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Downregulation of Cyclophilin A by siRNA
diminishes non-small cell lung cancer cell growth
and metastasis via the regulation of matrix
metallopeptidase 9
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Abstract

Background: Cyclophilin A (CypA) is a cytosolic protein possessing peptidyl-prolyl isomerase activity that was
recently reported to be overexpressed in several cancers. Here, we explored the biology and molecular mechanism
of CypA in non-small cell lung cancer (NSCLC).

Methods: The expression of CypA in human NSCLC cell lines was detected by real-time reverse transcription PCR.
The RNA interference-mediated knockdown of CypA was established in two NSCLC cell lines (95C and A549).
239836 CypA inhibitor was also used to suppress CypA activity. Tumorigenesis was assessed based on cellular
proliferation, colony formation assays, and anchorage-independent growth assays; metastasis was assessed based
on wound healing and transwell assays.

Results: Suppression of CypA expression inhibited the cell growth and colony formation of A549 and 95C cells.
CypA knockdown resulted in the inhibition of cell motility and invasion. Significantly, we show for the first time that
CypA increased NSCLC cell invasion by regulating the activity of secreted matrix metallopeptidase 9 (MMP9).
Likewise, suppression of CypA with 239836 CypA inhibitor decreased cell proliferation and MMP9 activity.

Conclusions: The suppression of CypA expression was correlated with decreased NSCLC cell tumorigenesis and
metastasis.
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Background
Lung cancer, the leading cause of cancer death world-
wide, can be divided into two types: non-small cell lung
cancer (NSCLC) and small cell lung cancer (SCLC).
NSCLC accounts for approximately 85% of lung cancers.
Despite much research, progress in the diagnosis and
treatment of NSCLC remains limited; the five-year sur-
vival rate is only 15% [1]. Nevertheless, treatment at an
early stage, especially during the precancerous stage,
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could increase the five-year survival rate by three- to
four-fold. Apart from conventional screening methods
such as imaging and pathology, the molecular diagnosis
of NSCLC is becoming increasingly important [2]. Tar-
geted therapy has found a place in the treatment of
NSCLC in recent years as it is highly tailored, more ef-
fective, and has fewer side-effects (1). Increased under-
standing of the mechanism of NSCLC will enable us to
exert a crucial influence on carcinogenesis. So far, how-
ever, the molecular mechanism underlying the genesis of
NSCLC remains unclear.
Cyclophilins were originally identified as cell-binding

proteins of the immunosuppressive drug, Cyclosporin A.
The founding member of cyclophilins is cyclophilin A
(CypA), an 18-kDa cytosolic protein that is ubiquitously
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expressed in prokaryotes and eukaryotes [3,4]. CypA is also
known as peptidyl-prolyl isomerase (PPI) A, as it specific-
ally catalyzes the cis-trans isomerization of peptidyl-prolyl
bonds. Thus, CypA plays important roles in protein fold-
ing, assembly, and trafficking, as well as immunoregulation
and cell signaling [5-8]. CypA is implicated in several dis-
eases, including viral infection, cardiovascular disease, in-
flammatory diseases, and cancer [9-12].
Though CypA was discovered in the past century, and

despite the fact that its overexpression was first demon-
strated in hepatocellular carcinoma in 1998 [13], the role
of CypA in cancer has until recently drawn insufficient
attention. Various cancers, including lung cancer, colo-
rectal cancer, pancreatic cancer, breast cancer, squamous
cell carcinoma, and melanoma exhibit upregulated CypA
[14-22]. Some researchers have investigated the function
of CypA during tumor progression, including the stimu-
lation of proliferation, blockade of apoptosis, regulation
of metastasis, and malignant transformation. The discus-
sion of CypA in lung cancer began in 2003 when Campa
reported that the level of CypA protein in lung cancer
specimens was seven-fold higher than that in adjacent
non-diseased lung tissues [23]. CypA was subsequently
reported to promote proliferation and metabolism, and
to restrain apoptosis in NSCLC cells [15]. Similar results
were obtained in SCLC [16]. Even so, the function of
CypA in lung cancer remains incompletely understood.
The objective of this study was to determine the effect

