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Background: Understanding the complex, multistep process of metastasis remains a major challenge in cancer
research. Metastasis models can reveal insights in tumor development and progression and provide tools to test

Methods: To develop a new cancer metastasis model, we used DU145 human prostate cancer cells and performed
repeated rounds of orthotopic prostate injection and selection of subsequent lymph node metastases. Tumor
growth, metastasis, cell migration and invasion were analyzed. Microarray analysis was used to identify cell
migration- and cancer-related genes correlating with metastasis. Selected genes were silenced using siRNA, and
their roles in cell migration and invasion were determined in transwell migration and Matrigel invasion assays.

Results: Our in vivo cycling strategy created cell lines with dramatically increased tumorigenesis and increased ability to
colonize lymph nodes (DUT45LNT-LN4). Prostate tumor xenografts displayed increased vascularization, enlarged
podoplanin-positive lymphatic vessels and invasive margins. Microarray analysis revealed gene expression profiles that
correlated with metastatic potential. Using gene network analysis we selected 3 significantly upregulated cell movement
and cancer related genes for further analysis: EPCAM (epithelial cell adhesion molecule), ITGB4 (integrin 34) and PLAU
(urokinase-type plasminogen activator (UPA)). These genes all showed increased protein expression in the more metastatic
DU145-LN4 cells compared to the parental DU145. SIRNA knockdown of EpCAM, integrin-34 or uPA all significantly
reduced cell migration in DU145-LN4 cells. In contrast, only uPA siRNA inhibited cell invasion into Matrigel. This role of
uPA in cell invasion was confirmed using the uPA inhibitors, amiloride and UK122.

Conclusions: Our approach has identified genes required for the migration and invasion of metastatic tumor cells, and we
propose that our new in vivo model system will be a powerful tool to interrogate the metastatic cascade in prostate cancer.
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Background

Prostate cancer affects 1 in 6 males in their lifetime, and is
the second leading cause of cancer death in men in the U.S.
[1]. Almost 2.8 million men are currently living with a diag-
nosis of prostate cancer [2], yet the ability to discern whose
cancer will progress to metastatic disease remains a
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challenge. A better understanding of the metastatic process
could lead to enhanced prognostic ability and subsequent
improvements in patient care and outcome. Cancer cells
can escape the primary tumor via blood vessels or lymph-
atic vessels and travel to distant organs. The presence of
tumor cell-positive lymph nodes from biopsy indicates the
tumor has already spread from the primary site. Lymph
node metastasis is an important prognostic indicator in
many cancers, such as breast, melanoma and prostate [3-6].
Lymph node metastasis correlates with poor prognosis in
prostate cancer, as compared to those without lymph node
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involvement [7]. Even before evidence of lymph node
metastasis, lymphovascular invasion (LVI), defined as
the unequivocal presence of tumor cells within an
endothelium-lined space, can act as an independent risk
factor in prostate cancer [5]. Since all lymphatic drain-
age eventually empties into the venous system, tumor
extravasation into lymphatic vessels may lead to more
widespread metastasis via the vascular circulatory sys-
tem to distant organs like bone [8,9].

As many patients now opt for an active surveillance or
‘watchful waiting’ period during the management of
organ-confined disease [10,11], the development of new
biomarkers and therapeutic options is greatly needed. The
identification of genes important in the metastatic cascade
may facilitate our development of such therapies.

Animal models of metastasis are important tools that
allow us to interrogate steps in this process. Spontaneous
and experimental models of metastasis in mice have
allowed us to discover and analyze new genes and bio-
markers and to test anti-cancer drugs within complex mi-
croenvironments. Studies have shown that when human
cancer cell xenografts are implanted into the orthotopic
site, as compared to an ectopic (usually subcutaneous)
site, enhanced tumorigenicity and metastasis followed
[12-14]. The microenvironment is well documented to in-
fluence tumor cell behavior and is capable of stimulating
or repressing cell plasticity, proliferation, migration and
invasion [15-17]. Orthotopically implanted tumor cells
and their spontaneously metastasizing counterparts are
exposed to many of the same environmental influences
and selective pressures that human prostate cancer cells
undergo in the prostate and lymph nodes. In addition, hu-
man xenografts allow one to interrogate the efficacy of
human-specific drugs such as proteins (eg, interferons) or
antibodies (eg, bevacizumab). Xenograft models provide a
complement to genetically engineered mouse models
which develop over a longer time and reside in an im-
munocompetent host but do not always capture all as-
pects of human cancer.

In vivo cycling of cancer cells has been demonstrated
to be a useful method to select for highly aggressive cell
lines. The human prostate cancer cell lines, PC-3 and
LNCaP, were previously cycled in vivo to select for
highly metastatic variants from sentinel lymph node
metastasis [12,18]. These human cancer models have
proven highly beneficial to the prostate cancer research
community [19]. Herein, we describe a similar method
to create a novel prostate cancer model developed in
our laboratory using the DU145 human prostate cancer
cell line. Originally isolated by Stone, et. al., from a hu-
man brain metastasis, DU145 is a “classical” and widely-
used prostate cancer cell line [20]. DU145 cells do not
express detectable levels of prostate specific antigen and
are not hormone sensitive.
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This report describes the development and characte
rization of this model and our studies investigating mo-
lecular changes that correlate with metastatic potential.

