula-
tion of the metastatic outcome.

Fluoxetine and the brain ECM

Fluoxetine is thought to exert its anti-depressant effects
by promoting brain plasticity, synaptogenesis and neuro-
genesis [23,34]. These processes are critically dependent
on the brain ECM, as is tumor invasion [35], suggesting
that fluoxetine could achieve its metastasis-altering effects
in part by remodeling the extracellular milieu of the brain
[36]. We examined this possibility by focusing on an ECM
component, the PNN, which has been shown to play a
critical role in modulating plastic changes in the brain.
PNNss are established during brain development, as inhibi-
tory and excitatory circuits mature and the brain becomes
less plastic [37]. Both enzymatic removal of PNNs and flu-
oxetine treatment enhance plasticity in the adult [23,38].
However, we detected no significant change in PNNs in
different brain areas after fluoxetine treatment, which sug-
gests that the effects of fluoxetine on brain plasticity and
metastasis are mediated through a different pathway. In
agreement with this, synapse remodeling, a process that is
highly sensitive to the extracellular environment [24,27],
was also not affected by fluoxetine. Given the apparent
lack of fluoxetine-induced ECM remodeling in our brain
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protein concentration in individual samples. n =6 per group, p < 0.05.

Figure 7 Fluoxetine upregulates levels of pro-inflammatory cytokines. A) To detect mRNA levels, brain tissue was collected after 3 weeks of
fluoxetine treatment. MRNA was isolated, reverse transcribed, and subjected to real-time PCR analysis in order to determine expression levels

of several pro-inflammatory markers. Experimental data were normalized to the expression of G3PDH, a housekeeping gene. n =5 per group,

p < 0.05. B) For protein analysis, after 3 weeks of fluoxetine administration, a custom-made mouse cytokine/chemokine panel was used to determine
protein concentration of several pro-inflammatory markers in brain extracts from control and treated animals. Analyte expression was normalized to

metastasis model, it is not surprising that neither the size
of breast tumor metastases established in the brain nor
the size of resident glioma tumors appeared sensitive to
fluoxetine treatment in our experiments. These results
suggest that the effects of fluoxetine on the establishment
of brain metastasis are not mediated via the brain ECM.

Fluoxetine treatment and glia

The pathogenesis of the vast majority of CNS diseases,
including depression, is mediated, at least in part, by in-
flammatory processes. Although fluoxetine acts as a
serotonin reuptake inhibitor, it also has strong effects on
peripheral immune cells [39] and brain resident immune
cells [40-42]. We observed fluoxetine-induced alterations
in expression of several cytokines indicative of glial acti-
vation, and observed that fluoxetine enhanced glial acti-
vation in the vicinity of established brain metastases.
This suggests that fluoxetine can alter inflammatory sig-
naling in vivo, and that this alteration may be a mecha-
nism by which fluoxetine elevates breast tumor
metastasis to the brain in our murine model.

The contribution of microglia and astrocytes to the
pathology of brain resident tumors has been well docu-
mented [43-45]. However, their involvement in metastatic
events is less clear. Several studies have described acti-
vated glia associated with metastastic lesions in the brain
parenchyma, suggesting an important role for these cells
in metastatic growth within the brain [25,43]. While the
immune function of these cells could contribute to
defending the brain against cancer cell invasion, it is be-
coming clear that brain tumor cells can co-opt glia to pro-
mote tumor growth and invasion. Tumor cells and glia
undergo a complex molecular cross talk that influences
glial behavior and subsequent tumor progression [44,45].
Activated glia can produce multiple cytokines, chemo-
kines, and enzymes that lead to increased tumor invasion,
including IL-1B and TNF-«a [46], markers that were up-
regulated in this study. Surprisingly, the elevated levels of
pro-inflammatory markers after fluoxetine treatment did
not affect the growth of gliomas or breast tumor metasta-
sis already established in the brain, despite the fact that
many of these inflammatory molecules have been shown

CD68 CD45

400 um of metastatic breast cancer cells.

Figure 8 Glial cells are activated in the vicinity of brain metastatic tumors. Tissue sections from the control and fluoxetine groups were
stained with antibodies against Iba-1, CD11b, IA-IE, CD68, CD45, and GFAP to determine the degree of microglial and astrocytic activation within

GFAP
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Figure 9 Fluoxetine enhances glial activation in the vicinity of brain metastatic tumors. Brain sections were stained with the following
antibodies to assess glial activation - Iba-1, CD11b, IA-IE, CD68, CD45, and GFAP. Images of tumors were analyzed to compare the expression of
these markers (fraction of total pixels that were immunopositive) within 400 um of the edge of metastatic tumors, following fluoxetine treatment.
*p <0.05; *p <0.01; ***p <0.001, 2-way ANOVA with Bonferroni post hoc analysis. n = 20-24 tumors per group, 5-6 animals per group.
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Figure 10 Tumor size in samples analyzed for glial activation in the vicinity of brain metastases. Tumor size was determined for each
image used in the quantitative analysis of microglial and astrocytic activation. The comparison revealed no significant differences between the
size of tumors between the control and fluoxetine groups. Iba-1, p =0.95; CD11b, p =0.58; IA-IE, p = 0.16; CD68, p = 0.59; CD45, p = 0.74; GFAP,
p =0.86, t-test. n =20-24.
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to play a significant role in tumor survival and angioge-
nesis [47,48]. Possibly, the source or extent of fluoxetine-
driven expression of these molecules is such as to change
the entry of cells into the brain but not affect their subse-
quent growth.

