Koti et al. BMC Cancer 2013, 13:549
http://www.biomedcentral.com/1471-2407/13/549 BMC

Cancer

RESEARCH ARTICLE Open Access

|dentification of the IGF1/PI3K/NFxB/ERK gene
signalling networks associated with
chemotherapy resistance and treatment
response in high-grade serous epithelial
ovarian cancer

Madhuri Koti'?, Robert J Gooding?, Paulo Nuin'#, Alexandria Haslehurst!, Colleen Crane”,
Johanne Weberpals®, Timothy Childs', Peter Bryson’, Moyez Dharsee®, Kenneth Evans?,
Harriet E Feilotter!, Paul C Park' and Jeremy A Squire'®”

Abstract

Background: Resistance to platinum-based chemotherapy remains a major impediment in the treatment of serous
epithelial ovarian cancer. The objective of this study was to use gene expression profiling to delineate major
deregulated pathways and biomarkers associated with the development of intrinsic chemotherapy resistance upon
exposure to standard first-line therapy for ovarian cancer.

Methods: The study cohort comprised 28 patients divided into two groups based on their varying sensitivity to
first-line chemotherapy using progression free survival (PFS) as a surrogate of response. All 28 patients had advanced
stage, high-grade serous ovarian cancer, and were treated with standard platinum-based chemotherapy. Twelve
patient tumours demonstrating relative resistance to platinum chemotherapy corresponding to shorter PFS (< eight
months) were compared to sixteen tumours from platinum-sensitive patients (PFS > eighteen months). Whole
transcriptome profiling was performed using an Affymetrix high-resolution microarray platform to permit global
comparisons of gene expression profiles between tumours from the resistant group and the sensitive group.
Results: Microarray data analysis revealed a set of 204 discriminating genes possessing expression levels which could
influence differential chemotherapy response between the two groups. Robust statistical testing was then performed
which eliminated a dependence on the normalization algorithm employed, producing a restricted list of differentially
regulated genes, and which found IGFT to be the most strongly differentially expressed gene. Pathway analysis, based
on the list of 204 genes, revealed enrichment in genes primarily involved in the IGF1/PI3K/NF«B/ERK gene signalling
networks.

Conclusions: This study has identified pathway specific prognostic biomarkers possibly underlying a differential
chemotherapy response in patients undergoing standard platinum-based treatment of serous epithelial ovarian
cancer. In addition, our results provide a pathway context for further experimental validations, and the findings are a
significant step towards future therapeutic interventions.
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Background

Ovarian cancer remains the most common cause of death
in women due to a gynecological malignancy [1]. Unfor-
tunately, most women first present with advanced dis-
ease. According to the Federation of Obstetricians and
Gynecologists (FIGO) international system, Stage I ovar-
ian cancer is identified as a tumour that is restricted to
the ovaries. The cancer is defined to be Stage II when
both ovaries are involved and the tumour has extended
to the pelvis. Stage III and IV are identified when the
tumour shows peritoneal metastasis and distant metasta-
sis, respectively. Given the absence of an effective screen-
ing test and the lack of specific symptoms, the majority
of women present with stage III or IV disease. The stan-
dard frontline therapy for advanced ovarian cancer is
debulking surgery and platinum-paclitaxel based com-
bination chemotherapy. Despite major advances in the
development of novel treatment regimens and targeted
therapies, such as immunotherapy, cytotoxic and anti-
angiogenic therapies, there has been only a marginal
improvement in the survival of women with ovarian
cancer over recent decades, largely due to refinements
in chemotherapy and surgical technique [2]. However,
recent literature suggests a more refined understand-
ing of the biological mechanisms underlying this disease
[3]. Molecular classifications have been used to broadly
divide ovarian cancer as Type I (mutations in KRAS and
BRAF leading to activation of the MAPK pathway) or as
Type II (extensive TP53 mutations, and sometimes over
expression of HER2/neu and AKT2) [4,5] tumours. In
addition, it has been proposed that the molecular com-
parisons within individual histologic groups are more
meaningful, as these subtypes are now considered to be
different diseases that share the same anatomical site of
growth [6].