of the CypA suppression on NSCLC cell growth and
metastasis in vitro, and to gain insight into the relevance
of CypA to NSCLC biology and its underlying mechan-
isms. As expected, CypA expression was higher in
lung cancer cells and enhanced cell growth by stimulat-
ing proliferation, colony formation, tumorigenesis, and
metastasis by stimulating cell migration and invasion.
Furthermore, we detected the secreted matrix metallo-
proteinase 2 (MMP2) and MMP9, which are correlated
with metastasis in NSCLC, and we found that CypA
enhanced the activity of secreted MMP9.
Methods
Cell culture
Three human lung adenocarcinoma cell lines, A549, A2,
and H1299; two human large cell lung carcinoma cell
lines, 95C and H460; and one small cell lung cancer cell
line, H446, were cultured in RPMI 1640 medium (Invi-
trogen, Carlsbad, CA, USA) supplemented with 10%
fetal bovine serum (FBS; Gibco, Los Angeles, CA, USA).
Human embryo lung fibroblasts (MRC5) were main-
tained in DMEM supplemented with 10% FBS. The cells
were maintained at 37°C in a humidified chamber con-
taining 5% CO2 and 95% air.
CypA RNAi lentivirus generation
Four CypA-targeting oligonucleotides serving as RNAi
candidates were designed based on the full-length
human CypA cDNA sequence and cloned into the
pGCsi-H1/Neo/GFP vector (Shanghai Genechem Co.
Ltd., Shanghai, China). CypA-Si2 (CTGACTGTGGA
CAACTCGAAT), which matches the sequence located
at nucleotides 559–579 of the CypA cDNA, proved to
be the most effective at decreasing the CypA mRNA
level and was used to knock down endogenous CypA in
the following experiments. A nonsilencing-siRNA (NS-
siRNA, TTCTCCGAACGTGTCACGT) was used as a
negative control. Oligonucleotides encoding CypA-Si2 or
NS-siRNA together with a loop separating the comple-
mentary sequences were synthesized and inserted into
the pGCL-GFP lentivirus construct, which contained
an H1 promoter and an ampicillin resistant cassette
(Shanghai Genechem Co. Ltd.). The recombinant virus
was packaged using a Lentivector Expression System
(Shanghai Genechem Co. Ltd.), according to the manu-
facturer’s instructions.

Recombinant lentiviral particle infection of target cells
Target cells were plated into 96-well culture plates at 5,000/
well. Cells were infected with recombinant virus carrying
CypA-siRNA or NS-siRNA 24 h later. GFP expression was
detected via fluorescence microscopy (Nikon, Tokyo, Japan)
to determine the infection efficiency. Cells were cultured
for an additional 2 weeks prior to harvest, at which time
CypA expression was assessed by quantitative real-time
PCR (qRT-PCR) and Western blot analysis.