Methods

Cell culture and transfection

DU145 human prostate cancer cells were obtained from
ATCC (HTB-81) and maintained in high glucose DMEM
with 10% fetal bovine serum (FBS), 1% glutamine, peni-
cillin and streptomycin (GPS), and 1% sodium pyruvate
(Invitrogen, Carlsbad, CA). Phase contrast microscopy
was performed using a TE2000 microscope (Nikon) and
RT SPOT camera with SPOT Advanced v4.0.9. software
(Diagnostic Instruments, Inc., Sterling Heights, MI). Cells
were transfected with siRNA using SilentFect (Biorad) in
Opti-MEM I Reduced Serum Medium (Invitrogen), incu-
bated for 4 hours, media changed, and cells used for assays
at 48-72 hr. siRNAs were obtained from Thermo Scien-
tific: ON-TARGETplus non-targeting control siRNA pool
(D-001818-10-05), ON-TARGETplus human EPCAM
siRNA pool (L-004568-01-0005), ON-TARGETplus hu-
man PLAU siRNA (L-006000-00-0005), ON-TARGETplus
human ITGB4 siRNA pool (L-008011-00-0005). EPCAM
and ITGB4 siRNAs were used at 30nM and PLAU siRNA
used at 90nM for effective knockdown without toxicity.

Cell migration, invasion and proliferation assays

Cell migration was measured using Corning transwell in-
serts (BD Biosciences) with 8.0 um pore polycarbonate
membrane. Membranes were coated with Collagen I (BD
Biosciences) at 100 pg/ml. 1% FBS in DMEM was used in
the lower wells as chemoattractant. Cells were trypsinized,
trypsin inactivated with soybean trypsin inhibitor and
washed in DMEM. 6x10* cells were added to the top trans-
well chamber and allowed to migrate for 4 hours. Cells
were fixed and stained with Diff-Quik (Fisher Scientific)
and a cotton swab used to remove non-migrated cells from
the upper chamber. Migrated cells were counted in 3-5
fields/well with 2—3 wells/condition. Cells were used for ex-
periments 48 hours after transfection. For invasion assays,
BD BioCoat Matrigel Invasion Chambers, with 8.0 um pore
PET membrane in 24-well cell culture inserts (BD Biosci-
ences) were used with 5% FBS as the chemoattractant. Cells
were allowed to invade for 12 hours and were fixed, stained
and counted as described above. For uPA inhibitor experi-
ments, cells were treated with 0.1% DMSO vehicle, 10 uM
amiloride or UK122 (EMD Millipore, Billerica, MA). In
vitro cell number was measured using CyQUANT Cell Pro-
liferation Assay kit (Life Technologies). Cells were plated in
a 96 well plate at 2.5x10® cells per well and incubated for
1-4 days. Plates were frozen and processed together at the
end of the experiment. Fluorescent signal correlated with
cell number and was measured with 450 nm excitation and
520 nm emission filters.
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Western blot analysis

Whole cell lysates were collected in modified RIPA buffer
with EGTA and EDTA (Boston Bioproducts, Ashland, MA)
with protease inhibitor cocktail (P8340, Sigma-Aldrich).
Conditioned media was collected from serum-free cell
cultures, cells removed by centrifugation at 200 x g and
protein concentrated using Amicon Ultra-15 3 kDa Centri-
fugal Filter Units (Millipore) at 3000 x g. Protein concen-
tration was measured using a BCA (bicinchoninic acid)
assay kit (Pierce/Thermo Scientific). Reduced protein in
Laemmli sample buffer was resolved using SDS-PAGE and
transferred to Immobilon-P 045 um PVDF membrane
(EMD Millipore, Billerica, MA). Membranes were blocked
with 5% non-fat dry milk in PBS, incubated with primary
antibody, followed by the appropriate secondary IgG anti-
body; sheep anti-mouse IgG HRP or donkey anti-rabbit
IgG HRP linked (GE Healthcare). Membranes were washed
thoroughly between steps using PBS containing 0.05%
Tween-20, and developed using ECL Plus western blotting
detection kit (GE Healthcare). Primary antibodies used for
western blot analysis were as follows: EpCAM (C10,
sc-25308), Integrin P4 (H-101, sc-9090), uPA (H-140,
sc-14019) from Santa Cruz Biotechnology; AKT (#9272),
p-AKT (#9271), S6K (#9202), p-S6K (#9205) from Cell
Signaling. GAPDH (6C5) antibody was obtained from
Abcam. Membranes were stripped using ReBlot Plus
Strong Antibody stripping solution (EMD Millipore) be-
fore reprobing.

Immunohistochemistry

Paraffin-embedded tumor tissue and lymph nodes were
dewaxed, rehydrated, and stained with hematoxylin
and eosin (H&E) or immunostained to detect human
cytokeratin-18 (K18, Epitomics), EpCAM (Santa Cruz),
E-Cadherin (BD Bioscience), mouse blood vessels (CD31,
Pharmingen), or mouse lymphatic vessels (podoplanin,
Reliatech). Antigen retrieval was performed with boiling
citrate buffer (pH 6) for K18, EpCAM and E-cadherin or
with proteinase K for podoplanin and CD31. Endogenous
peroxidases were blocked with 3% peroxide in methanol.
Tissues were blocked using normal serum and incubated
with primary antibodies overnight at 4°C, biotinylated sec-
ondary antibodies (Vector Laboratories, Burlingame, CA)
for one hour, and Vectastain Elite (avidin-HRP; Vector)
for 30 min, and finally developed with diaminobenzidine
chromogen (DAB, Vector). To detect human epithelial cell
metastases, sentinel lymph node sections were stained
with K18, counterstained with hematoxylin, examined by
microscopy and K18-positive cells in small foci were
scored as metastases. Single K18-positive cells in the
lymph node were not scored as metastases. Three differ-
ent tissue levels from each of two lymph nodes (when
available) were examined per mouse.
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In vivo tumor experiments