Chemotherapy resistance is the major obstacle in
treating women with ovarian cancer [7]. Based on the
progression-free survival (PFS) after completion of che-
motherapy, patients are classified as platinum-sensitive
(PES > eighteen months) or platinum-resistant (PFS <
six months) [8]. Those women who progress between
6-12 months post treatment are considered to have
tumours with reduced sensitivity to platinum. The per-
centage of complete and partial response is 75% in patients
with the platinum-sensitive disease, but only 10-20%
in the platinum-resistant disease [9]. The intermedi-
ate partially sensitive (or partially resistant) population
has approximately a 30% chance of response to further
platinum-based therapy [9]. Resistance to platinum-
based chemotherapy is multifactorial, and exhibited either
intrinsically or acquired with drug exposure. It is thought
that there may be pre-existing resistance mutations in
tumours prior to treatment, thus accounting for the high
frequency of platinum-resistant ovarian cancer at first
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relapse [8]. In addition, an active interaction between
the drug and tumour microenvironment may lead to
selective up or down-regulation of genes involved in
the pathways associated with a variation in response
to chemotherapy [10]. The major advantage of identify-
ing pathways involved in intrinsic chemotherapy resis-
tance is that targeted strategies can be developed for
an earlier time point in the disease process to address
the cellular responses that become activated upon drug
exposure [11].

There have been various studies in recent years attempt-
ing to investigate associations between gene expression
profiles in ovarian cancer and resistance to chemother-
apy [12-17]. Whilst these studies have addressed differ-
ential gene expression with various clinical correlates,
many have included a range of histologies or uniquely cell
line data [18-20]. The objective of the present study was
to use gene expression profiling of a carefully selected
group of patients distinguished predominantly by their
varying responses to chemotherapy, using progression
free survival (PFS) time as a surrogate of drug response.
This group of patients was considered homogeneous with
respect to all other clinical features apart from PFS.
The selected 28 serous epithelial ovarian cancer (SEOC)
tumours comprised a discovery cohort that could be used
to identify key molecular networks associated with intrin-
sic chemotherapy resistance in SEOC patients receiving
standard treatment. Robust statistical analyses were used
to define a set of distinguishing genes that were used
for pathway analysis. This list of genes could be used to
validate potential biomarkers in other cohorts that are
involved in a differential response to chemotherapy in
SEOC.

Methods

Ethics statement

Institutional ethics approval was obtained from Queen’s
University and the Ottawa Hospital Research Institute’s
(OHRI) Research Ethics Boards. Informed written con-
sent was obtained in all patients prior to sample collection.

Patient tissue samples and classification

A cohort of 28 locally advanced (IIa-IV) fresh frozen high-
grade SEOC tumours were obtained from the Ontario
Tumour Bank and the OHRI. Tumour samples were col-
lected at the time of primary debulking surgery, and
stored at -80°C until processing. Patients were naive to
chemotherapy and radiotherapy prior to cytoreductive
surgery and standard carboplatin/paclitaxel chemother-
apy. Histological classification of the tumours was per-
formed using the WHO criteria, and disease staging
according to the International Federation of Gynecology
and Obstetrics (FIGO) guidelines. Histopathological
examination of the tumour sections performed by a
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pathologist (TC) confirmed more than 70% tumour in
all samples. As per the Gynecologic Cancer Intergroup
Guidelines, patients were classified into two arms using
either Ca-125 or RECIST criteria, and were assigned
to either the sensitive or the partially resistant/resistant
groups based on their PFS (Table 1). Two distinct arms
were selected for study based on their clear separation
according to their respective PFS. Twelve samples were
classified as partially resistant/resistant, as they exhibited
progressive disease within eight months from completion
of chemotherapy. In contrast, sixteen samples demon-
strated high sensitivity to platinum, as there was no
relapse within 18 months after completion of chemother-
apy. A schematic representation of the overall study design
is presented in Figure 1.