Reverse transcription PCR and qRT-PCR analyses
Total RNA was extracted using TRIzol Reagent (Invitro-
gen) with the RNA quality being assessed by
formaldehyde-agarose gel electrophoresis. First-strand
cDNA was obtained by reverse-transcription using
Moloney murine leukemia virus reverse transcriptase
(Promega, Madison, WI, USA) as instructed by the
manufacturer. qRT-PCR was performed using Power
SYBR Green PCR Master Mix (Applied Biosystems,
Foster City, CA, USA) in a total volume of 25 μL with
2 μL of cDNA, and detected using an ABI7500 Real-
Time PCR System (Applied Biosystems). The real-time
PCR conditions for CypA and β-actin were: 95°C for
10 min, followed by 40 cycles of 95°C for 30 s, 56°C
for 30 s, and 72°C for 30 s with the primers CypA sense
(5’-CATACGGGTCCTGGCATCT-3’), CypA antisense
(5’-TGCTGGTCTTGCCATTCC-3’), β-actin sense (5’-
TTAGTTGCGTTACACCCTTTC-3’), and β-actin anti-
sense (5’-GCTGTCACCTTCACCGTTC-3’). β-actin was
used as internal loading controls. Relative mRNA levels
are presented as 2-ΔCT. Three independent experiments
were completed; each reaction was performed in
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triplicate. All data are shown as means ± SEM. A no-
template control (NTC) was used to avoid genomic
DNA contamination.
Western blot analysis
Whole-cell lysates were harvested in ice-cold lysis
buffer (10 mM Tris–HCl, pH 7.4, 1 mM EDTA, 0.1%
Triton X-100, and 0.1% SDS) containing protease
inhibitors (2 μg/mL aprotinin, 10 μg/mL antipain,
2 μg/mL pepstatin, and 2 mM benzamide). After the
removal of cell debris by centrifugation (12,000 × g,
10 min), the protein concentration in the supernatants
was measured using bicinchoninic acid protein assay
reagent (Pierce Chemical Co., Rockford, IL, USA)
according to the manufacturer’s instructions. Ten
micrograms of total protein were subjected to SDS-
PAGE and wet-transferred to nitrocellulose mem-
branes. The membranes were probed with anti-human
CypA polyclonal rabbit serum (Santa Cruz Biotechnol-
ogy, Santa Cruz, CA, USA) at a 1:500 dilution and
anti-GAPDH antibodies (CoWin Biotech, Shanghai,
China) diluted 1:5,000 in 5% (w/v) nonfat dry milk in
TBST (50 mM Tris–HCl, 138 mM NaCl, and 0.1%
Tween-20, pH 7.6). Secondary antibodies conjugated
to horseradish peroxidase (Santa Cruz Biotechnology)
were diluted 1:5,000. Signals were detected using the
SuperSignal West Femto Chemiluminescent Detection
System (Pierce Chemical Co.) and exposed to Kodak
X-OMAT film.
For the detection of ERK1/2, p38, JAK2, and STAT5,

rabbit anti-ERK1/2 antibody (Abcam, Cambridge,
England, UK), mouse anti-pERK antibody (Abcam,
Cambridge, England, UK), rabbit anti-p38 antibody
(Abcam, Cambridge, England, UK), mouse anti-pp38
antibody (Abcam, Cambridge, England, UK), mouse
anti-JAK2 antibody (Abcam, Cambridge, England,
UK), rabbit anti-pJAK2 antibody (Abcam, Cambridge,
England, UK), rabbit anti-STAT5 antibody (Abcam,
Cambridge, England, UK), and mouse anti-pSTAT5
antibody (Abcam, Cambridge, England, UK) were
used.
High-content cell cycle analysis
The Cellomics ArrayScan HCS Reader was used to
quantify cell parameters by immunofluorescence stain-
ing. In brief, cells were cultured in 96-well plates at
37°C for 24hours, washed three times with phosphate-
buffered saline, and then fixed in 4% paraformalde-
hyde for 10 min followed by 0.2% TritonX-100 for 15
min at room temperature. After blocking of non-
specific binding sites in 3% BSA for 30 min, cells
were incubated with anti-CypA primary antibodies
overnight at −4°C and treated with anti-rabbit IgG-
TRITC secondary antibody for 30 min at room
temperature. The expression level of CypA protein
was measured with the Cellomics ArrayScan HCS
Reader using the ArrayScanTM software.

Cell proliferation assay
Tumor cells (3,000/well) were seeded in flat-bottom 96-
well plates. The next day, the cells were serum-starved
for 24 h and exposed to 0.2% BSA. Cell proliferation was
evaluated by a 3-(4, 5-dimethyl-thiazol-2yl)-5-(3-carbox-
ymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS;
Promega) assay, which was performed at a fixed time
every day for the next 5 days. A total of 20 μL of MTS
was added to each well, followed by incubation for
3 h. The absorbance was recorded at 490 nm with an
EL-800 universal microplate reader (Bio-Tek Instru-
ments, Winooski, VT, USA). This assay was repeated
three times in triplicate. Cell doubling-time was calcu-
lated using doubling time online calculator [24].