Eight week old male Balb/c Nu/Nu mice were purchased
from Massachusetts General Hospital and housed in the
Animal Resource at Children’s Hospital (ARCH) facility
accredited by the American Association for Accreditation
of Laboratory Animal Care (AAALAC). All experiments
were conducted in accordance with the principles and
procedures outlined in the NIH Guide for the Care and
Use of Laboratory Animals and approved by an Institu-
tional Animal Care and Use Committee (IACUC) at Boston
Children’s Hospital. For orthotopic prostate injections, mice
were anesthetized and an abdominal incision was made to
expose the prostate. 2x10° cells ( suspended in 40 yl HBSS)
were injected into the prostate using a Hamilton mini-
injector, and the incision was closed with 9 mm wound
clips. Tumor growth was monitored by palpation. After 4—
12 weeks (5 weeks for direct comparison experiment), mice
were sacrificed and necropsied. Tumors (and lymph nodes
in 5 wk experiment) were removed, weighed and measured
with calipers, fixed in formalin and processed for paraffin
blocks. Orthotopic tumor volumes were calculated as
widthSuperscript> x /Superscript> x length x 0.5. Sentinel
paraaortic lymph nodes were washed with PBS, filtered
through a 100 pm cell strainer (BD Biosciences), and plated
in complete media on tissue culture dishes. The following
day, cells were washed thoroughly with PBS, replaced with
fresh complete media and re-named DU145-LN1 (from
lymph node). After expansion in culture, in vivo orthotopic
prostate injection was repeated for additional rounds of se-
lection with subsequent cells named DU145-LN2, then
DU145-LN3, and finally DU145-LN4.

For skin tumors, 5x10° cells were injected subcutane-
ously into the right dorsal flank of 8 week old male Balb/c
Nu/Nu mice. Tumor size was measured externally with
calipers, and tumor volume was calculated as V = width-
Superscript> x /Superscript> x length x 0.5.

Gene expression analysis
RNA for cDNA microarray analysis was purified using
RNeasy mini kits (Qiagen). Purity and integrity was con-
firmed by spectrophotometer and agarose gel. Total RNA
was labeled and amplified according to manufacturer’s in-
structions by the Microarray Core Facility of the Molecu-
lar Genetics Core Facility at Boston Children’s Hospital
supported by NIH-P50-NS40828 and NIH-P30-HD18655.
DU145, DU145-LN1, DU145-LN2 and DU145-LN4 RNA
samples were run on Illumina HumanRef-8 BeadChips
(lumina, San Diego, CA). Raw data were analyzed in
BRB-ArrayTools (Biometric Research Branch, National
Cancer Institute, Bethesda, MD, USA, http://linus.nci.nih.
gov/BRB-ArrayTools.html).

Signal intensity data was subject to rank invariant
normalization. Duplicated probes on the array were
treated independently during normalization and statistical
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analyses. Negative or low intensity signals <10 were cor-
rected to 10 to prevent extreme fold change artifacts.

Samples were subject to Hierarchical cluster analysis
using Euclidian distance. Differentially expressed genes
were identified using a time course analysis (DU145 as
time = 0, and DU145LN1, LN2 and LN4 as time =1, 2 and
3 respectively), with a cut-off minimum of 1.5-fold change
in DU145-LN4 relative to DU145. For functional gene
analysis, the entire dataset was imported into Ingenuity
IPA Network Analysis software (Ingenuity Systems, Red-
wood City, CA), and we selected Cancer and Cellular
Movement categories for further analysis. Cluster analysis
of the relationship between cell types within these categor-
ies or of the entire gene probe population using one minus
Pearson correlation, produced essentially indistinguishable
dendrograms. We cross-referenced back to probe intensity
values and genes were removed if all data points had low
intensities of <100 Arbitrary Intensity Units. Selected
genes were represented by heat map using GENE-E soft-
ware (www.broadinstitute.org/cancer/software/ GENE-E).
For analysis of Cell Signaling, data were excluded if Illu-
mina probe values were negative, <10, or less than the
probe signal in the control group (DU145).

Statistical analyses

Data from cell proliferation, migration and invasion as-
says were analyzed using unpaired two-sample student’s
t-test. Statistical significance was considered at p <0.05.
Specific p-values for each experiment are indicated in
Figure Legends.

Results

Development and characterization of a new prostate
cancer metastasis model in vivo

In order to select for prostate cancer cells with increased
metastatic potential we used an in vivo cycling approach
[12,18]. The DU145 human prostate cancer cell line [20]
was used to establish a series of metastatic variants.
DU145 cells were injected orthotopically into the prostate
of immunodeficient Nu/Nu (nude) male mice. After the
tumor was palpable (4-8 weeks), mice were euthanized
and the sentinel paraaortic lymph nodes were removed
and minced sterilely, and the cells placed into culture as
described in Methods (Figure 1 left side). If no tumor cell
outgrowth occurred, tumors in the remaining mice were
allowed to grow for additional 2 week intervals before
lymph nodes were removed and a cell line was established.
Cells, now called DU145-LN1, were expanded in culture
for several passages to eliminate fibroblast contamination,
and re-injected orthotopically into the ventral lobes of the
prostate of subsequent nude male mice. Repeated rounds
of in vivo cycling were performed to establish the DU145-
LN2, DU145-LN3 and DU145-LN4 cell lines. All cell lines
were analyzed by RT-PCR for mouse and human GAPDH
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expression to ensure that only human cells and no mouse
stromal cells were injected [21].