Table 1 Clinical and pathological characteristics of
adjuvant treated SEOC patient samples

Sample Age Stage PFS (months) Classification
1100 54 Il 5 Resistant
1101 55 v 5 Resistant
1240 64 Il <3 Resistant
1299 53 b 3 Resistant
1413 47 v <3 Resistant
1587 54 llc 0 Resistant
1605 51 Ib 3 Resistant
1703 48 Il 6 Resistant
1776 58 Il 6 Resistant

D00443 51 Il 5 Resistant
1359 62 Il 8 Partially Resistant
1680 67 llc 7 Partially Resistant
1157 61 lllc 36 Sensitive
1188 58 Il 34 Sensitive
1224 - - 22 Sensitive
1296 61 Il 39 Sensitive
1304 51 llla 26 Sensitive
1308 49 Il 25 Sensitive
1351 55 v No recurrence Sensitive
1355 68 lla 23 Sensitive
1381 51 llla 25 Sensitive
1561 63 Ilb 25 Sensitive
1625 54 b 26 Sensitive
1627 52 llla No recurrence Sensitive
1706 61 llla No recurrence Sensitive

B01183 79 Il 22 Sensitive

B01360 54 Il 19 Sensitive

B01440 53 Il 20 Sensitive
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Gene expression profiling

Total RNA was isolated from all tumour samples using
a combination of Trizol (Invitrogen, CA) and Qiagen
RNA isolation kit (Qiagen Inc., Mississauga, CA), as
per manufacturer’s instructions. The RNA integrity was
analyzed using RNA 6000 Nano Chip on an Agilent
2100 Bioanalyzer (Agilent Technologies, USA). The RNA
concentration was determined spectrophotometrically
on a NanoDrop ND-100 spectrophotometer (NanoDrop
Technologies, USA). All samples showed appropriate
RNA integrity number, and were thus subjected to down-
stream microarray analysis. All the hybridization experi-
ments were performed using Affymetrix Human Genome
U133 Plus 2.0 arrays (Affymetrix Inc.,, USA) at the
Centre for Applied Genomics (The Hospital for Sick
Children, Toronto, ON, Canada). 500 nanograms of total
RNA was used for ¢cDNA synthesis using GeneChip 3’
IVT Express Kit (Affymetrix Inc, Santa Clara, CA USA).
Post hybridization array washing, scanning and probe
quantification was performed on an AffymetrixGeneChip
Scanner 3000, as per manufacturer instructions. The
gene expression raw data files have been deposited
to NCBI Gene Expression Omnibus (GEO acces-
sion GSE51373 at http://www.ncbi.nlm.nih.gov/projects/
geo/).

Microarray data analysis

The normalization of the microarray data was conducted
using packages available in R/Bioconductor. Significance
tests and other analysis was completed using standard
statistical functions in R.

Technical microarray quality control analysis was per-
formed on the full set of CEL files using the arrayQuali-
tyMetrics Bioconductor package, based on the 12 samples
from the resistant cohort, and 16 samples from the sen-
sitive cohort [21]. Normalization was performed over all
28 samples and all 54,675 probe sets using the MAS5
algorithm from the affy Bioconductor package [22]. This
normalization processing was chosen for a variety of rea-
sons. First, although it is recognized that different nor-
malizations tend to give different answers [23], thereby
leading to different conclusions, it has been suggested that
MASS is appropriate for identifying differences between
various sets of data. Indeed, in comparison to other nor-
malization methods we obtained the largest number of
differentially regulated genes when the MAS5 normal-
ization was used. Second, when a variety of normaliza-
tions were employed, specifically the four normalization
algorithms MAS5, LiWong [24], RMA [22] and gc-RMA
[25], the MASS5 values were, in fact, closest to the aver-
ages obtained from taking the mean expression inten-
sity of the four normalization results. Finally, from the
MASS5 expression intensities, the log, value of the mean
expression intensity of the resistant cohort relative to
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Figure 1 Study Design. A schematic representing the workflow followed when comparing and interpretting gene expression differences of 28

high-grade SEOC tumour samples that had been characterized using their progression-free survival. After sample characterization, gene expression
intensities were analyzed, correlations between patients for the 204 differentially regulated genes were quantified, and microarray gene expression
were validated with gRT-PCR. Ingenuity Pathway Analysis was completed with the fold change values for the 204 differentially regulated genes, and

the networks having the highest scores were studied.

the mean expression intensity of the sensitive cohort was
calculated.