Colony formation assay
Three-hundred cells were suspended in 2 mL of culture
medium and seeded in 6-well plates. The cells were
maintained for 10 days with a change of media every 3
to 4 days. The number of colonies with >50 cells in each
well was counted on the 10th day. The colonies were
visualized and counted by the trypan blue exclusion
method. The assay was repeated three times in triplicate.

Anchorage-independent growth assay
A total of 1,000 cells were resuspended in 1 mL of 0.6%
agarose in 6-well plates coated with a 1.2% agarose bed.
Triplicate cultures of each cell type were maintained for
21 days; the medium was changed every 7 days. The
number of colonies >50 μm (~100 cells) in diameter per
well was counted manually with the aid of Alpha View
Analysis Tools (Alpha Innotech Corp., San Leandro, CA,
USA). All experiments were performed in triplicate and
repeated three times.

Cell migration assay
Cell motility was assessed by two assays. For the wound
healing assay, confluent cell monolayers were wounded
with a sterile pipette tip and cultured in serum-free
medium in 6-well plates. The wounds were observed at
0, 12, and 24 h along the scratch, and representative
images of fixed positions were acquired with a phase-
contrast microscope. The wound areas were measured
using Alpha View Analysis Tools, and the percentage
wound closure was determined.
A migration assay was performed in a 24-well Trans-