Once all cell lines were established, our in vivo metastatic
model was tested and characterized by injecting each cell
line orthotopically into the prostate of mice simultaneously
(n=4-7 mice per group). Tumors and lymph nodes were
removed after 5 weeks, as shown in Figure 1 (right side).
Tumor incidence was 100% in all groups, but local meta-
static incidence varied (Table 1). To quantify metastases,
paraffin-embedded lymph node sections (3 levels per lymph
node, 4-5 mice per group) were analyzed by H&E and hu-
man K18 immunostaining. Lymph node metastasis was
recorded as incidence of K18-positive foci per mouse. Re-
peated rounds of metastatic selection increased the inci-
dence of K18-positive metastatic foci from 0% in parental
DU145 lymph nodes, to 275% in DU145-LN2, DU145-LN3
and DU145-LN4 lymph nodes (Figure 2A, Table 1). In
addition to enhancing the metastatic potential of the
DU145-LN sublines, our in vivo cycling approach also in-
creased the growth of these tumors. Orthotopic prostate
tumor size was significantly increased from DUI145 to
DU145-LN1 and further to DU145-LN2 (Figure 1 right
side, Table 1). Interestingly, we found that DU145-LN2 was
consistently the largest tumor when injected into the pros-
tate, with rapid tumor growth compared to that of the
DU145 parental cell line. While increased tumorigenic and
metastatic ability appeared to have been established by the
LN2 generation, we also employed DU145-LN4 cells in
many of our studies as we surmised it was likely to repre-
sent the most stable and homogenous cell line.

The increase in tumor size in the DU145-LN model was
not explained by changes in the cell proliferation rate
in vitro. The proliferation rate of DU145-LN2 cells was not
significantly different than parental DU145 cells, while
DU145-LN4 consistently showed a slightly reduced prolif-
eration rate in vitro (Figure 2B). We further investigated
tumor growth potential by assessing subcutaneous tumor
growth over time. Subcutaneous tumor size is more accur-
ate and straightforward to measure compared to intrapro-
static tumor size. Tumor cells were injected subcutaneously
into the dorsal right flank of nude male mice, and tumor
size was measured externally with calipers. DU145 cells
were less tumorigenic when injected into the skin of nude
mice. In independent experiments, we found that an aver-
age of 7/10 mice that received DU145 cells showed
tumor-take. To our surprise, DU145-LN2 cells were highly
proliferative when injected subcutaneously, relative to par-
ental DU145 control cells (Figure 2C). DU145-LN2 cells
showed tumor take in 9/10 and 10/10 mice, more rapid
tumor take and more rapid tumor growth. DU145-LN4
cells injected into the skin showed tumor take in 10/10
mice and similar growth rate relative to parental DU145
cells (Figure 2C). Metastatic potential was not evaluated
in the ectopic experiments.
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DU145-LN2 DU145-LN1 DU145 |

DU145-LN4 DU145LN3

Figure 1 Development of a model of metastatic prostate cancer through repeated selection of spontaneous lymph node metastases
from orthotopic DU145 human prostate tumors. Schematic (left panels) of the experimental approach shows orthotopic prostate inoculation
of DU145 cells. Lymph nodes were removed and cultured, and selected tumor cells subject to repeated rounds of orthotopic injection. Right
panels show gross anatomy of tumors and lymph nodes 5 weeks after all DU145 sublines were reinjected (this figure is modified with permission
from [21]). Scale bar=1 cm.

The increase in lymph node metastasis and tumor size = small, DU145 tumors were often observed to be necrotic
in our DU145-LN model was accompanied by greater in their center (Figure 2A middle left). This observation
vessel density in the DU145-LN4 as compared to DU145  is likely related to their low recruitment of supporting
prostate tumors, as observed by CD31 immunostaining  CD31-positive blood vessels. Since we “selected” for me-
(Figure 2A, middle panels). Despite remaining relatively  tastasis to regional lymph nodes in our model, we

Table 1 In vivo orthotopic growth and metastasis of DU145 sublines

Cell line injected % Tumor incidence  Mean tumor weight (g) (+SD)  Mean tumor diameter (mm) (range) % Metastatic incidence*

DU145 100 0.66 (0.09) 73(6.3-93) 0
DU145-LN1 100 0.99 (0.25) 11.9 (83-14.1) 50
DU145-LN2 100 1.80 (0.37) 15.8 (12.9-18.2) 75
DU145-LN3 100 1.16 (045) 12.1 (55-16.1) 83
DU145-LN4 100 nd. 102 (7.3-12.8) 75