Quantitative reverse transcriptase PCR (qRT-PCR) analysis
Gene expression changes as calculated using the
comparative AAC; method [26] were obtained from
qRT-PCR studies for technical validation. For this
experiment, qRT-PCR was performed in all 28 samples
in triplicate. Two over-expressed (IGFI and ZFP36)
and two under-expressed genes (ZNF83 and MCMS8)
were examined, and their expression differences were
obtained relative to the house-keeping control gene
ACTB.

In silico validation of gene expression analysis

We performed in silico validation of our gene expression
profiling results using data from The Cancer Genome
Atlas (TCGA). The TCGA dataset contains microarray
based gene expression data from over 500 high-grade
ovarian cancer samples. We selected 19 resistant and 25
sensitive samples for a comparative validation study. The
selection of these two groups from the TCGA dataset was
based on similar clinical criteria as applied to our discov-
ery cohort. With these 44 samples we completed the same
MASS5 normalization gene expression differentiation anal-
ysis as described above for the discovery cohort of 28
samples.
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Results and discussion

Gene expression analysis

The process of identifying probe set expression intensities
corresponding to significantly different expression inten-
sity averages is somewhat complicated by the fact that for
the small sample numbers, twelve resistant and sixteen
sensitive, the distributions of expression intensities is not
normal. In our expression dataset we often find bimodal,
multimodal, or uniform distributions, which is simply a
bi-product of working with small sample numbers, as is
often found. Therefore, in addition to performing a Welch
two-sample ¢ test, corresponding to a parametric pro-
cedure, we also examined the expression intensities for
all probe sets using the non-parametric Mann-Whitney
U test procedure. Following this approach, a probe set
was identified to possess a significantly different expres-
sion intensity distribution for the resistant and sensitive
cohorts if (i) the p value for each test was less than 0.01,
and (ii) the absolute value of the logy fold change was
in excess of 0.2. The Welch procedure generated a list of
434 probe sets, and the Mann-Whitney procedure then
reduced this to a collection of 310 probe sets. Due to our
use of multiple significance tests, no corrections using a
chosen false discovery rate were performed.

To obtain a list of differentially expressed genes, from
the collection of 310 probe sets, the probe sets that were
not identified with a gene, the open reading frame and
hypothetical genes were all ignored. Our final analysis was
based on this reduced list of 219 probe sets. From this list
of 219 probe sets one finds a small number of duplicated
genes, so-called redundant expression levels. A cluster
“averaging” over probe sets consistent with the SCOREM
algorithm, recently proposed to handle such redundant
probe sets [27], was used. Therefore, at the conclusion of
this statistical processing our analysis produces a list of
204 genes, and when ordered by their log, fold change val-
ues these are given in the Additional file 1 available with
this report (Additional file 1: Table S1). It is noteworthy
that 74 probe sets had higher expression values for the
resistant cohort versus the sensitive cohort, whereas the
130 had lower expression levels for the resistant cohort.
Therefore, on average the differentially regulated genes
that distinguish the two cohorts are more likely to be
underexpressed in the resistant tumours than in the sen-
sitive tumours, suggesting that loss or reduced expression
of key genes may underlie varying cellular responses to
chemotherapy.

The potential caveat to the above results, as mentioned,
is that different normalizations lead to variable subsets of
differentially expressed genes. To circumvent the potential
bias introduced by choosing one normalization method
(MASS5), further analysis was taken in which a probe set
was identified to possess a significantly different expres-
sion intensity distribution for the resistant and sensitive
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cohorts if (i) the p value for both tests (parametric and
non-parametric) was less than 0.01, and (ii) the absolute
value of the logy fold change was in excess of 0.5, and (iii)
the probe set must be identified for all four normalizations
considered. The resulting robust list of 32 differentially
expressed genes contained genes with (absolute) log; fold
changes between 0.5 and around one, except for one gene,
IGFI1. When averaged over the four normalizations, IGFI
is found to have an average fold change of 1.640.2.