well unit containing an 8-μm pore size polycarbonate
membrane (Costar, Cambridge, NY, USA) as reported
previously [25]. After starvation for 12 h, the cells were
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suspended and plated in the upper compartment with
serum-free medium. The lower compartment was filled
with medium containing 10% FBS for use as a chemo-
attractant. After 24 h,the cells in the upper compart-
ment were removed completely by gentle swabbing.
Cells migrating to the lower surface of the membrane
were determined using crystal violet. The number of
cells on the lower surface of the membrane was
counted in five microscopic fields at 200× magnifica-
tion. Triplicate samples were tested. The data are pre-
sented as means ± SEM.
Cell invasion assay
The invasion assay was determined by transwell cham-
ber as reported previously [25]. Briefly, cells were
starved for 12 h, suspended, and seeded in the up-
per compartment on Matrigel Matrix (5 μg/mL; BD
Pharmingen, San Diego, CA, USA)-coated 24-well
Transwell units (Costar). RPMI 1640 medium supple-
mented with 10% FBS was added to the lower compart-
ment for use as a chemoattractant. After incubation for
24h and 48 h respectively, cells attached to the lower
Figure 1 Expression of CypA in six lung cancer cell lines and MRC5 ce
H460, H1299, and A2), one SCLC cell line (H446) and MRC5. The 95C, A549,
2.28-, and 1.94-fold increases, respectively, in CypA mRNA expression comp
data shown are means ± SEM from three separate experiments. **P<0.01 (c
H1299, A2, H446 and MRC5 cell lines were detected by western-blot, GAPD
level was also measured by immunofluorescence staining. The fluorescence
the ArrayScanTM software (lower panel). The CypA protein level normalized
95C and A549 cells. OD490 values were determined daily at predetermined
h respectively. The data are expressed as the mean ± SEM of triplicate valu
The percent distance of wound closure at 24 h following wound generatio
mean±SEM. **P<0.01 (t-test).
surface of the membrane were stained by crystal violet.
The number of cells on the lower surface of the mem-
brane was counted in five microscopic fields at 400×
magnification. Triplicate samples were assayed. The data
are presented as means ± SEM.
Gelatin zymography
Gelatinolytic activity and quantity in conditioned
media were analyzed by gelatin zymography. In brief,
serum-free conditioned medium was centrifuged to
remove cellular debris and then subjected to non-
reducing SDS-PAGE using an 8% separating gel con-
taining 0.1% gelatin. Subsequently, the gels were
washed twice in 2.5% Triton X-100 for 30 min at
room temperature to remove SDS and incubated in
reaction buffer (50 mM Tris, 0.2 M NaCl, and 5 mM
CaCl2) for 48 h at 37°C to hydrolyze the copolymer-
ized protein substrate in a zone around their electro-
phoresed position. The gels were subsequently stained
with 0.5% Coomassie brilliant blue R-250 to visualize
the digested areas as clear bands against a blue back-
ground of undegraded gelatin. The gels were then
lls. A, CypA mRNA expression in five NSCLC cell lines (95C, A549,
H460, H446, H1299, and A2 cells exhibited 12.02-, 5.19-, 4.62-, 3.40-,
ared to MRC5 cells. The relative mRNA level is presented as 2-ΔCT. All
ompared with MRC5, t-test). B, CypA protein level in 95C, A549,
H was used as internal loading controls (upper panel). CypA protein
intensity was quantified by Cellomics ArrayScan HCS Reader using
to MRC-5. **P<0.01 (compared with MRC5, t-test) C, Proliferation of
time points. The doubling-time of 95C and A549 cells was 24h and 43
es from three separate experiments. D, Mobility of 95C and A549 cells.
n was calculated from three separate areas and is expressed as the
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scanned and analyzed using Alpha View Analysis
Tools.
CypA inhibitor 239836 function studies
Cell proliferation assay and gelatinolytic activity was also
assessed in the presence of CypA inhibitor 239836
(Merck, Darmstadt, Germany). In brief, A549 and 95C
cells were seeded onto 96-well plates or 6-well plates.
239836 (0, 0.1, 1, and 10 μg/mL) was added 24 hours
later. The vehicle (DMSO, 0.3 μl/ml) was used as a con-
trol. Cell growth curve and the activity of MMP9 were
detected.
Statistical analysis
The data are presented as the means ± SEM of at least
three independent experiments. Statistical analysis was
performed using Student’s t-test. Unless otherwise indi-
cated, P<0.05 was deemed significant.
Figure 2 Interference with CypA expression in 95C and A549 cells. A,
RNAi. The relative mRNA level is presented as 2-ΔCT. The data are the mean
and A549 cells with CypA-targeting RNAi. Cell lysates prepared from each g
antibodies. The data are expressed as the mean ± SEM of triplicate values f
Results
CypA expression in NSCLC cell lines
To examine CypA expression in lung cancer cells, we
tested the CypA mRNA level in six human lung cancer cell
lines, together with one normal human embryo lung fibro-
blast line (MRC5) as an NTC. The mRNA levels were
quantified by real-time PCR using specifically designed pri-
mers for CypA; β-actin was used as an internal normalizer
to avoid variation. Compared to the MRC5 cells, all lung
cancer cells expressed significantly higher levels of CypA
mRNA, particularly 95C cells (Figure 1A). The level of
CypA protein was detected by western-blot analysis. As
shown in Figure 1B (upper panel), CypA protein was highly
expressed in lung cancer cells except A2 cell line. We also
used high-content cell cycle analysis to determine the CypA
protein level, similar result was obtained as shown in
Figure 1B. To determine the potential function of CypA in
lung cancer cell pathophysiology, we investigated the prolif-
erative and migratory capacities of 95C and A549 cells. Our
data suggest that 95C cells had enhanced cell growth and
CypA mRNA expression in 95C and A549 cells with CypA-targeting
s ± SEM of three separate experiments. B, CypA protein levels in 95C
roup were screened using Western blotting with anti-CypA
rom three separate experiments. **P<0.01 (t-test).
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metastasis compared to A549 cells (Figure 1C and D),
which inspired us to further investigate the correlation be-
tween CypA and lung cancer cell growth and metastasis.
Cell proliferation was suppressed by the inhibition of
CypA levels
A lentivirus-based RNAi delivery system with short-
interfering RNAs against CypA was used to infect 95C
Figure 3 Effect of CypA on tumorigenesis. A, CypA depletion inhibited
daily at predetermined time points. The data are expressed as means ± SEM
**P<0.01 (t-test). 95C, 95C-MOCK, 95C-KD cell doubling-time was 24h, 26h,
KD was 43h, 44h, 49h respectively. B, the effect of 239836 on cell proliferat
SEM. **P<0.01 (t-test) C, CypA-assisted 95C and A549 cells avoided density-
quantified by counting the number of colonies per well. The values represe
**P<0.01 (t-test). D, The knockdown of CypA suppressed the anchorage-ind
21 days was quantified by counting the number of colonies per well. The v
three separate wells. **P<0.01 (t-test).
and A549 cells to determine the function of CypA (re-
ferred to as 95C-KD and A549-KD). A nonsilencing se-
quence was used as a negative control (referred to as
95C-MOCK and A549-MOCK). 95C-KD and A549-KD
showed an approximately 80% reduction in CypA
mRNA; moreover, CypA protein expression was knocked
down by 90% compared to the parental cells (referred to
as 95C-WT and A549-WT) (Figure 2A and B). Cells
the proliferation of 95C and A549 cells. OD490 values were determined
of triplicate values from three separate experiments. *P<0.05,