Cells were injected into the prostate. After 5 weeks, tumors and lymph nodes were removed. *K18-positive metastatic foci in lymph nodes. All available lymph
nodes were evaluated.
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Figure 2 DU145 LN tumors show increased growth, angiogenesis, lymphangiogenesis, and metastasis. (A) Metastasis was measured by
K18 staining of lymph nodes from mice bearing DU145 tumor (top left panel) and DU145-LN4 tumor (top right panel). K18-positive (brown color)
tumor foci (arrow) were counted as positive incidence of metastasis. Scale bars = 0.5 mm. Tumor vascularization was assessed by CD31 IHC (brown
color) of DU145 (middle left panel) and DU145-LN4 (middle right panel) prostate tumors. Increased vascularization was observed in DU145-LN4 tumors
relative to DU145 tumors. Scale bars = 100 pm. Lymphangiogenesis was measured by podoplanin staining. Enlarged podoplanin-positive vessels
(brown color) were observed in DU145-LN4 orthotopic tumors (lower right panel), compared to DU145 tumors (lower left panel). All sections were
counterstained with hematoxylin (blue color). Scale bars =100 um. (B) In vitro proliferation assays of the DU145LN sublines indicate similar proliferation
rates with slight reduced proliferation of DU145-LN4. 2.5x10° cells plated/well, absorbance measured using Cyquant dye (Ex=485 nm). Data in arbitrary
fluorescence units x1000. Filled circles: parental DU145, filled triangles: DU145-LN2, empty squares: DU145-LN4. Error bars indicate S.D. of triplicate wells.
(C) DU145-LN2 shows increased tumor growth compared to parental DU145 when injected subcutaneously into nude mice. 5x10° cells were injected
into the flank. Symbols as above.

anticipated that these cells would use lymphatic vessels more numerous, enlarged peri-tumoral lymphatic ves-
as a conduit. In fact, LVI and lymphangiogenesis can  sels (as detected by podoplanin staining) compared to
predict metastatic potential. The more aggressive tu- DU145 tumors, indicating increased lymphangiogenesis
mors DU145-LN2 (not shown) and DU145-LN4 showed  (Figure 2A, lower panels).



Banyard et al. BMC Cancer 2014, 14:387
http://www.biomedcentral.com/1471-2407/14/387

Metastatic selection changes prostate tumor cell phenotype

The selection of DU145 metastatic variants resulted in a
progressive change in cell phenotype. DU145 human pros-
tate tumor cells are a heterogeneous epithelial cell popula-
tion in in vitro culture [22]. We recently showed that the
more metastatic DU145-LN cells undergo mesenchymal
to epithelial transition (MET)-like changes in gene expres-
sion [21]. As seen in phase contrast microscopy, meta-
static DU145-LN4 cells form more clusters in vitro, with
more cell-cell interactions than DU145 cells (Figure 3A).
The intermediate DU145-LN cell lines displayed inter-
mediate phenotypes. These expression changes were
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maintained in iz vivo tumors. Immunohistochemical stain-
ing of paraffin embedded subcutaneous tumors showed
higher expression of E-cadherin and EpCAM by DU145-
LN4 compared to DU145 (Figure 3B).

Increased migration and invasion in metastatic

DU145-LN cells

To further characterize our new prostate cancer model, we
examined the effect of this metastatic selection on cell be-
havior in vitro. Cell migration and invasion are important
steps in the process of metastasis [23]. The effect of meta-
static selection on DU145 cell migration was determined in

(A)

(B)

E-cadherin

DU145

DU145-LN4

Figure 3 Phenotype of DU145-LN cells with increased metastatic ability. (A) Phase contrast microscopy images of parental DU 145 cells,
DU145-LN1, DU145-LN2, and DU145-LN4 cells. Cells exhibit progressive phenotypic changes after selection, with increased clustering and cell-cell adhesions
from parental DU145 (top left panel) to DU145-LN4 (bottom right panel). Insets are larger images of lower panels. Scale bar =05 mm (B) DU145-LN4
tumor cells maintain their mesenchymal-epithelial transition (MET) phenotype in vivo. IHC of DU145 and DU145-LN4 subcutaneous tumor tissue with the
epithelial markers, E-cadherin and EpCAM. High expression of E-cadherin and EpCAM was maintained in the tumor tissue. Scale bar= 100 pm.
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the transwell migration assay. 1% fetal bovine serum (FBS)
was used in the lower wells as a chemoattractant, and cells
were allowed to migrate for 4 hours. We found that there
was a progressive increase in cell migration from the
DU145 parental cell line to the metastatic DU145-LN4
cells. Parental DU145 exhibited a low level of migration
toward 1% FBS on collagen-coated membranes, while
metastatic DU145-LN4 cells displayed over 2.5-fold higher
migration (Figure 4A). The migration of DU145-LN2, LN-
3 and LN-4 was significantly greater than DU145.

We next looked at the invasive behavior of the DU145-
LN cells using the transwell Matrigel invasion assay. In this
assay, cells are required to invade through an extracellular
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matrix barrier. 5% FBS was used as a chemoattractant and
cell invasion was assessed after 12 hours. The metastatic
DU145-LN sublines also showed significantly increased in-
vasive abilities compared to parental DU145 cells. Figure 4B
demonstrates that DU145-LN1 to LN4 all showed over 2.5
fold higher invasion, compared to parental DU145 cells.
The increased invasion of DU145-LN1-4 cells was also
observed in vivo. Orthotopic prostate tumor tissue was
stained with human K18 to visualize tumor margins.
DU145 tumor margins were largely defined and well cir-
cumscribed (Figure 4C top left). DU145-LN subline tumors
showed highly invasive edges with human K18-positive
tumor cells protruding into the mouse prostate gland

[ (A)

35 ; "
2.5 1

1.5 1

Relative migration

0.5 4

0
DU145 LN1 LN2 LN3 LN4

(€)

(B)

Relative invasion
Noow s
[E T e

o .
o wm = 0N
. i i

(arrows) (lower right panel). Scale bars =100 um.

