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Abstract

Background: Genomics provides opportunities to develop precise tests for diagnostics, therapy selection and
monitoring. From analyses of our studies and those of published results, 32 candidate genes were identified, whose
expression appears related to clinical outcome of breast cancer. Expression of these genes was validated by qPCR
and correlated with clinical follow-up to identify a gene subset for development of a prognostic test.

Methods: RNA was isolated from 225 frozen invasive ductal carcinomas,and qRT-PCR was performed. Univariate
hazard ratios and 95% confidence intervals for breast cancer mortality and recurrence were calculated for each of
the 32 candidate genes. A multivariable gene expression model for predicting each outcome was determined using
the LASSO, with 1000 splits of the data into training and testing sets to determine predictive accuracy based on the
C-index. Models with gene expression data were compared to models with standard clinical covariates and models
with both gene expression and clinical covariates.

Results: Univariate analyses revealed over-expression of RABEP1, PGR, NAT1, PTP4A2, SLC39A6, ESR1, EVL, TBC1D9,
FUT8, and SCUBE2 were all associated with reduced time to disease-related mortality (HR between 0.8 and 0.91,
adjusted p < 0.05), while RABEP1, PGR, SLC39A6, and FUT8 were also associated with reduced recurrence times.
Multivariable analyses using the LASSO revealed PGR, ESR1, NAT1, GABRP, TBC1D9, SLC39A6, and LRBA to be the
most important predictors for both disease mortality and recurrence. Median C-indexes on test data sets for the
gene expression, clinical, and combined models were 0.65, 0.63, and 0.65 for disease mortality and 0.64, 0.63, and
0.66 for disease recurrence, respectively.

Conclusions: Molecular signatures consisting of five genes (PGR, GABRP, TBC1D9, SLC39A6 and LRBA) for disease
mortality and of six genes (PGR, ESR1, GABRP, TBC1D9, SLC39A6 and LRBA) for disease recurrence were identified.
These signatures were as effective as standard clinical parameters in predicting recurrence/mortality, and when
combined, offered some improvement relative to clinical information alone for disease recurrence (median
difference in C-values of 0.03, 95% CI of −0.08 to 0.13). Collectively, results suggest that these genes form the basis
for a clinical laboratory test to predict clinical outcome of breast cancer.
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Background
Our goal is to associate patient-related characteristics and
treatment outcome, tumor pathology and biomarker sta-
tus with newly derived information from genomic and
proteomic studies to advance the theranostics of breast
carcinoma. Cellular heterogeneity of tissue specimens has
been a complicating factor in determining analyte (protein
or gene) levels in specific cell types, e.g., [1-4]. Numerous
studies, including our own, have reported a “molecular
signature” of different cancer types, including breast can-
cer. However, there is great variation in methods utilized
to obtain these gene expression profiles, including the use
of breast cancer cell lines [5], whole tissue extraction
[6-11] and laser capture microdissection (LCM) procured
cells [12-15]. In order to obtain a clinically relevant gene
set for breast cancer, our hypothesis was examined under
the premise that a particular gene should be present in
multiple gene expression profiles despite the differences in
methodology used to determine the molecular signature.
By data-mining these studies collectively, a gene set was
compiled and analyzed for clinical utility in breast cancer
patients.
In this study, we constructed Cox proportional hazards

[16-18] models to predict risk of disease recurrence and
overall survival, using a selected panel of candidate bio-
markers with suspected association with breast cancer
outcomes. To rigorously develop our models, we used the
least absolute shrinkage and selection operator (LASSO)
[19] for variable selection and evaluated their predictive
ability using repeated splits of the data into training and
test sets. Models based on gene expression are compared
with models based on clinical information to evaluate the
gain in predictive accuracy over standard clinical mana-
gement parameters. Our ultimate goal is to develop a
clinically-relevant gene expression-based test for use in
hospital laboratories, in order to assist in clinical decisions
improving breast cancer management, as well as gain
insight into the interrelationships between the genes and
clinical outcome of breast cancer patients. Our approach
includes the identification of new molecular targets for
drug design and developing companion diagnostics.

Methods
The investigations described were part of a study that is
approved by the Human Subject Protection Program Insti-
tutional Review Board at the University of Louisville. A
unique IRB-approved Database and Biorepository com-
posed of de-identified tissue specimens previously col-
lected under stringent conditions [20] for clinical assays of
estrogen (ER) and progestin receptors (PR) were used. De-
identified specimens of primary invasive ductal carcinoma
of the breast obtained from tissue biopsies collected from
1988–1996 were examined using REMARK criteria [21].
Germaine to our studies (e.g., [22,23]), analyses of ER and
PR were performed by FDA-approved methods quantify-
ing levels of these clinical biomarkers under stringent
quality control measures (e.g., [20,24]) unlike the majority
of reports that used immuno-histochemical analyses
prior to the release of the College of American Patholo-
gists/American Society of Clinical Oncology (CAP/
ASCO) Guidelines [25]. Patients were treated with the
standard of care at the time of diagnosis. Tissue-based
properties (e.g., pathology, grade, size, and tumor marker
expression) and patient-related characteristics (e.g., age,
race, smoking status, menopausal status, stage, and nodal
status) were utilized to determine relationships between
gene expression and clinical parameters. A retrospective
analysis of frozen tissue specimens from 225 biopsies of
invasive ductal carcinoma was performed (Additional file
1: Figure S1). De-identified clinical and pathological char-
acteristics for each patient evaluated in the study are
included in Additional file 2: Table S1. Tissue sections uti-
lized for analyses of gene expression contained a median
of 60% breast carcinoma cells (range of 10-95%) and 25%
stromal cells (range of 5-65%).

Gene list selection
In order to obtain a clinically relevant gene set for this in-
vestigation, our hypothesis was that a particular gene
should be present in multiple gene expression profiles of
breast cancer despite the differences in methodology used
to determine the molecular signature. GenBank Accession
numbers (NCBI) of genes deciphered from our studies
using LCM-procured carcinoma cells and those of other
published studies [5-14] were entered into the UniGene
database (National Center for Biotechnology Information
(NCBI)), which separates GenBank sequences into a
non-redundant set of gene-oriented clusters. UniGene
identifiers for all studies were compiled into Microsoft®
Access and analyzed collectively. This comparison identi-
fied genes appearing in at least three signatures, generat-
ing candidates (EVL, NAT1, ESR1, GABRP, ST8SIA1,
TBC1D9, TRIM29, SCUBE2, IL6ST, RABEP1, SLC39A6,
TPBG, TCEAL1, DSC2, FUT8, CENPA, MELK, PFKP,
PLK1, XBP1, MCM6, BUB1, PTP4A2, YBX1, LRBA,
GATA3, CX3CL1, MAPRE2, GMPS and CKS2) for inves-
tigating associations with clinical behavior of breast can-
cer. PGR was also included in the candidate gene list due
to its known implications in breast carcinoma [20].