31h respectively. And cell doubling-time of A549, A549-MOCK, A549-
ion was detected by MTS assay. The data are expressed as means ±
dependent growth inhibition. Colony formation after 10 days was
nt the mean number of colonies±SEM from three separate wells.
ependent proliferation of 95C and A549 cells. Colony formation after
alues represent the mean number of colonies (the mean±SEM) from



Figure 4 The phosphorylation level of ERK1/2 and p38 was
deregulated by the suppression of CypA expression. Western-
blot analysis of A549, A549 MOCK, A549 KD with antibodies to ERK1/
2 (A), p38(B), JAK2(C), STAT5(D) and their phosphorylated forms
were carried out. GAPDH was used as internal loading controls.
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treated with the nonsilencing sequence showed no dif-
ference in CypA (Figure 2A and B). As indicated in
Figure 3A, the KD cells exhibited decreased growth be-
ginning on the second day. Up to day 5, proliferation of
the KD cells was dramatically slower than that of the
WT and MOCK cells. These data indicate that CypA
was depleted effectively and might be a key factor stimu-
lating proliferation in NSCLC cells.
To determine whether CypA plays a role in cell prolif-

eration, A549 and 95C cells were incubated with CypA
inhibitor 239836, at concentrations of 0, 0.1, 1, and 10
μg/mL for 48 hours. MTS assay was performed. As
shown in Figure 3B, the proliferation of A549 and 95C
was inhibited by the treatment of 239836 in a dose-
dependent manner.

The suppression of CypA inhibits NSCLC cell
tumorigenesis
To gain additional insight into the effect of CypA on
NSCLC growth, cell tumorigenesis was assessed by
colony formation and anchorage-independent growth
assays. The former indicated that the colony-forming
efficiency of KD cells was less than half that of WT
and MOCK cells after 10 days (Figure 3C). Thus,
CypA may overcome the density-dependent inhibition
of growth in NSCLC cells. Similarly, in an anchorage-
independent growth assay, the number of WT col-
onies was nearly twice that of KD colonies, while
there were no differences between WT and MOCK
cells (Figure 3D). Our data demonstrate that the sup-
pression of CypA resulted in marked inhibition of
soft-agar colony formation.

CypA expression increase cell proliferation by up-
regulation of MAP kinase pathway
To explore how the CypA modulates cell proliferation
signaling pathways, some central regulatory molecules of
MAP kinase and JAK2 pathways were examined using
western blot analysis. The phosphorylation levels of both
ERK1/2 and p38 were decreased in A549 KD cells
(Figure 4A and B). We also analyzed the phosphoryl-
ation levels of JAK2 and STAT5 in these cells, but no
obvious change was observed (Figure 4C and D). Thus,
CypA appears to be involved in the MAPK kinase signal
pathway (ERK1/2 and p38).