Figure 4 DU145-LN sublines exhibit increased migration and invasion with metastatic ability, relative to DU145 cells. DU145-LN metastatic
sublines show increased (A) cell migration in the transwell migration assay and (B) increased invasion in the Matrigel invasion assay. For both assays:
Mean of triplicate assays + S.D. Student t-test, *p < 0.05, **p < 0.01, (C) IHC of orthotopic prostate tumors with K18 (brown) and counterstained with
hematoxylin (blue). Margins were smooth and well-defined in the DU145 tumors (top left panel), while invasive margins were observed in DU145-LN1
(top right panel) and DU145-LN3 (lower left panel) tumors. Right lower panel shows magnified image of DU145-LN4 tumor seen in Figure 2A. Double
staining of K18 (brown) and podoplanin (black) shows tumor foci present in an enlarged lymphatic vessel and in a tumor-associated blood vessel
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(Figure 4C top right, bottom left). Interestingly, in
DU145-LN4 tumors K18-positive tumor emboli were
also clearly visible inside lymphatic vessels in the peritu-
moral stroma, as visualized by double staining with podo-
planin (black color) and K18 (brown color) (Figure 4C).
Tumor cells were also seen inside tumor-associated blood
vessels (Figure 4C bottom right, arrows).

Identification and analysis of genes involved in cell
invasion and migration

To investigate the molecular changes underlying the gain
of metastatic potential in our new model, we analyzed the
gene expression profile of these cells using an Illumina
cDNA Ref6 bead expression array. RNA was isolated from
these cells between passage 6-8. We confirmed through
RT-PCR that cell cultures were not contaminated with
cells of mouse origin that might share identity in gene
probe sequence [21]. Gene expression data was normal-
ized as described in Methods. Hierarchical Cluster analysis
confirmed that DU145-LN1 was most closely related to
the parental DU145 cells in gene expression profile. The
more metastatic cells, DU145-LN2 and DU145-LN4, clus-
tered together and were progressively more divergent
from DU145 parental cells, as visualized by dendrogram
(Figure 5A).

To identify genes related to metastasis we applied a con-
tinuous scale time course analysis using BRB Array Tools.
Our analysis revealed a pattern of gene expression changes
that showed progressively increased or decreased expres-
sion across the cell lines, from parental DU145 cells to
DU145-LN2 or DU145-LN4 cells. These gene expression
changes correlated with the increased migration, invasion
and metastatic potential of the cell lines. We used Ingenu-
ity software analysis to select for genes upregulated in can-
cer and cellular movement, as described in Methods.
Figure 5A shows a heat map generated using cancer and
cell movement genes significantly increased (red color) in
DU145-LN4 cells. The genes included ITGB4 (integrin
B4), ST14 (Matriptase), EPCAM (Epithelial Cell Adhesion
Molecule, (EpCAM)), CDH1 (E-cadherin), JUP (junction
plakoglobin/desmoplakin 3/y-catenin) and PLAU (urokin-
ase plasminogen activator (uPA)). Three of these genes
were further analyzed in this study: Epithelial Cell Adhe-
sion Molecule (EpCAM), urokinase plasminogen activator,
(uPA, gene name PLAU), and integrin p4 (ITGB4). Rela-
tive cDNA expression levels are shown in Additional file
1: Table S1. In addition, Ingenuity software was used to se-
lect for cellular signaling genes differentially regulated
among the cell lines (Additional file 1: Figure S1).

We investigated whether protein expression levels corre-
lated to the RNA expression profiles using immunoblot-
ting of whole cell lysates. EpCAM, integrin 4 and uPA all
showed a progressive increase in protein expression from
parental DU145 to DU145-LN4 cells (Figure 5B). GAPDH
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immunoblotting was used to confirm equal protein load-
ing. Image] software was used to measure protein band in-
tensity and averaged from 2-4 western blots for each
protein and graphed in Figure 5C. The protein expression
levels showed good correlation with the microarray data
for these selected genes.

We investigated whether these proteins were involved
in the increased migration observed in the metastatic
DU145-LN cells. DU145-LN4 cells were transfected with
siRNA against EpCAM, uPA or integrin B4, and the ef-
fect on cell migration was measured in the transwell
assay after 48 hours. Our data show that siRNA knock-
down of either EpCAM, integrin P4 or uPA using
siRNA significantly inhibited cell migration (Figure 6A-
C). We also examined whether silencing these genes
would affect cell invasion. uPA silencing significantly
inhibited tumor cell invasion, while both EpCAM or in-
tegrin P4 knockdown had no significant effect on
DU145-LN4 cell invasion (Figure 6D-F). Whole cell ly-
sates were collected in parallel and effective protein
knockdown by siRNA treatment was confirmed by im-
munoblotting (Figure 6G-H). In addition, two chemical
inhibitors of uPA were able to inhibit cell migration and
invasion of DU145-LN4 cells (Figure 6]-K, respectively).
Downstream cell signaling pathways were evaluated fol-
lowing uPA knockdown in DU145-LN4 cells. Specific-
ally, phosphorylation of AKT and phosphorylation of
p70 S6 kinase (S6K) were upregulated in control cells
following serum stimulation, but these proteins were
not activated in uPA-lacking cells (Figure 6I).