Correlations

To better appreciate the degree of similarity and dissimi-
larity of gene expression intensities of all 204 genes across
the entire cohort of 28 tumours, we performed an inter-
sample correlation analysis - similar ideas have appeared
in published gene expression papers [28]. The most differ-
entially expressed 204 genes that distinguish between the
chemo-resistant and chemo-sensitive cohorts, described
above, are given in Additional file 1: Table S1. The gene
expression intensities of each patient were then ranked,
and the inter-patient Spearman rank correlation coeffi-
cient, p, was evaluated [29]. Our results are shown in
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Figure 2 Correlation Map. The Spearman rank correlation
coefficient rho for the supervised list of differentially expressed genes,
evaluated between all different pairs of tumour samples. The results
are plotted using the levelplot function of R. The colour legend on
the right hand side of the figure indicates that bright yellow
corresponds to a value of rho nearly equal to one, whereas bright
blue is assigned to values of rho close to 0.85. No values of rho less
than 0.85 are obtained. The resistant patients are given patient
identifiers between 1 and 12, whereas the sensitive patients are given
patient identifiers between13 and 28. This pair-wise display of all 28
samples clearly shows the similarity in expression profiles of all
tumours within the 12 tumour resistant group, which can clearly be
distinguished from the similarities of expression of all tumours within
the 16 tumour sensitive group. The high degree of homogeneity
within each of these two groups, and the dissimilarities between the
resistant and sensitive tumour groups, provides strong evidence for
the robustness of the identification and statistical evaluation of the
204 differentially expressed genes.
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Figure 2. A value of p close to one indicates a monoton-
ically changing relationship between the supervised gene
list of pairs of patient tumours, and no p values less than
0.85 are found. This pair-wise display of all 28 samples
clearly shows the similarity in expression profiles of all
tumours within the 12 tumour resistant group, which can
clearly be distinguished from the similarities of expres-
sion of all tumours within the 16 tumour sensitive group.
The high degree of homogeneity within each of these two
groups, and the dissimilarities between the resistant and
sensitive tumour groups, provides strong evidence for the
robustness of the identification and statistical evaluation
of the 204 differentially expressed genes. The correlation
analysis also confirms that the rationale for the initial
selection of the two tumour groups based on each patient’s
PES as a surrogate of their chemotherapy response was
appropriate.

Technical validation of microarray results

Two over-expressed (IGFI and ZFP36) and two under-
expressed (MCM8 and ZNF83) genes that were sig-
nificantly differentially expressed were analyzed on all
28 samples by qRT-PCR. Our results, compared to the
microarray logy fold changes for these same genes when
analyzed using the MAS5 normalization, are shown in
Figure 3. From these results one sees that the expression
differences detected on the microarrays were also evident
using other measures of assessing expression levels. These
data also confirmed the directionality of the fold change
differences as revealed by microarray analysis.
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Gene signatures and major signalling pathways associated
with chemotherapy resistance

Ingenuity pathway analysis (IPA) was performed on
the set of 204 differentially expressed genes, including
their fold change values, in order to identify the most
significantly altered gene networks, and the associated
functions distinguishing the two groups. IPA employs
Fisher’s exact test to determine the relationship between
the input dataset and the canonical pathways with
associated biofunctions. Molecular interaction networks
explored by IPA tools, with the threshold settings of a
maximum 35 nodes per network, revealed a total of 25
networks. The top five significant networks, containing at
least thirteen differentially regulated genes in each net-
work from the current data set, are shown in Figures 4a-e.
Network 1 included 25 differentially regulated genes with
signalling in IGF1, the NF«B complex, PI3K, Akt, and
ERK as the major over-represented gene networks. The
high degree of relevance of these networks as poten-
tial drivers of PFS and drug response is reflected by the
high proportion of genes from our 204 gene set being
involved in each of the signalling networks. For exam-
ple, 26 out of the 35 genes in network 1 were derived
from the 204 gene set. Network 2 included 17 genes
from the set and these genes are associated with MYC
and RB1 signalling pathways. Similarly, the networks 3, 4
and 5 consisted of 14, 13 and 13 genes from the dataset.
The major over-represented signalling networks associ-
ated with these networks were CCND1, TP53, IGFIR,
and TNE. Cellular movement, growth and proliferation,

@ FC Rvs S by gPCR

®FC Rvs S by array

-0.5 -

log2 fold change Resistant vs Sensitive

-1.5 -

IGF1 ZFP36

expression intensities.