Gene expression analyses
Levels of mRNA expression were analyzed after isolation
with Qiagen (Valencia, CA) RNeasy® RNA isolation kits.
Quality of RNA was evaluated with Agilent RNA 6000
Nano Kits and the Bioanalyzer™ Instrument (Agilent
Technologies, Palo Alto, CA). Total RNA extracted from
the intact tissue section was reverse transcribed in a so-
lution of 250 mMTris-HCl buffer, pH 8.3 containing 375
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mMKCl, and 15 mM MgCl2 (Invitrogen, Carlsbad, CA),
0.1 M DTT (dithiothreitol, Invitrogen), 10 mMdNTPs
(Invitrogen), 20 U/reaction of RNasin™ ribonuclease in-
hibitor (Promega, Madison, WI) and 200 U/reaction of
Superscript™ III RT (reverse transcriptase, Invitrogen)
with 5 ng T7 primers. cDNA obtained from this reverse
transcription reaction was diluted 10-fold in 2 ng/μl
polyinosinic acid and used in qPCR reactions.

qPCR reactions were performed in a 384-well plate
using a total volume of 10 μl/well. Reactions contained
Power Sybr™ Green PCR Master Mix (Applied Biosystems,
Foster City, CA), forward/reverse primers and diluted
cDNA obtained from the reverse transcription reaction.
Primers were designed with Primer Express™ (Applied
Biosystems) to generate sequences closer to the 3’ end of
the transcript for use with the oligo (dT) primer in reverse
transcription reactions. qPCR reactions were performed in
triplicate with duplicate wells in each 384-well plate. Rela-
tive gene expression levels were determined using the
ΔΔCt method using ACTB for normalization and Univer-
sal Human Reference RNA (Stratagene, La Jolla, CA) as
the calibrator.
Power
The power available in this study to detect a hazard ratio
of a given magnitude was determined by the following for-

mula, log HRð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z1−α þ z1−β
� �2

= Dσ2ð Þ
q

[26]. Here α =

0.05/32, β = 0.2, z are quantiles from the standard normal
distribution, D = 68 is the number of breast-cancer related
mortality outcomes, and σ = 1.8 is the median standard
deviation of the log2 expression values among all 32 genes.
The result is that there is 80% power in the current study
to detect hazard ratios of 1.116 or larger (equivalently,
0.90 or smaller) per unit increase in log2 expression.
Descriptive statistics and univariate survival analysis

Summary statistics were reported for both gene expres-
sion values and clinical covariates. Univariate Cox re-
gression models [16] were fitted to evaluate the
association of both gene expression values and clinical
covariates with overall and disease-free survival. Calcula-
tions and model development were performed using log2
transformations of relative gene expression data as de-
termined by qPCR (Additional file 3: Table S2). To ac-
count for multiple comparisons, p-values were adjusted
to control the false-discovery rate (FDR). Because the
gene expression values were highly correlated, the
method of Benjamini and Yekutieli (BY) [27], which
controls for multiple depen- dent hypothesis tests, was
used in lieu of the standard Benjamini and Hochberg
(BH) method [28] (the BH method, however, was used
for clinical covariates).
Multivariable Cox models, variable selection, and
predictive accuracy
A multivariable Cox proportional hazards model was used
to develop a predictive model of overall and disease-free
survival, based on the gene expression values and clinical
covariates. The model has the following form

λ t xiÞ ¼ λ0 tð Þ exp ∑p
j¼1xijβj

� ����
�

Where x1,…,xp are covariates (here, either gene expres-
sion values or clinical covariates), λ(t|xi) is the hazard at
time t for the ith observation, λ0(t) is the unspecified

baseline hazard function, and
⇀
β ¼ β1;…; βp

D E
is the

vector of regression coefficients [29].
Due to the noted shortcomings of stepwise selection

strategies [30] and the high correlation between gene
expression values, initial variable selection to determine
which genes were significant predictors of breast cancer
survival and recurrence was done by incorporating a
LASSO (least absolute shrinkage and selection operator),
or L1, penalty [19] on the regression coefficients β1,… βp.
The LASSO penalizes the size of the parameter vector,

⇀
β

so that unimportant variables (variables whose β coeffi-
cients are close to zero) are removed from the model. This
results in a penalized log partial likelihood function of the

form l βð Þ−∑p
j¼1λ βj

���
��� , where l(β) denotes the standard Cox

log partial likelihood. The maximum likelihood estimates β̂
are those which maximize this penalized likelihood. The
parameter λ is the shrinkage parameter and determines the
extent of variable selection, with larger values correspond-
ing to a larger penalty and a greater number of variables
removed. The optimal value for λ was determined using
10-fold cross-validation.
To better assess predictive ability and model perform-

ance, we performed 1000 independent splits of the data
into training (70%) and test (30%) samples. Splits into
training and test samples were stratified on the basis of
tumor stage, so that training and test samples were bal-
anced on percent composition of each tumor stage. For
each split, a Cox regression model with a LASSO pen-
alty was used to simultaneously fit the model and per-
form variable selection amongst the 32 genes. For each
model, the selected genes and their associated β coeffi-
cients were recorded, and the number of times that each
gene was kept in a model was tabulated. A permutation
test was used to calculate a null distribution and deter-
mine the significance threshold for the number of times
(out of 1000 total permutations) that each gene was
retained in a model. Genes with counts above the highest
count among the permuted data sets were declared to be
significant (roughly corresponding to an empirical p-value
of 1/32 = 0.03). Performance of each model was evaluated
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by the C-index for right-censored data [31], calculated on
the test data. The C-index estimates the probability that,
for a randomly selected pair of individuals, the individual
with the higher risk score (shorter predicted survival time)
has the shorter actual event time. Additionally, predictions
based on the L1-penalized Cox model were used to separ-
ate patients in the test data into low and high risk classes
based on the linear predictor ∑p

j¼1xjβj, with the cut-point

for low/high risk based on the median of the linear predic-
tors from the training data. Kaplan-Meier plots based on
the original (non-permuted) data were compared to those
obtained from the permuted data in order to validate the
prognostic significance of the models evaluated.
The selected genes were again used to fit multivariable

Cox models based on 1000 independent splits of the
data into training and test samples, without any variable
selection. C-indexes were calculated for test data predic-
tions based on models fitted to the training data. To as-
sess whether the gene expression values offered any gain
in prediction over clinical parameters, models with clinical
covariates significantly associated with disease mortality
and recurrence were compared with models including
both gene expression values and clinical covariates. C-
indexes were also calculated separately for ER+ and ER-
subsets of breast cancer patients, to assess whether the
gene signature was equally effective in each subset. Empir-
ical 95% confidence intervals for the differences in C-
indexes between the two sets of models were calculated
using the 2.5th and 97.5th percentiles of the differences.
All analyses were performed using R version 2.14.1

[32]. Univariate Cox models were fitted using the R
package survival [33], while multivariable Cox models
with the LASSO penalty were fitted using the penalized
package [34]. The C-index was calculated using the
rcorrcens function in the rms package [35], and adjust-
ment for multiple comparisons was done using the
multtest package [36].
Validation using the TRANSBIG data
Gene expression models for both overall disease survival
and recurrence were validated using AffymetrixU133a
GeneChip data collected by the TRANSBIG Consortium
[37,38]. These data consisted of clinical and gene expres-
sion measurements on 198 node-negative patients from
five different medical centers. The data were obtained
from the Bioconductor package ‘breastCancerTRANSBIG’
[39], and processed to remove duplicate probes mapping
to the same Entrez Gene ID (probes with the largest vari-
ability are retained). The final gene expression data set
consisted of measures on 12,701 transcripts (genes) for
198 patients. Since qRT-PCR and microarray measure-
ments do not always correlate well, rather than validate
the fitted models based on our data, we validated whether
the genes selected were important for predicting breast
cancer survival and recurrence. Therefore, we split the
data into 1000 training (70%) and test (30%) samples, and
fit Cox regression models based on genes selected for
mortality and recurrence to the training sets. Separate
models were also fitted based on clinical data and a
randomly selected gene set of the same size, to evaluate
whether our gene expression model offered improved per-
formance relative to this information. C-index values were
calculated for all models based on predictions for the test
data sets. Gene expression model fitting and C-indexes
calculations were also performed separately for ER+ and
ER- subsets of breast cancer patients to evaluate any
differences in model fit and efficacy for either ER+ or ER-
carcinomas.