In summary, we have established a new model of human
prostate cancer metastasis using DU145 cells, a widely
used androgen-independent human prostate cancer cell
line. This model represents an advance upon other widely
available prostate metastasis cell models, because the
intermediate cell lines are available for analysis. Our selec-
tion approach has produced more highly metastatic, mi-
gratory and invasive sublines. Our initial analysis has
revealed a subset of genes that correlate with metastatic
potential. Cell migration and invasion are important steps
in metastasis; we have shown that three molecules upregu-
lated in our model: EpCAM, integrin-B4 and uPA play
roles in these processes.

Discussion

Our goal was to create a new reliable human prostate can-
cer model system that would use human prostate tumor
cells and result in rapidly growing (non-necrotic) tumors
in 100% of the mice injected and consistently recapitulate
the invasive and metastatic properties seen in patients.
Many prostate cancer research studies use one of three
human cell lines: PC3, LNCaP or DU145. While each cell
line has its benefits and drawbacks, we focused on the
DU145 cell line since it did not have well-used metastatic
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sublines reported in the literature. In our search for
metastasis-related pathways, we had also wanted to select
an androgen independent cell line. These cells grow ro-
bustly in vitro and express many prostate and epithelial
markers, yet they grow poorly in mice even when injected
into the mouse prostate gland. Therefore, many labs resort
to injecting high numbers (>2x10°) of cells and co-

injecting ECM components or fibroblasts to enhance
tumor-take and angiogenic potential. We chose to select
for highly metastatic variants of DU145 using an in vivo
cycling strategy that was previously successful for PC-3 M
and LNCaP [12,18].

Herein, we have presented the establishment and
characterization of our new model of human prostate
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cancer, the DU145-LN metastatic series. The DU145-LN
cells show enhanced in vivo growth as well as migratory,
invasive and metastatic abilities. These cell lines represent
new tools to explore the process of metastasis. Our ap-
proach to developing the DU145-LN metastatic series via
spontaneous metastasis from orthotopic organ sites pro-
vided the tumor with appropriate micro-environmental sig-
nals [14]. Cells with the ability to spontaneously metastasize
from the prostate tumor and survive in the lymph node
were repeatedly selected. The role of lymphatic versus
hematologic metastasis has been debated [24,25]. However,
the presence of tumor-positive lymph nodes continues to be
an important predictor of distant metastases and patient
survival in many cancers [9,26]. Studies have shown that
lymphovascular invasion is significantly associated with PSA
biochemical recurrence and patient survival in prostate can-
cer [5,27], although LVI may not significantly improve pre-
dictive accuracy above standard clinicopathological features
in prostate cancer [11]. We clearly observed tumor foci in
the enlarged lymphatics of the DU145-LN4 orthotopic tu-
mors, indicating that our model recapitulates steps common
in human prostate cancer progression.

After completing four rounds of cycling the DU145 cells
in mice (prostate to lymph node), we compared all five cell
lines in a head-to-head comparison for tumorigenicity and
metastatic potential in a 5 week period (Figure 1 shows
gross images of resulting tumors). DU145 was poorly an-
giogenic and had a low vascular density, therefore resulting
in small tumors. Cycled tumors had higher microvessel
densities, and vessel density has been shown to correlate
with metastatic potential in human prostate cancer [28]. In
addition, the DU145-LN4 tumors had increased lymphan-
giogenesis surrounding the tumors and invasive leading
edges. Lymphangiogenesis has been shown to be an im-
portant mechanism of prostate cancer metastasis [26,29],
and has been our focus in this study.

Most human prostate cancer cells do not grow well sub-
cutaneously; however, our new DU145-LN2 cell line rep-
resents a useful and rapid non-surgical xenograft model
for tumor growth studies in the skin, e.g. drug screening.
Metastatic cycling of DU145 prostate cancer cells also re-
sulted in cells that were more motile and invasive. By
examining the gene expression profiles of these cells we
revealed many genes correlating with their metastatic abil-
ity. In this report we have demonstrated the involvement
of EpCAM, integrin B4 and uPA in tumor cell migration
and/or invasion—key steps in the metastatic cascade. Al-
though each of these genes may not be individually com-
petent to induce metastasis in parental cells, we propose
that our model represents a valuable and relevant system,
as the genes we have identified have been shown to be
clinically important in prostate cancer.

EpCAM (also known as CD326) is well established as
a tumor marker in many carcinomas, and is widely used
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to purify circulating tumor cells from blood [30].
EpCAM is a transmembrane glycoprotein and has di-
verse functions in cell-cell adhesion, migration, prolifera-
tion and differentiation [31]. In human prostate cancer,
several tissue studies have shown upregulated EpCAM
in the tumor epithelium and in metastatic lesions
[32-35]. EpCAM expression in prostate tumor tissue is
also a significant predictor of shorter biochemical recur-
rence free-survival [35]. The mechanism of EpCAM activ-
ity has not yet been well defined. EpCAM can be cleaved
in its ectodomain to release an extracellular fragment,
(EpEX) and this may affect E-cadherin mediated cell-cell
adhesion [36]. It is possible that this fragment may be in-
volved in the increased migration and invasion observed
in the DU145-LN4 cells. High expression of the epithelial
marker E-cadherin has been associated with stronger cell-
cell interaction and subsequent reduced cell motility [36].
However, the presence of EpEX may modulate this role.
Our Western blot analysis (Figure 5B) indicates that both
full length EpCAM and EpEX is present at high levels in
the DU145-LN4 (and DU145-LN2) cells. EpCAM also as-
sociates with the tight junction protein, claudin 7, to pro-
mote tumor cell migration rather than cell-cell adhesion
that leads to lymphatic spread [37]. Claudin 7 expression
was also dramatically upregulated in the DU145-LN cell
series in microarray data (relative to DU145, DU145-
LN1 had 9.6X, DU145-LN2 had 21X and DU145-LN4
had 28X fold higher claudin-7 expression). Antisense
knockdown of either EpCAM or claudin-7 reduces
tumor growth and metastasis in mice, and knockdown
of both is more effective [38].