It is interesting to note that in our study, chronic
fluoxetine treatment increased inflammatory marker ex-
pression in the brain, while other studies examining
peripheral and brain effects of fluoxetine have reported
anti-inflammatory effects with reduced expression of mar-
kers such as TNF-a [40-42], although inflammatory effects
of fluoxetine were also observed [41]. There are several
possible reasons for this discrepancy. First, the majority of
studies focus on the effects of fluoxetine within the con-
text of pathological inflammation due to either LPS injec-
tion [40] or CNS disease [42]. Thus the effects on baseline
inflammatory state have not been examined. Second, most
studies examining inflammatory markers have focused on
in vitro settings where cells behave differently than they
do in vivo [41]. Our data suggest that fluoxetine, at neuro-
active doses, can increase inflammatory signaling in vivo
in the absence of pathological changes in the brain and this
in turn may affect breast tumor metastasis.

Inflammation and BBB

Glial cells, and astrocytes in particular, are critical ele-
ments of the BBB and could influence tumor cell entry
into the brain through its manipulation. Glia-derived cyto-
kines and proteases have been implicated in promoting
cancer cell navigation through the BBB [32,33,49]. Inter-
estingly, brain-resident glia are frequently localized to the
sites of cancer cell arrest in brain capillaries [25]. The
intimate relationship between glia and tumor cells that
have not yet entered the brain might imply a role for glia
in shepherding tumor cells through the BBB. In addition,
glial cells also produce MCP-1, MIP-2, and RANTES
(all of which were increased after fluoxetine treatment)
that could promote metastasis indirectly by stimulating
infiltration into the brain of peripheral cells with pro-
tumor activities such as myeloid-derived suppressor cells
(MDSC), tumor-associated macrophages (TAM), and
tumor-associated neutrophils (TAN). These cells may in
turn contribute to the vicious circle of the pro-invasion
phenotype created by fluoxetine administration, via add-
itional secretion of IL-1B, TNF-a, and other cytokines.
Moreover, in the process of infiltrating the brain paren-
chyma, MDSCs, TAMs, and TANs may create a “back
door” whereby cancer cells in the immediate vicinity can
accompany the infiltrating cells as they leave the
capillaries.

Fluoxetine treatment and the BBB
A surprising result of fluoxetine administration is signifi-
cantly increased BBB permeability even in the absence of
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circulating tumor cells. These data suggest that fluoxetine
may facilitate the entry of breast cancer cells into the brain
by affecting the function of the BBB directly rather than
enhancing the transport of tumor cells specifically. In
other disease models such as CNS trauma, ischemia and
neurodegeneration, a number of pro-inflammatory media-
tors are released by brain parenchymal cells, including
endothelial cells and glia [50]. These mediators, including
IL-18 and TNF-a, increase BBB permeability [32,49] via
altered expression of tight-junction proteins as well as
increased production of reactive oxygen species and
metalloproteases [51]. Therefore, the increased expression
of IL-1p and TNF-« that we observed after fluoxetine ad-
ministration may directly lead to the impairment of BBB
function and increased permeability of the barrier, thus
precipitating increased brain metastasis.

Another important step in tumor cell extravasation is cell
arrest within the blood vessels of the brain. Paracrine
stimulation by pro-inflammatory molecules such as TNF-a,
IL-1B, and MIP-2, leads to increased synthesis of chemo-
kines and expression of cell adhesion molecules such as
ICAM-1, E-selectin, and vascular cell adhesion molecule-1
(VCAM-1) by cerebrovascular endothelial cells [52], which
may increase anchorage of tumor cells and eventually lead
to facilitated cellular invasion from the circulation into the
brain [53]. These same changes may directly or indirectly
lead to increased ability of MDSCs, TAMs, and TANs to
enter the brain and further influence tumor cell entry
across the BBB. Additionally, inflammatory expression may
influence the survival of tumor cells within the vasculature
and thus enhance the probability of brain metastasis.

Conclusions

Our data provide the first experimental evidence that a
neuroactive drug can promote increased entry of cancer
cells into the brain parenchyma. The results of this study
suggest a novel drug-induced, brain-specific mechanism
whereby permeability of the BBB is altered by 1) the effect
of fluoxetine on cellular components of the brain micro-
environment to stimulate production of pro-inflammatory
cytokines that can in turn modulate BBB function, 2) direct
effect of fluoxetine on the components of the barrier, or 3)
a combination of these two mechanisms. These findings
suggest that neuroactive drugs used to treat depression and
chemo brain in patients need to be carefully screened for
unexpected effects on brain metastasis. In addition, they
open new opportunities in the search for pharmacologic
drugs that would inhibit brain metastasis by restricting per-
meability of the BBB or, conversely, would improve the de-
livery of therapeutic agents to the brain by opening up the
BBB. Such drugs would have the advantage of targeting the
brain rather than the heterogeneous and rapidly mutating
tumor cell and could be used to limit brain-specific metas-
tasis of many different primary tumor types.
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Additional file

Additional file 1: Figure S1. Fluoxetine reaches therapeutically relevant
levels in mouse serum. Nu/Nu mice were treated with fluoxetine for

30 days as described. Mouse serum was collected at day 0 and every

10 days throughout the experiment. The concentration of fluoxetine

and its major metabolite, norfluoxetine, was determined by LC-MS/MS.
A) The mean fluoxetine concentration reaches 128 ng/ml after 10 days of
treatment and remains at therapeutic levels at 30 days. B) The mean
norfluoxetine level after 10 days is 282 ng/ml, and continues to increase.
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