Results
Descriptive statistics and univariate survival analysis
Summary clinical and demographic information for the
patient population is given in Table 1. Of the 225 cases
selected, there were 28 patient records lacking some as-
pect of clinical information: 14 missing tumor size, 16
missing nodal status and 4 missing stage of disease.
Seventy-one patients had recorded breast cancer recur-
rences (with 2 missing values) and 68 patients exhibited
breast cancer-associated mortality. The median follow-
up time was 63 months for overall survival (OS) and 57
months for disease-free survival (DFS). Seven patients
that were never disease-free were omitted from Cox re-
gressions for recurrence but not from calculations of
mortality. Therefore, results from the entire study popu-
lation of 225 breast carcinoma patients were utilized
throughout our investigations since each case was ac-
companied by a breast tissue biopsy of high molecular
integrity for genomic analyses.
Hazard ratios (HRs) and 95% CIs for the association

between clinical/demographic factors and breast cancer
recurrence and mortality are also presented in Table 1.
Tumor size, nodal status, disease stage, ER/PR status,
chemotherapy and radiation therapy were significantly
associated with both mortality and recurrence.
Summary information for the gene expression measure-

ments is presented in Table 2. IL6ST exhibited the largest
range in log2 expression measurements, from −8.23 to
12.80, while PLK1 expression had the shortest range
(−5.91 to 0.48). The average interquartile range (IQR,
distance between 25th and 75th percentiles) was 3.0, indi-
cating that the patient’s carcinomas had a fairly broad
spectrum of expression measurements (average of 3 fold
difference between the 25th and 75th percentiles). Table 2
also provides HRs and 95% CIs for the association be-
tween the gene expression values and breast cancer recur-
rence/mortality. In all, expression levels of ten genes
(RABEP1, PGR, NAT1, PTP4A2, SLC39A6, ESR1, EVL,



Table 1 Summary statistics for clinical variables among the patient population

Mortality Recurrence

Name Mean (std dev)
or N (%)

HR (95% CI) P-value Adj P-value HR (95% CI) P-value Adj P-value

Age 59.8 (15.4) 0.99 (0.97, 1) 0.136 0.259 0.99 (0.97, 1) 0.161 0.307

Tumor size (mm)Ϯ 29.6 (15.1) 1.01 (1, 1.03) 0.071 0.214 1.02 (1, 1.03) 0.026 0.077

NodesϮ

Pos 134 (0.58) 1 - - 1 - -

Neg 97 (0.42) 1.78
(1.1, 2.88)

0.019 0.080 1.87
(1.17, 3.01)

0.010 0.036

Hormone therapy

No 162 (0.7) 1 - - 1 - -

Yes 71 (0.3) 0.89
(0.52, 1.51)

0.657 0.986 1.05
(0.63, 1.74)

0.847 1.000

Chemotherapy

No 152 (0.65) 1 - - 1 - -

Yes 81 (0.35) 2.14
(1.33, 3.45)

0.002 0.037 2.4
(1.5, 3.83)

<0.001 0.004

Radiation therapy

No 191 (0.82) 1 - - 1 - -

Yes 42 (0.18) 1.56
(0.89, 2.73)

0.121 0.259 2.1
(1.25, 3.53)

0.005 0.027

GradeϮ

1 (well differentiated) 13 (0.06) 1 - - 1 - -

2 (intermediate) 86 (0.42) 2.37
(0.56, 9.94)

0.239 0.419 1.54
(0.47, 5.05)

0.479 0.839

3 or 4 (poorly differentiated or undifferentiated) 105 (0.51) 2.07
(0.49, 8.68)

0.319 0.516 1.42
(0.43, 4.63)

0.565 0.913

Disease stageϮ

1 51 (0.22) 1 - - 1 - -

2 143 (0.62) 1.81
(0.85, 3.86)

0.126 0.259 2.05
(0.97, 4.36)

0.061 0.161

3 27 (0.12) 3.41
(1.39, 8.35)

0.007 0.039 3.69
(1.5, 9.03)

0.004 0.027

4 8 (0.03) 4.71
(1.54, 14.4)

0.007 0.039 3.21
(0.85, 12.1)

0.085 0.198

ER/PR

+/+ 133 (0.57) 1 - - 1 - -

+/- 17 (0.07) 1.98
(0.82, 4.79)

0.128 0.259 3.68
(1.79, 7.58)

<0.001 0.004

-/+ 30 (0.13) 2.1
(1.05, 4.21)

0.037 0.128 1.77
(0.86, 3.63)

0.118 0.249

-/- 53 (0.23) 2.26
(1.3, 3.94)

0.004 0.039 2.1
(1.19, 3.7)

0.010 0.036

Univariate hazard ratios (HRs), 95% confidence intervals (CIs) and unadjusted/adjusted p-values for disease mortality and recurrence are included. N = number,
std. dev. = standard deviation. ϮMissing values: Tumor size (6), Nodal status (2), Tumor grade (29), and Stage (4).
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TBC1D9, FUT8 and SCUBE2) gave adjusted p-values
< 0.05 for association with breast cancer mortality (shaded
in Table 2). Each of these genes had HRs between 0.75
and 0.90, indicating a 10% to 25% decrease in mortality
risk for every 2-fold increase (doubling) in gene expres-
sion. Increased expression of these genes also correlated
with a decreased risk of breast cancer recurrence, al-
though only four (RABEP1, PGR, SLC39A6 and FUT8)
exhibited significant adjusted p-values. Expression levels
of only two genes (MELK, PLK1) gave positive Beta coeffi-
cients with breast cancer recurrence and mortality, with
HRs between 1.20 and 1.25. In each case, the unadjusted



Table 2 Summary statistics for gene expression levels among the patient population

Mortality Recurrence

NameϮ Median (Q25, Q75) HR (95% CI) P-value Adj P-value HR (95% CI) P-value Adj P-value