ZNF83

Gene name

MCM8

Figure 3 qRT-PCR Validation Results. A comparison of the gRT-PCR data to the microarray data, the latter obtained from the MAS5 normalization
algorithm, for a set of two over-expressed and two under-expressed genes. The fold change refers to a ratio of the resistant to sensitive mean
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Figure 4 Gene networks generated by Ingenuity Pathway Analysis of 204 differentially expressed genes. a. Highest scoring signalling
network 1 showing the IGF1, PI3K/Akt, NFkB and ERK signalling axes. Molecular relationships with genes from the current study (highlighted in
green/red), as well as from the IPA knowledge base, are shown. Green indicates over-expressed whereas red indicates under-expressed genes.
Other signalling pathways such as E2f, Vegf and estrogen receptor are also seen. Associated functions include cellular development, cellular growth
and proliferation, and cell cycle. b. Signalling network 2 showing the MYC and RB1 signalling axis. Molecular relationships with genes from the
current study (highlighted in green/red), as well as from the IPA knowledge base, are shown. Associated functions include cell cycle, connective
tissue development and function, cell death and survival. €. Signalling network 3 showing the TP53 and CCND1 signalling axis. Associated functions
include cell morphology, cellular assembly and organization, and cellular development. d. Signalling network 4 showing the IGF1R, MAPK8 and
TP53 complex signalling axes. Associated functions include cell cycle, cell death and survival, and cellular development. e. Signalling network 5
showing the TNF and SREBF1 complex signalling pathways. Associated functions include lipid metabolism, molecular transport, and small molecule

DNA replication, recombination and repair, cell-to-cell
signalling and cellular development were the predominant
biological functions associated with the top five networks.

What is notable about these results is that the IPA anal-
ysis was completed using the 204 genes found from the
MASS5 normalization. The network with the highest score,
41 in comparison to a score of 23 for the second high-
est scoring network, involves the IGFI gene. It is the
same gene which was identified as possessing the most
differentially expressed intensity when a normalization-
independent significance analysis was completed, produc-
ing a robust list of differentially regulated genes. The
appearance of this gene in multiple analyses highlights its
putative role in understanding the biology of the chemo-
resistant cohort.

In silico validation of microarray results

We performed in silico validation of our microarray
results, using data from TCGA ovarian cancer cohort,
with the analysis parameters identical to our discovery
cohort. The platform used for the TCGA analysis was
Affymetrix U133, which has a different coverage than the
platform we used for our discovery cohort (Affymetrix
U133 Plus 2.0). The TCGA data analysis lead to the identi-
fication of an entirely distinct differentially expressed gene
list (Additional file 2) compared to our discovery cohort.
However, interestingly, when we subjected the differen-
tial gene list derived from this TCGA comparison study,
to pathway analysis using the same parameters, we noted
NF«B, IGF1-R and ERK gene signalling networks in the
top two networks.
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Conclusions

The present study was aimed at identifying gene expres-
sion markers of intrinsic chemotherapy resistance in
high-grade SEOC patients. Chemotherapy-naive tumour
samples from late stage, high-grade SEOC were selected
to compare two distinct drug sensitivity profiles within
this cohort of 28 patients, using comparative gene expres-
sion profiling by a high resolution Affymetrix gene
expression microarray platform. The study was designed
to identify the genes whose overall expression levels
were discriminating between the twelve resistant/partially
resistant patients and the sixteen chemotherapy sen-
sitive patients selected for each cohort. Gene expres-
sion analysis in these two highly homogeneous groups
of patients indicates the potential role of IGF1 as one
of the key signalling pathways involved in the devel-
opment of intrinsic chemotherapy resistance in ovarian
cancer.