CypA suppression decreases NSCLC cell metastasis
Metastasis is an important characteristic of malignant
cancer cells. To further assess the influence of CypA on
95C and A549 cell metastasis, we investigated its effect
on cell migration and invasion. In the invasion assay,
none of the cells were observed when cells were incu-
bated for 24h, and we count the number of cells on the
lower surface of the membrane when cells were
incubated for 48h. Both cell migration, as determined
using wounding healing and Transwell assays (Figure 5A
and B), and cell invasion (Figure 5C) were inhibited in
KD cells compared to the corresponding controls. These
findings indicate that CypA could promote NSCLC cell
metastasis.

CypA inhibition correlates with the down-regulation of
MMP9 activity
A series of mechanisms are involved in the metastasis of
NSCLC, and MMPs play particularly critical roles [26].
Two key MMPs, MMP2 and MMP9, were differently
influenced by CypA in NSCLC cells, as detected by gel-
atin zymography (Figure 6A). MMP9 activity in KD cells
was decreased, while that in WT and MOCK cells was
similar (Figure 6A). However, no significant differences
were detected among WT, MOCK, and KD cells in
terms of MMP2 activity (data not shown). In order to
check the change of MMP9 activity was resulted from
suppression of CypA, the CypA inhibitor 239836 was
used. 95C cells were incubated with CypA inhibitor
239836 for 48 hours and MMP9 activity was detected.
As shown in Figure 6B, MMP9 activity in 239836 treated
cells were significantly decreased, showing a dose-
dependent manner. In summary, our findings suggest
that CypA stimulates cell proliferation and might pro-
mote metastasis by upregulating the activity of MMP9 in
NSCLC, without changing MMP2 activity.

Discussion
Targeted therapy represents a tremendous leap for-
ward in cancer treatment. The mutation of epidermal
growth factor receptor is a highlight of lung cancer
diagnosis and therapy [27]. Therefore, elucidating the
mechanisms of novel molecular targets may contribute



Figure 5 The rates of migration and invasion in CypA interfered 95C and A549 cells with A, Migration was investigated using a wound
healing assay. The percent areas of wound closure at 24 h following wound generation were calculated from three separate areas and are
expressed as the mean±SEM. **P<0.01 (t-test). Photomicrographs were taken after 24 h (original magnification, ×100). B, Other migration assays
were performed using a Transwell unit. Cells on the underside of the insert filters were fixed, stained, and counted under a microscope. The data
are expressed as means ± SEM of triplicate values from three separate experiments. **P<0.01 (t-test). Photomicrographs were taken after 24 h
(original magnification, ×200). C, The in vitro invasive properties of 95C and A549 cells was tested using a Matrigel-coated Transwell unit. Cells on
the underside of the insert filters were fixed, stained, and counted under a microscope. The data are expressed as means ± SEM of triplicate
values from three separate experiments. **P<0.01 (t-test). Photomicrographs were taken after 48 h (original magnification, ×400).
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to improving lung cancer treatment. Previous reports
have demonstrated that CypA is overexpressed in can-
cers such as lung, pancreatic, colorectal, and breast
cancer. CypA overexpression was considered to play
important roles in cancer pathogenesis and act like a
"molecular switch" [28], since it is known to regulate
signaling via prolyl isomerization. Nonetheless, the
mechanism underlying the effect of CypA on the bio-
logical behavior of lung cancer cells has not been
fully elucidated.
In this study, we showed that the knockdown of CypA

in human NSCLC cells inhibited cell proliferation,
increased sensitivity to density-dependent inhibition,
and down-regulated anchorage-independent cell growth.
This is in agreement with a previous report showing that
CypA is a key promoter of tumor cell growth and
tumorigenesis [15]. Notably, CypA knockdown drama-
tically inhibited cell migration and invasion by NSCLC
cells, suggesting that CypA has a significant impact on
the metastasis of NSCLC cells. Furthermore, we investi-
gated the mechanism of action of CypA in NSCLC cells,
and detected enhanced MMP9 activity. To our know-
ledge, this study for the first time correlates CypA with
metastasis and MMP9 in NSCLC cells. Our data indicate
that CypA plays a crucial role in the proliferation, motil-
ity, and invasionof NSCLC cells.
The expression of CypA in lung cancer tissue was ap-

proximately seven-fold higher than that in adjacent non-
malignant tissue [14]. Herein, we showed that compared
to MRC5 cells, CypA expression was higher in several