RABEP1 −0.27 (−1.43, 1.05) 0.77 (0.67, 0.87) 0.000 0.011 0.79 (0.7, 0.9) 0.000 0.042

PGR* 0.38 (−2.3, 3.09) 0.91 (0.86, 0.95) 0.000 0.014 0.92 (0.87, 0.97) 0.001 0.042

NAT1* 2.15 (−0.42, 4.89) 0.87 (0.8, 0.94) 0.001 0.020 0.88 (0.81, 0.96) 0.002 0.058

PTP4A2 −0.35 (−1.4, 0.95) 0.76 (0.65, 0.89) 0.001 0.020 0.79 (0.68, 0.93) 0.004 0.071

SLC39A6* −0.38 (−2.45, 1.69) 0.87 (0.8, 0.94) 0.001 0.020 0.87 (0.81, 0.95) 0.001 0.042

ESR1* 4.27 (−0.96, 5.84) 0.9 (0.85, 0.96) 0.001 0.021 0.92 (0.87, 0.98) 0.006 0.090

EVL 0.68 (−0.56, 2.31) 0.8 (0.69, 0.91) 0.001 0.022 0.85 (0.75, 0.97) 0.019 0.241

TBC1D9* 0.15 (−1.87, 2.31) 0.89 (0.83, 0.96) 0.001 0.022 0.9 (0.84, 0.97) 0.004 0.071

FUT8 −0.51 (−1.69, 0.68) 0.82 (0.73, 0.93) 0.002 0.026 0.82 (0.72, 0.92) 0.001 0.042

SCUBE2 2.04 (−0.95, 4.18) 0.89 (0.83, 0.96) 0.002 0.028 0.91 (0.85, 0.98) 0.009 0.131

GATA3 0.87 (−1.82, 2.15) 0.89 (0.81, 0.97) 0.007 0.080 0.9 (0.83, 0.99) 0.022 0.256

MELK −2.53 (−3.47, -1.54) 1.24 (1.06, 1.46) 0.008 0.088 1.19 (1.02, 1.39) 0.031 0.337

TCEAL1 0.45 (−0.95, 1.74) 0.83 (0.72, 0.96) 0.012 0.124 0.87 (0.76, 1) 0.057 0.502

XBP1 2.69 (0.73, 3.66) 0.87 (0.78, 0.98) 0.021 0.197 0.89 (0.8, 1) 0.055 0.502

PLK1 −2.5 (−3.32, -1.56) 1.25 (1.02, 1.52) 0.029 0.250 1.2 (0.99, 1.45) 0.058 0.502

IL6ST −2.94 (−4.84, -0.45) 0.92 (0.85, 1) 0.045 0.363 0.95 (0.88, 1.02) 0.166 1.000

DSC2 0.31 (−0.52, 1.71) 1.1 (0.98, 1.24) 0.099 0.759 1.09 (0.97, 1.22) 0.170 1.000

CX3CL1 0.86 (−0.29, 2) 1.11 (0.97, 1.27) 0.123 0.890 1.07 (0.94, 1.22) 0.314 1.000

ATAD2 −1.18 (−1.87, -0.56) 1.08 (0.86, 1.35) 0.521 1.000 1.15 (0.92, 1.44) 0.230 1.000

BUB1 −3.1 (−4.23, -2.35) 1.05 (0.88, 1.24) 0.602 1.000 1.01 (0.86, 1.19) 0.869 1.000

CENPA −2.18 (−3.06, -1.16) 1.07 (0.9, 1.28) 0.427 1.000 1.03 (0.86, 1.22) 0.780 1.000

CKS2 −1.89 (−3.32, -0.95) 0.99 (0.87, 1.13) 0.925 1.000 0.97 (0.85, 1.11) 0.678 1.000

GABRP* 3.08 (0.38, 5.36) 0.99 (0.93, 1.05) 0.698 1.000 0.97 (0.91, 1.03) 0.323 1.000

GMPS −1.4 (−2.22, -0.64) 0.95 (0.79, 1.15) 0.601 1.000 0.88 (0.74, 1.06) 0.186 1.000

LRBA* −1.71 (−3.27, 0.67) 0.99 (0.91, 1.09) 0.871 1.000 1 (0.92, 1.09) 0.986 1.000

MAPRE2 −1.84 (−2.84, -0.85) 1.04 (0.88, 1.23) 0.647 1.000 0.99 (0.84, 1.17) 0.921 1.000

MCM6 −2.27 (−3.27, -1.43) 0.96 (0.82, 1.14) 0.655 1.000 0.95 (0.81, 1.11) 0.545 1.000

PFKP −2.45 (−3.42, -1.46) 1.13 (0.96, 1.33) 0.152 1.000 1.05 (0.9, 1.23) 0.539 1.000

ST8SIA1 −0.67 (−1.59, 0.58) 1.02 (0.89, 1.17) 0.795 1.000 1.02 (0.89, 1.17) 0.769 1.000

TPBG 0.68 (−0.38, 1.48) 0.89 (0.75, 1.05) 0.172 1.000 0.9 (0.76, 1.06) 0.201 1.000

TRIM29 −0.71 (−2.74, 1.03) 0.98 (0.9, 1.08) 0.734 1.000 0.98 (0.9, 1.07) 0.637 1.000

YBX1 −1.72 (−2.42, -1.12) 1.1 (0.88, 1.36) 0.413 1.000 1.04 (0.84, 1.29) 0.702 1.000

Univariate hazard ratios (HRs), 95% confidence intervals (CIs), and unadjusted/adjusted p-values for disease mortality and recurrence are included. Q25 = 25th

percentile, Q75 = 75th percentile.
ϮGenes ordered by adjusted p-value for mortality and then by gene name. *Genes which passed the permutation threshold for significance in the multivariable
model, for both mortality and recurrence.
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p-values were significant, but became non-significant after
adjustment for multiple comparisons.

Multivariable cox models
As indicated in the Methods section, variable selection
for the multivariable model was performed by recording
the percentage of times that each gene was retained in
the L1-regulated Cox model, out of 1000 random splits
into training and testing data. Based on the permutation
distribution, the percent cut-off for statistical signifi-
cance was 15.2% for disease mortality and 16.2% for
disease recurrence. Collectively, results identified the
same 7 genes selected for both disease mortality [PGR
(94.4%), ESR1 (31.3%), NAT1 (30.5%), GABRP (27.7%),
TBC1D9 (25.8%), SLC39A6 (20.9%) and LRBA (15.8%)]
and disease recurrence [PGR (85.8%), GABRP (43.5%),
SLC39A6 (38.5%), TBC1D9 (30.5%), NAT1 (30.1%),
ESR1 (25.6%) and LRBA (21.1%)]. The fitted regression
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models on the training data sets were used to predict
high and low-risk patient classes in the corresponding
test sets, and Figure 1A and 1B display Kaplan-Meier
plots of the high and low-risk patients for each of the
1000 test sets. Splits for predictions based on the per-
muted data sets are shown in Figure 1C and 1D. When
considering overall survival and disease-free survival, the
original data demonstrated clear separation between the
two groups based on risk of breast cancer recurrence.
This is in contrast to the permuted data, which demon-
strated considerable overlap between high and low-risk
groups. The C-index was calculated for each of the test
sets, based on predictions using models fitted to the
training data (see Figure 2). The median C-index values
were 0.63 for disease mortality and 0.60 for disease re-
currence, while the permuted distributions were cen-
tered about 0.50 as expected. Empirical 95% CIs for the
C-index values were (0.50, 0.72) for mortality and (0.50,
0.68) for recurrence.
Figure 3 displays boxplots of the Beta coefficients from