Insulin-like growth factor is produced by different cell
types, and its role in cancer is well documented in prostate
cancer, breast cancer, colorectal cancer and melanoma,
where increased risks to these cancers were associ-
ated with higher IGF1 levels [30-35]. Also, the potential
role of IGF1, along with IGFBP3, as prognostic mark-
ers that can predict mortality in men with advanced
prostate cancer, was reported in a recent clinical study
[36]. The activation of oncogenic “p-catenin signalling
through the inactivation of glycogen synthase kinase 3”
(GSK3”) has also been shown to be associated with can-
cer stemness and chemo-resistance [37,38]. Recent stud-
ies suggest that the mechanisms of carcinogenesis and
chemo-resistance exhibited by cancer cells are often due
to the expression of the IGF1 receptor [39,40]. Drugs,
including antibodies, targeting the insulin-like peptides
signalling through the PI3K/Akt/mTOR pathway are cur-
rently in various clinical trials in breast and prostate
cancers [41-44].

Previous studies on the role of IGF1 in ovarian can-
cer show that elevated serum levels of IGF1 are often
observed in this cancer [45]. Higher levels of IGF1 are
also found to be associated with increased disease risk,
tumour metastasis and poor prognosis in ovarian can-
cer [46] via the activation of IGF1-R. A recent in vitro
study indicated the role of IGF1 in enhancing ovarian
cancer cell proliferation through PI3K/Akt/mTOR sig-
nalling [47]. Exogenous addition of IGF1 in ovarian cells
also leads to their increased proliferation [48]. In vitro
findings indicate the role of IGF1-R and PI3K in cis-
platin resistance [49]. Based on earlier findings on the
role of IGF1 in low-grade ovarian carcinomas [46], as
well as in in vitro studies in hepatocellular carcinoma,
a phase II clinical trial is currently underway using the
IGF-1R/IR dual receptor tyrosine kinase inhibitor OSI-
906 (clinicaltrials.gov). However, the role of IGF1 in the
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development of chemo-resistance in ovarian cancer has
not yet been defined in patient cohorts that exhibit resis-
tance to chemotherapy. It has been reported that a com-
pensatory mechanism imparted by one receptor tyrosine
kinase for another eventually leads to drug resistance in
targeted therapies [50]. Zhao and colleagues [51] report
a strong correlation between EMT status and sensitiv-
ity to IGF1-R/IR inhibitor OSI-906. Our current findings
on relatively increased expression of /GFI in the resis-
tant patients indicate that gene expression based predic-
tive biomarkers in this pathway might be considered for
future clinical trials. The relative increased expression of
INSR (a receptor for insulin) and IGFI in the resistant
cohort in our study indicates that the drug resistant cells
evolve multiple compensatory mechanisms for tumour
cell survival. Our study, therefore, also confirms the in
vitro findings at the clinical level, where the deregulated
IGF1 pathway might play a role in intrinsic chemotherapy
resistance.

The genes in the PI3K/Akt cascade were recently shown
to induce drug resistance to cisplatin in vitro using an
integrative gene expression and pathway based approach
[52]. Activation of the PI3K pathway involves alterations
in any of the downstream or upstream molecules involved
along the PI3K/Akt/mTOR axis. This knowledge has not
yet been translated into the use of targeted therapies in
the treatment of ovarian cancer, and further studies are
needed to improve our understanding of the molecular
pathways that govern chemotherapy response in SEOC.
The PI3K pathway is activated by a number of growth
factors including IGFI, resulting in cellular growth and
metastasis as well as chemotherapy resistance. Blocking
the PI3K/Akt pathways both in vitro and in vivo has been
shown to increase drug efficacy in controlling tumour cell
growth and proliferation [53].