The cell surface EpCAM complexes can also involve an
additional partner identified in our gene expression ana-
lysis, B4 integrin. In normal epithelial cells a4 resides in
hemidesmosomes. In tumor cells, integrin 4 can relocate
from hemiodesmosomes to the leading edge of migrating
cells where it is involved in the signaling of many receptor
tyrosine kinases, including ErbB2, ErbB3, EGFR and Met
[39-41]. B4 integrin therefore impacts cell signaling, mi-
gration and invasion through multiple pathways. B4 ex-
pression also influences multiple miRNAs impacting cell
motility [42]. High levels of p4-integrin have been found
across many prostate cancer tissue expression studies, and
in metastatic and castrate-resistant prostate cancer metas-
tases [41]. Transgenic mice with a P4-integrin signaling
domain mutation showed reduced prostate tumor forma-
tion and progression, thus supporting our data that ITGB4
is involved in tumor cell migration and metastasis [41].

We also showed that uPA expression positively corre-
lated with metastatic potential in the DU145-LN cell
series. uPA silencing significantly inhibited both tumor cell
migration and invasion. Serine proteases, such as uPA play
an important role in tumor progression. By degrading the
extracellular matrix and basement membrane they can
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promote cell invasion, angiogenesis and metastasis [43].
Circulating levels of uPA, and its receptor uPAR (urokin-
ase-type plasminogen activator receptor), are significantly
elevated in prostate cancer patients, and are higher in pa-
tients with lymph node and bone metastases, compared to
those with non-metastatic disease [44,45]. uPA and uPAR
levels correlate with Gleason score, extracapsular exten-
sion, LVI, seminal vesicle and lymph node invasion and
are also associated with biochemical progression and poor
prognosis [45,46]. Both uPA and uPAR are involved in
Matrigel invasion in PC-3 cells [47,48], and RNAi or
shRNA knockdown of uPA and uPAR reduced orthotopic
prostate tumor size via apoptosis. In DU145 cells, uPAR
over-expression increased Matrigel invasion in vitro which
was inhibited by uPA antibody or inhibitor. In addition,
stable overexpression of uPAR was accompanied by uPA
upregulation [49], providing additional evidence for the
interdependence of the protease and receptor activities.

The uPA protease axis appears to play an important role
in the invasive and metastatic behavior of our metastatic
model. The uPA receptor, uPAR (gene name PLAUR) also
showed increased gene expression as DU145 cells become
more metastatic; with 1.3X fold increased expression in
LN1, 2.0X fold in LN2, and 2.7X fold in LN4, relative to
parental DU145 cells. Furthermore, one of the key activa-
tors of uPA activity is the protease Matriptase (gene name
ST14). Matriptase was also highly upregulated in our
model of prostate cancer metastasis; 4.5X fold in DU145-
LN1, 11X fold in DU145-LN2 and 16X fold increased in
DU145-LN4, relative to DU145 (Figure 5A). Antagonists
of the uPA/uPAR axis have been suggested for use as anti-
tumor agents with targeted monoclonal antibodies and
nanoparticles currently under development [50].

Our model has identified a network of gene and path-
way changes spontaneously arising as cells became more
metastatic. These include EpCAM, B4-integrin and uPA.
Clearly many of these pathways may interact and feed-
back upon each other. There may be master regulators
in this system, such as transcription factors and/or
microRNAs that influence expression of these and many
other genes. Indeed, ZEB1 has been reported to regulate
EpCAM, P4-integrin and uPA [51-53]. In turn, the miR-
200 family regulates the epithelial phenotype and ZEB1
[54-56]. In addition, there are other transcription factors
related to cancer and cell movement that are signifi-
cantly upregulated in this model, including ELF3 (8.7X
higher in DU145-LN4) and ETV4 (7.5X fold higher level
in DU145-LN4 compared to DU145 cells). These and
other genes may present new targets for intervention in
metastatic cell behavior.

Conclusions
Using one of the “classical” human prostate cancer cell
lines, DU145, we have developed a series of new
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metastatic variants, DU145-LN1 to DU145-LN4, through
in vivo cycling of spontaneous lymph node metastases.
The metastatic cells are more migratory and invasive.
Gene expression analysis revealed many genes correlating
with metastatic ability. We show that EpCAM and integ-
rin 4 are involved in migration, while uPA is involved in
migration and invasion of metastatic prostate cancer cells.
Our analysis of the role of these genes has demon-
strated the relevance of our new system. We expect that
further study of downregulated genes and as yet unchar-
acterized ¢cDNAs with strong correlation to metastatic
ability will bring new discoveries. We propose that our
new model system will be a powerful and additional tool
to interrogate the metastatic cascade in prostate cancer.

Additional file

Additional file 1: Figure S1. Heat map using Ingenuity Analysis
software and the “Cell Signaling” category. The range of difference
between DU145 and DU145LN4 groups are 1.8-164 fold. Table S1.
Relative expression levels of PLAU, EPCAM, ITGB4 and housekeeping
genes in the metastatic DU145-LN sublines.
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