the training data models for each of the genes with fre-
quency of occurrence in the L1-regulated Cox regression
Figure 1 Kaplan-Meier plots illustrating separation among the 1000 t
Cox regression models fitted to each training set. Plots A (OS = overall
low or high risk based on actual data, while plots C (OS) and D (DFS) repre
models above the permutation-based significance thresh-
old (162 out of 1000 for disease recurrence, 152 out of
1000 for disease mortality). Over-expression of these
genes in a breast carcinoma was predominately associ-
ated with decreased mortality (median HRs between
0.95 and 0.98). This agrees with the expression results of
univariate analyses for these genes, though the magni-
tudes of the Beta coefficients are reduced due to the L1
shrinkage penalty. ESR1 expression exhibited ambiguous
signs associated with its Beta coefficient for both disease
mortality and recurrence, while the NAT1 levels gave
ambiguous Beta coefficient signs for mortality. Both genes
were omitted from the final gene expression model de-
rived for overall survival, while only ESR1 was omitted
from the disease recurrence model.
LRBA was the only gene which consistently was corre-

lated with increased breast cancer mortality and disease
recurrence when its mRNA was over-expressed in the tis-
sue biopsy (median HR of 1.10 in both OS and DFS). Of
note, the HR for LRBA by univariate analyses was 0.99 in
the entire database (Table 2). The explanation for this ap-
parent discrepancy is that LRBA is highly correlated with
est data sets. Predictions were based on L1 penalized (LASSO)
survival) and B (DFS = disease free survival) represent predictions of
sent predictions based on permuted data sets.



Figure 2 Boxplots of C-index values of the 1000 test data sets. Predictions were made using L1 penalized (LASSO) Cox regression
models fitted to the training data sets. Predictions made using both actual and permuted data are shown.
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the other genes having higher mRNA expression associ-
ated with significantly reduced mortality (correlation be-
tween 0.31 and 0.70 for genes PGR, NAT1, SLC39A6,
ESR1 and TBC1D9). The strong association of increased
mortality with increased LRBA expression only resulted
after adjustment for the presence of these other genes.
This was verified by first fitting a linear regression model
with LRBA as the response and PGR, NAT1, SLC39A6,
ESR1 and TBC1D9 as predictors, and taking the residuals
from this model. These residuals were then evaluated for
association between breast cancer mortality and recur-
rence in a univariate Cox regression model. The resulting
HR was 1.19 (95% CI 1.06 - 1.35, p = 0.005) for disease
mortality and 1.23 (95% CI 1.07 - 1.41, p = 0.004) for
disease recurrence. This indicates that residual over-ex-
pression of LRBA, which cannot be explained by the cor-
relation between LRBA and the five genes listed above, is
associated with increased risk of mortality and disease
recurrence.
In a similar fashion, GABRP expression gave a non-

significant univariate HR of 0.99 (Table 2), but was con-
sistently associated with reduced mortality and disease
recurrence among the LASSO selected models (median
HR of 0.96 and 0.95, respectively). Conversely to LRBA,
GABRP was highly negatively correlated with the same
five aforementioned genes (range from −0.32 to −0.14).
Cox regression models fitted using residuals from modeling
GABRP expression as a response to these five genes
resulted in a HR for disease mortality of 0.95 (95% CI
0.88 – 1.01, p = 0.11) and for disease recurrence of 0.93
(95% CI 0.87 – 1.00, p = 0.04). This indicates that re-
sidual over-expression of GABRP, which is unexplained
by the negative correlation with these other genes, is
associated with reduced risk of breast cancer mortality
and recurrence.

Comparison of gene expression models with standard
clinical parameters
To determine the manner in which Cox regression
models that are based on gene expression values com-
pare with regression models based on significant clinical
covariates, we again performed 1000 independent splits
of the data into training and test sets. Three models
were fit in each case; gene expression values only, clin-
ical covariates only, and gene expression together with
clinical covariates. The clinical covariates included stage
of disease, ER status, and PR status. Tumor size and
nodal status were not included since they are part of the
staging system and hence redundant with disease stage.
Age was not included because it was non-significantly
associated with both survival outcomes. Additionally,
inclusion of these parameters and tumor grade did not
improve predictive accuracy on the test data sets relative
to models which omitted them (data not shown).



Figure 3 Boxplots of Beta coefficients associated with expression of the top seven occurring genes in the Cox regression models
among the 1000 training data sets, where genes were selected using the LASSO. Left panel = disease mortality, Right panel =
disease recurrence.
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Since our goal was to compare our novel gene-signature
model with the best performing clinical model, we omitted
tumor grade, tumor size, nodal status, and age from the
final clinical model. The fitted regression models on the
training data sets were again used to predict high and low-
risk patients in the corresponding test sets. Figure 4
displays Kaplan-Meier plots for the predicted low and
high-risk classes of breast carcinoma patients for each set
of models and outcome. Considering both overall and
disease-free survival, models based on gene expression
appear to better segregate the patients at high risk of re-
currence, while clinical models better segregate the low-
risk patients. This is corroborated by the median number
of individuals identified either as low or high risk of recur-
rence in the test data sets, based on these models. For gene
expression models, the median number of low-risk vs.
high-risk patients was 55 vs. 20 and 62 vs. 12 for mortality
and recurrence, respectively, while for clinical models,
those numbers were 38 vs. 30 and 21 vs. 49. The smaller
number of high-risk patients identified by the gene expres-
sion models in each case is reflected by the more steeply
declining survival curves for these patients, relative to the
clinical models. Conversely, the low-risk survival curves for
the clinical models are shallower relative to the gene
expression predictions. Models based on gene expression
and clinical information collectively gave more balanced
splits of low vs. high-risk patients, with median numbers
of 31 vs. 40 for mortality and 34 vs. 37 for recurrence,
respectively.
C-index values were calculated for each test set, based

on predictions from models fitted to the training data.
Boxplots of C-indexes for gene expression models, clinical
models, and gene expression plus clinical data models are
given in Figure 5. For overall survival, the median C-index
value for gene expression models was 0.65, with an empir-
ical 95% confidence interval of 0.55 to 0.75. Compara-
tively, the median was 0.63 with a 95% CI of 0.52 to 0.73
for clinical models, while those for models combining clin-
ical and gene expression results gave a median of 0.65 with
95% CI of 0.54 to 0.74. Combining gene expression and
clinical information offered negligible improvement over
clinical information alone, and did not improve relative to
gene expression information alone. When disease-free sur-
vival was considered, the median C-index value for the
gene expression models was 0.64, with 95% CI of 0.54 to
0.72. This compares to a median value of 0.63 (95% CI of
0.51 to 0.74) for the clinical models, and 0.66 (0.56 to
0.75) for combined gene expression and clinical models.
The inclusion of gene expression values improved predic-
tion relative to clinical information alone (median increase