Our in silico validation of gene expression results using
a subset of the TCGA data did not demonstrate overlap
between the 204 gene list (Additional file 1: Table S2) and
TCGA gene list of 109 genes (Additional file 1: Table S2).
In light of the high level of genomic diversity recently
identified in untreated high-grade SEOC tumours [54],
it is not surprising that there is considerable variabil-
ity at the expression level of individual genes. However,
when the TCGA gene set of 109 differentially expressed
genes was subjected to IPA analysis, ERK and NF«B
and IGF1-R networks appeared in the top two networks.
This finding suggests that pathway alterations are likely
more important per se than the identity of the actual
genes that lead to dysregulation of expression [17]. Several
different independent gene expression profiling studies
have led to the discovery of different sets of genes lists
[10,55-57]. However, the major pathways that are consis-
tently associated with chemotherapy resistance in ovarian
cancer remain the same. In addition to IGF1, pathway



Koti et al. BMC Cancer 2013, 13:549
http://www.biomedcentral.com/1471-2407/13/549

analysis in our study also identified NFxB and ERK sig-
nalling as the major overrepresented networks in the
resistant group compared to the sensitive. This finding
is consistent with a recent study based on the publicly
available TCGA dataset, which reports the overrepresen-
tation of NFxB and ERK signalling based on IPA analysis
of differential gene sets [58]. A previously reported study,
using gene expression profiling, conducted to delineate
intrinsic chemotherapy resistance pathways, showed an
involvement of cell-cycle, extracellular matrix, cell adhe-
sion and signalling associated genes in the chemotherapy
resistant group [22]. Earlier reports also indicate the role
of cell cycle regulators such as cyclins in response to
treatment with platinum-based therapies [59]. Another
study identified a 320-gene set that distinguishes the
chemotherapy sensitive tumours [56]. Up-regulation of
genes involved in cell cycle regulation, down-regulation of
genes involved in cell adhesion, transcriptional regulation
and signal transduction was also reported [56]. However,
overall previous studies indicate a role of genes involved in
cell cycle regulation, cell adhesion and signal transduction
in the development of a chemotherapy resistance, which
is consistent with the findings in our study.

One of the major findings of our study is the role of
IGF1 signalling in mediating intrinsic chemotherapy resis-
tance, possibly by activation of the PI3K/Akt, NF«B and
ERK pathways. Since increased NF« B activation also cor-
relates with chemotherapy resistance in solid tumours
[60], it could be argued that drug resistant cells reside
within the tumour and exhibit inherent activation of
multiple signalling pathways, which eventually lead to
tumour recurrence. In addition, given that IGF1 can acti-
vate the PI3K as well as the ERK signalling pathway,
it might be possible that increased NF«B activation is
initiated as a result of increased levels of IGF1 in the
resistant population. These cells might further contribute
to the survival, proliferation and recurrence following
chemotherapy. As described in the results, the /IGFI gene
emerged from both pathway analysis (network 1), and
as the highest differentially expressed gene in the robust
list generated by the application of four different normal-
ization methods. This emphasizes the potential role of
IGF1 in PFS, and potentially in intrinsic chemotherapy
resistance.

The differential expression of the 204 gene set when
the two groups were compared provides experimental evi-
dence of major signalling pathways leading to difference in
PFS associated with the development of the chemotherapy
resistant phenotype. Our results support that, in addi-
tion to the classical drug resistance pathways, other major
gene networks may interact by various mechanisms to
confer differential response to chemotherapy. The current
study highlights the role of the intrinsic ability of can-
cer cells to respond to a drug-resistant phenotype which,
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upon exposure to combination chemotherapy, may initi-
ate a cascade of complex pathway activations leading to
drug resistance.

Additional files

Additional file 1: List of Differentially Regulated Genes. As described
in Methods, using the MAS5 normalization algorithm a list of differentially
regulated genes was created. These genes have been found to have mean
expression intensities that are significantly different, when the tumour
samples were grouped into the resistant and sensitive cohorts. Genes that
are coloured blue are redundant genes for which multiple probe sets of
the microarray were found to be differentially expressed.

Additional file 2: Differentially expressed genes in a resistant cohort
compared to a sensitive cohort. The gene list was derived from an
independent in silico validation of gene expression analysis using TCGA
ovarian cancer data sets (19 sensitive and 25 resistant samples) with
identical data analysis parameters as applied for the discovery cohort.
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