Figure 4 Kaplan-Meier plots illustrating separation among the 1000 test data sets. Predictions of low or high risk were based on Cox
regression models fitted to each training set, either using gene expression (GE) only (A = overall survival (OS), D = disease free survival (DFS)),
clinical data only (B = OS, E = DFS), or both gene expression and clinical data (C = OS, F = DFS). Clinical data included for both outcomes was
patient stage of disease at diagnosis (1, 2, and 3 or 4), ER status (+/−), and PR status (+/−). Genes included in both the OS and DFS models were
PGR, GABRP, TBC1D9, SLC39A6 and LRBA, while NAT1 was also included in the model for DFS.
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in C-indexes of 0.03), although the result was not statisti-
cally significant (95% CI for differences of −0.08 to 0.13).
As a final comparison, the Adjuvant! Online (AO) ten year
risks for relapse and mortality scores were calculated from
known patient characteristics (i.e., age, ER status, tumor
grade, tumor size, number of positive nodes) for the entire
patient population. The C-index values based on predic-
tions using these scores were 0.63 for disease mortality
and 0.62 for disease recurrence (horizontal green lines in
Figure 5).
To evaluate whether efficacy of the gene expression

signature was maintained separately within either ER+ or
ER- subsets, C-index values were calculated for each test
set stratified by ER+ or ER- status (Figure 6). Predictions
were based on models fitted to the entire training data,
rather than to models fitted separately to either ER+ or
ER- subsets. This was because models fitted to all patients
did not differ substantially from models fitted separately
to patients with either ER+ or ER- carcinomas (data not
shown). Figure 6 demonstrates that the accuracy for as-
sessing ER+ and ER- subsets (median C-index of about
0.61 in all cases) is lower than the accuracy based on all
patients (c.f. Figure 5). However, it is notable that the
prognostic accuracy of the gene expression signature for
ER negative patients is roughly equivalent to that for ER
positive patients, for both disease mortality and recurrence.
The overall lower accuracy relative to the entire cohort is
attributable to the correlation between the expression of
these genes and ER status of their carcinoma. Of the six
genes comprising the model for DFS, only GABRP had
increased expression among ER negative patients (cor-
relation = −0.38, see Additional file 4: Figure S2). The
remaining genes had positive association with ER posi-
tive status (correlation ranging between 0.34 for LRBA
to 0.65 for NAT1). Due to the strong positive or nega-
tive association between the gene expression values and
either ER+ or ER- status, the prognostic ability of the
gene expression models is somewhat redundant with



Figure 5 Boxplots of C-index values for the 1000 test data sets. Predictions were made using Cox regression models fitted to each training
set. Models were derived from either gene expression (GE) data only, clinical data only, or results from both gene expression and clinical data.
The green line shown on each panel represents the C-index corresponding to the 10 year Adjuvant! Online risk scores calculated for both disease
mortality and disease recurrence, respectively. Clinical data included for both outcomes were patient stage of disease at diagnosis (1, 2, and 3 or
4), ER status (+/−), and PR status (+/−). Genes included in both the OS and DFS models were PGR, GABRP, TBC1D9, SLC39A6 and LRBA, while
NAT1 was also included in the model for DFS.
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ER positive and negative subsets. This results in a de-
creased prognostic accuracy when evaluated separately
among these subsets relative to the entire patient
population.

Validation using the TRANSBIG data
To validate our final selection of genes used to build
models for disease mortality (PGR, GABRP, TBC1D9,
SLC39A6 and LRBA) and recurrence (same gene set as
for mortality, with the inclusion of NAT1), we used
AffymetrixU133a GeneChip data on 198 node-negative
patients collected by the TRANSBIG Consortium [37,38].
After pre-processing the data, transcripts corresponding
to the genes in our models were identified and used to fit
Cox regression models for disease mortality and recur-
rence. The following models were fit for each of the 1000
training data sets: A) clinical data only (age, size and grade
of tumor, ER status), B) gene expression data (PGR,
GABRP, TBC1D9, SLC39A6 and LRBA for both OS
and DFS, and additionally NAT1 for DFS), C) clinical data
plus gene expression data, D) randomly selected gene
expression data (5 genes for OS and 6 genes for DFS), and
E) randomly selected gene expression data plus clinical
data. In every model, the medical center where the patient
was seen was included as a covariate. C-index values for
the 1000 test data sets derived from the TRANSBIG data
were calculated based on predictions using Cox regression
models fitted to the corresponding training set (Figure 7).
Figure 7 displays boxplots of the C-index values for the

test data set predictions. The gene expression models
(model B) perform quite well for disease mortality (me-
dian C-index of 0.61), but have a disappointing perform-
ance for disease recurrence (median C-index of 0.56). In
both cases, the selected genes outperform a randomly
selected gene set of the corresponding size (model D),
though the difference is much greater for disease mortal-
ity. For disease mortality, the gene expression models also
outperform the model based on clinical parameters
(model A, median C-index of 0.59), though this is not the
case for disease recurrence (median C-index of 0.58 for
clinical model). The median C-index of our gene expres-
sion models is higher than the C-index for the Veridex 76-
gene prognostic signature [11] for disease mortality
(horizontal green line, C-index of 0.58), but lower than the
Veridex signature for disease recurrence (C-index of 0.58).
However, it should be noted that the fitted model forming
the basis of the Veridex signature was calculated on an en-
tirely independent cohort of patients, in contrast to our



Figure 6 Boxplots of C-index values for the 1000 test data sets, stratified by ER +/− status. Predictions were made using Cox regression
models fitted to each training set, derived using gene expression (GE) data. Genes included in both the OS and DFS models were PGR, GABRP,
TBC1D9, SLC39A6 and LRBA, while NAT1 was also included in the model for DFS.

Andres et al. BMC Cancer 2013, 13:326 Page 12 of 18
http://www.biomedcentral.com/1471-2407/13/326
models which were based on training sets from the
TRANSBIG data.
Predictive accuracy of the gene expression signature was

evaluated separately within either ER+ or ER- subsets of
carcinomas to determine whether efficacy of the signature
was maintained for these groups of patients. However, in
contrast to our data, the beta coefficients for the fitted
Cox models based on our selected genes differed dramat-
ically between ER+ and ER- subsets. Figure 8 displays
boxplots of the beta coefficients for the Cox regression
models fitted to the training data sets from the TRANS
BIG data. Coefficients for ER+ and ER- subsets of breast
cancers for gene SL39A6 are in stark contrast to each
other, with median estimated hazard ratios of 1.61 and
1.39 for disease mortality/recurrence for ER positive
patients and corresponding hazard ratios of 0.77 and 0.87
for ER negative patients. Similarly, the median estimated
hazard ratio for disease mortality associated with TBC1D9
expression is 0.89 among ER positive patients and 1.45
among ER negative patients, while the median estimated
hazard ratio for disease mortality associated with LRBA
expression is 1.12 in ER positive patients and 0.76 in
ER negative patients. Expression of NAT1 results in a dec-
reased probability of disease recurrence in ER positive
patients (median hazard ratio of 0.88) but an increased
probability of recurrence in ER negative patients (median
hazard ratio of 1.27). Only the coefficients for GABRP and
PGR are similar between ER +/− patients.
The estimated coefficients based on the TRANSBIG

data for SLC39A6 and LRBA also differ considerably from
the estimated coefficients based on our data (c.f. Figure 3).
In particular, the estimated coefficients for LRBA based
on our data are predominantly positive for both disease
mortality and recurrence, whereas they are predomin-
antly negative in both cases for the TRANSBIG data
(the lone exception being disease mortality among ER
positive patients). For SLC39A6 the opposite is true;
coefficients based on our data are predominantly nega-
tive for both disease mortality and recurrence, whereas
they are predominantly positive for the TRANSBIG
data except in ER negative patients. Additional file 5:
Figure S3 displays boxplots of gene expression in the
TRANSBIG data for our selected genes by either ER+
or ER- status. These boxplots show good fidelity with
the boxplots by ER status in our data (c.f. Additional
file 4: Figure S2), which is somewhat surprising given
the heterogeneity in estimated beta coefficients be-
tween the two data sets.
C-index values were calculated for each test set based

on predictions in the corresponding training data set,
stratified by ER status of the breast carcinomas. Additional
file 6: Figure S4 displays boxplots of the C-index values for



Figure 7 Boxplots of C-index values for the 1000 test data sets derived from the TRANSBIG data. Predictions were made using Cox
regression models fitted to each training set. Letters correspond to the following fitted models: A) clinical data only (age, size and grade of tumor,
ER +/− status), B) gene expression data (PGR, GABRP, TBC1D9, SLC39A6 and LRBA for both OS and DFS, and additionally NAT1 for DFS), C) clinical data
plus gene expression data, D) randomly selected gene expression data (5 genes for OS and 6 genes for DFS), and E) randomly selected gene
expression data plus clinical data. All five models included the medical center where the patient was seen as a covariate. The horizontal green line
shown on each panel represents the C-index corresponding to the Veridex 76-gene prognostic signature [11] calculated based on the full data for
both disease mortality and disease recurrence, respectively.
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both our gene signature models and a randomly selected
gene set. The signature gene expression models clearly
outperform the randomly selected gene set for predicting
disease mortality among ER positive patients (median C-
index of 0.61 compared to 0.51), and do slightly better
than the random gene set for predicting disease recur-
rence (median C-index of 0.56 vs. 0.52 for ER positive pa-
tients and 0.58 vs. 0.57 for ER negative patients). However,
the gene signature offers no improvement relative to a
randomly selected gene set for ER negative patients (me-
dian C-index of 0.55 vs. 0.56).

Discussion
For decades, the protein products of ESR1 (estrogen
receptor-α) and PGR (progesterone receptor) have been
recognized as predictors of prognosis and response to
hormone therapy, e.g., Tamoxifen (e.g., [20,23-25,40-42]).
Therefore, it is expected that any gene subset pre-
dicting clinical behavior of breast cancer would con-
tain ESR1 and/or PGR, and indeed this was shown
earlier (e.g., [10,13,23,43]). However, several genes
identified in our investigation, which were clinically rele-
vant to breast cancer outcome, represent new targets
for developing diagnostics and potentially designing
targeted therapies.
The protein product of SLC39A6 (LIV-1) has been

reported to transport zinc into the cytoplasm from either
outside the cell or from intracellular stores [44,45]. There is
increasing evidence that aberrant expression of the SLC39A
family of zinc transporters promotes the epithelial-to-mes-
enchymal transition and leads to uncontrolled cell growth
[45-47]. LIV-1 protein was shown to be regulated by estro-
gen, hence associated with ESR1 expression [45,48]. In
addition, elevated LIV-1 protein expression in breast cancer
has been associated with improved clinical outcome [48].
GABRP encodes the π-subunit of the g-aminobutyric

acid (GABA) receptor, which is a transmembrane protein
that is poorly understood, especially in breast tissue
[49,50]. GABRP was reported to be down-regulated in 76%
of breast cancers and was progressively down-regulated as
tumor growth progressed, suggesting that its role may be
as a tumor suppressor [50].



Figure 8 Boxplots of Beta coefficients associated with expression of the genes in the Cox regression models fitted to the training data
sets from the TRANSBIG data. Genes included in both the OS and DFS models were PGR, GABRP, TBC1D9, SLC39A6 and LRBA, while NAT1 was
also included in the model for DFS. Separate panels are given for the entire data and ER +/- subsets (rows), and for disease mortality and
recurrence (columns).
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Wang et al. suggested that LRBA plays a role in the EGF
receptor pathway [51]. In light of the fact that LRBA is a
member of the WBW (WDL (WD-like)-BEACH-WD40)
gene family, structural features suggest it is involved in a
signaling pathway requiring interactions with other pro-
teins, inositol phospholopids or PKA [51]. LRBA was also
shown to be induced by mitogens in immune cells and
over-expressed in several cancer types compared to nor-
mal tissue [51]. Of interest to our studies, LRBA was iden-
tified as co-clustering in breast tumor biopsies expressing
estrogen receptor-α [52].
Although the specific intracellular functions of TBC1D9

are unknown, the TBC1 domain family of proteins is
known to stimulate the GTPase activity of RAB proteins
[53]. While the role of TBC1D9 is unknown in breast can-
cer, there is evidence that alterations in RAB GTPases play
a role in progression of certain carcinomas [54].
NAT1 metabolically activates aromatic and heterocyclic

amines to electrophilic intermediates that initiate carcino-
genesis [55,56]. The high frequency of NAT1 acetylators
genotypes are important modulators of cancer susceptibil-
ity [55]. Breast cancer tissues are reported to exhibit lower
promoter methylation rates than normal breast, and DNA
hypomethylation of the NAT1 gene plays a significant role
in breast carcinogenesis [57]. Recently, small molecular
inhibitors of NAT1 have been successful in inhibiting
proliferation and invasiveness of breast cancer cells in
culture [58].
Since functions of the genes in the clinically-relevant

molecular signatures are involved in a variety of critical
pathways in cellular differentiation and growth, no collect-
ive relationship was obvious. However, since the combined
expression levels of these genes in a breast cancer biopsy
appear strongly associated with a patient’s risk of recur-
rence and overall survival, we examined the gene set in re-
lation to various parameters used in clinical management
of the lesion. Our goal was to ascertain the competency of
the gene signatures identified in our investigation to
predict breast cancer outcome in comparison with that
derived from conventional clinical information alone. Our
objective included development of targeted gene sets
(small molecular signatures) that reproducibly and object-
ively deduced the clinical course of breast cancer by re-
moving the subjectivity that is often encountered from
assessing multiple clinical parameters.
The variable selection strategy that we employed for

determining significant genes whose expression pre-
dicted both disease mortality and recurrence involved
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fitting LASSO regulated Cox regression models to mul-
tiple splits of the data into training and test samples.
This was accomplished as a robust approach to avoid
over-fitting and produce an authentic assessment of the
predictive ability of these models. To contrast, backwards
elimination fitted to the entire data set retained 13 genes
associated with mortality prediction and 10 genes for
assessing risk of recurrence, and would undoubtedly pro-
duce an over-fitted model inapplicable with external data.
Additionally, PGR, TBC1D9, and NAT1, which were
found to be important predictors based on gene selection
using LASSO, were not included in either backwards elim-
ination model.
However, our approach is not without limitations. In

particular, selection of genes aggregated over each gene
individually, and ignored particular combinations of
genes which occurred in the LASSO selected models.
Assessment of these models revealed the most common
model to be PGR alone (27% and 18% for mortality and
recurrence, respectively), followed by various two-gene
combinations which occurred at small frequencies (7%
or less). Thus, there was no clear consensus of a clinically
relevant gene combination based on the LASSO selected
models. Another potential limitation is that all genes were
retained with consistent direction of effect above the
permutation testing threshold, without optimizing the
number of genes to include in the final model. However,
additional analyses of disease mortality by sequentially
adding the most frequently occurring genes retained by
LASSO resulted in little difference between models
containing two to five genes (median C-indexes all 0.65).
Lastly, our approach did not evaluate potential interactions
between genes or non-linear effects of gene expression
values. These maybe incorporated by including interaction
terms in the Cox regression models, or by using a non-
parametric approach [59,60]. However, the cost in potential
predictive gain is increased computational burden and re-
duced interpretability, and the multivariable main effects
Cox model is an important reference point on which to
build more complicated models.
Since we used multiple testing and training splits of

the entire data set to determine clinically relevant gene
predictors, our assessment of predictive accuracy based
on fitted models using these genes is slightly biased. This
could be avoided by using two nested splits into testing
and training samples, similar to that used in the double
cross-validation method. But this approach would poten-
tially result in a different number and combination of
genes for each outer split, and would thus prevent as-
sessment of a given combination of genes in predicting
breast cancer mortality and recurrence. Another alterna-
tive would be a single split of the data into testing and
training samples, but then the results could be sensitive
to the particular split that is utilized. Our approach of
using multiple testing/training splits to determine clinic-
ally relevant genes followed by a second round of multiple
testing/training splits to determine predictive ability pro-
duces a model that is robust with an assessment that is
only slightly upward biased. The true accuracy of our mul-
tivariable gene expression models most likely lies between
the median values for the LASSO selected models and the
five/six gene signature models, which is comparable to the
accuracy based on clinical parameters alone.
The ability of multivariable gene expression models to

accurately predict both breast cancer mortality and recur-
rence was evaluated relative to models based on standard
clinical parameters. Further, inclusion of gene expression
values was evaluated in the context of improving predic-
tions relative to that provided by the use of clinical
information alone. Results indicated that use of gene ex-
pression signatures alone was comparable to that derived
from clinical information in their value for predicting both
breast cancer mortality and recurrence. Thus the predictive
competency of the gene signatures identified in our investi-
gation was confirmed for assessing breast cancer outcome.
Furthermore gene expression models appeared to im-

prove predictions for recurrence relative to those using
clinical information alone (though the result was not sta-
tistically significant). Our approach for combining gene
expression and clinical data was one-dimensional, in that
only main effects for each variable were included in the
model. However, additional investigations for disease
mortality were performed to determine whether statisti-
cally significant interactions between gene expression
values and disease stage, ER/PR status and treatment
regimen existed. Although 11 of the 32 genes investi-
gated exhibited significant unadjusted p-values for inter-
action with disease stage, none remained significant after
adjustment for multiple comparisons. Nevertheless, an
expanded examination of more complex models includ-
ing interactions between gene expression and clinical in-
formation is warranted in future studies.
Examination of our novel gene signature separately

among patients with either ER+ or ER- breast carcinomas
revealed that although the predictive accuracy was dimin-
ished relative to the entire cohort, no differences in either
accuracy or fitted model coefficients existed between the
two subsets (Figure 6). This is in contrast to the TRANS
BIG validation study, where considerable heterogeneity in
both estimated model coefficients for gene expression
values and predictive accuracy existed between ER+ and
ER- subsets of breast cancer (Figure 8, Additional file 6:
Figure S4). However, when considering the gene expres-
sion values themselves stratified by ER status, there was
good agreement between our data set and that of the
TRANSBIG study (Additional file 4: Figure S2 and
Additional file 5: Figure S3). This suggests an alterna-
tive mechanism for the observed heterogeneity in the
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TRANSBIG study, perhaps involving nodal status since
the TRANSBIG study consisted solely of node negative
patients. However, an investigation of potential interac-
tions between gene expression values and nodal status
for predicting disease mortality and recurrence revealed
no significant interactions after adjustment for multiple
comparisons. Additionally, among the genes selected in
our model, only NAT1 had a significant unadjusted p-
value (p = 0.015) for interacting with nodal status. How-
ever, a more exhaustive model evaluation among subsets
of patients stratified by clinical covariates (nodal status,
ER status) is an area of future research.
Validation of selected genes using the TRANSBIG study

indicated that though our gene subset performed relatively
well for predicting disease mortality (median C-index of
0.61, Figure 7), the performance for disease recurrence
was somewhat disappointing (median C-index of 0.56).
Predictions on disease mortality did, however, compare
favorably to those based on clinical data and those based
on the previously published Veridex signature. It should
be noted that there was considerable heterogeneity in the
fitted Beta coefficients between the TRANSBIG study and
our investigation, indicating that models fitted to one data
set cannot be directly used to make predictions in the
other data set. This can be attributed to a variety of
reasons, including patient genetic and physiological
heterogeneity, differences in sample processing and tissue
collection, differences between qRT-PCR and microarray
expression measurements, and the fact that the TRANSBIG
study consisted solely of node negative patients (though, no
significant interaction was found between nodal status and
the genes in our novel gene signature). In light of this, the
gene expression models derived in our investigation war-
rant further examination, validation, and possible refine-
ment in a clinical trial setting in order to be adopted as
routine clinical tests.

Conclusions
Our goal is to identify small, clinically-relevant gene sub-
sets to develop gene expression-based tests and gain
insight into the interrelationships between these genes and
clinical outcome. Based on published reports describing
statistical and apparent clinical significance of various
large molecular signatures of breast cancer, mRNA levels
of each of 32 gene candidates were evaluated by qPCR in
225 breast carcinoma specimens. Over-expression of ten
genes (RABEP1, PGR, NAT1, PTP4A2, SLC39A6, ESR1,
EVL, TBC1D9, FUT8 and SCUBE2) was associated with
reduced time to disease-related mortality, while four genes
(RABEP1, PGR, SLC39A6 and FUT8) were associated
with reduced recurrence times.
Multivariable analyses using the LASSO revealed that

expression of PGR, ESR1, NAT1, GABRP, TBC1D9,
SLC39A6 and LRBA of the 32 gene candidates was
collectively the most important predictors for both
breast cancer mortality and recurrence. Molecular signa-
tures consisting of either five genes (PGR, GABRP,
TBC1D9, SLC39A6 and LRBA) for predicting disease
mortality or six genes (PGR, ESR1, GABRP, TBC1D9,
SLC39A6 and LRBA) for predicting disease recurrence
were identified. When taken alone, gene signatures were
as effective in predicting recurrence/mortality as stand-
ard clinical parameters. However, combining the gene
signature and clinical information resulted in an im-
provement for predicting disease recurrence relative to
that derived from clinical information alone. Results
from this investigation advanced the findings derived
from our earlier studies [13,15,61,62], as well as those of
other investigators [5-12,14] exploring breast cancer
gene expression profiles. Importantly, our results identi-
fied small, biologically significant and clinically relevant
gene sets in breast cancer biopsies, which predict risk of
recurrence and overall survival of breast cancer patients.
These molecular signatures have been sufficiently evalu-
ated to warrant examination in a larger independent pa-
tient population (a validation cohort) such as a cooperative
clinical trial, e.g., NSABP or SWOG, to verify significance
for development of a routine clinical test to assess risk of
breast cancer recurrence and overall survival. Prediction of
the clinical outcome at the time of surgical removal of the
primary lesion will facilitate improved treatment planning
and disease surveillance thus enhancing individualized pa-
tient care.
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