Figure 6 Zymographic analysis of MMP9 and MMP2 activity in 95C cells. A, Conditioned media prepared from each cell group were
screened using gelatin zymographic analysis. The densities of MMP9 were determined and plotted. The data are expressed as the means ± SEM
of triplicate values from three separate experiments. **P<0.01(t-test). B, Conditioned media prepared from CypA inhibitor 239836 treated cells as
well as control group were screened using gelatin zymographic analysis. The gels were scanned and analyzed using Alpha View Analysis Tools.
*P<0.05.
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lung cancer cell lines, including five NSCLC (95C, A549,
H460, A2, and H1299) and one SCLC (H446) cell lines.
Interestingly, proliferation and wound healing assays
indicated that 95C had a greater proliferative and migra-
tory capacity than A549, suggesting that elevated CypA
expression in NSCLC cells might influence cell growth
and metastasis.
It has been thought that CypA accelerates cell growth

by stimulating cell proliferation, tumorigenesis, and me-
tabolism, and by inhibiting apoptosis [15]. Our prolifera-
tion and tumorigenesis data are consistent with those of
previous reports, but the mechanism by which CypA
acts on cell growth remains unclear. We also checked
whether cell apoptosis was regulated by CypA and cell
apoptosis was not affected by the suppression of CypA
expression (data not shown). Recent studies have
pointed out that PPI activity is required for CypA-
induced cell proliferation, and that several growth-
related signaling molecules, including ERK1/2, Jak2, p38,
and Stat5 [10,16,20], are stimulated by CypA in cancer
cells. In present research, some important regulatory
molecules of MAP kinase and JAK2 signaling pathways
were determined. Our data indicate that CypA enhanced
cell growth by up-regulating MAPK kinase pathway
(ERK1/2 and p38) in NSCLC cells. But JAK2/STAT5
was not involved in the CypA regulating pathway.
Metastasis is the primary cause of morbidity and mor-

tality in cancer patients. Besides its role in cell growth,
the involvement of CypA in metastasis has also been
investigated. Stable CypA RNA-interfered breast cancer
and osteosarcoma cells showed reduced migratory
capacity [20,29]. CypA is also involved in the attraction
and migration of monocytes or vascular smooth muscle
cells in rheumatoid arthritis and cardiovascular disease
by irritating adhesion molecules and regulating MMP9
secretion [10,30]. These reports inspired us to explore
the effect of - CypA on metastasis in NSCLC cells. KD
cells exhibited a deficiency in migratory capacity com-
pared with WT and MOCK cells. Invasion is another
characteristic of metastasis. To some extent, invasive
ability is even more important because the first step in
metastasis involves passing through a basement mem-
brane (BM), which is the major physical obstacle to can-
cer cell metastasis [31]. Our invasion assay suggested
that KD cells could not pass through the Matrigel
Matrix, which is similar to the BM; however, WT and
MOCK cells could. Nevertheless, the mechanism of
CypA in metastasis remains a mystery. It is thought that
CypA might disrupt the F-actin structure in osteosar-
coma cells or the regulation of JAK2 signaling in breast
cancer cells and metastatic melanoma cell lines [19,22].
Thus far, no studies have focused on NSCLC cells. In
our study, the phosphorylation level of JAK2 was not
changed when CypA expression was inhibited.
We hypothesized that a relationship exists between

CypA and MMPs, in particular MMP2 and MMP9, as
CypA stimulates MMP expression via the ligand CD147
[27,32,33] . The suppression of CD147 in breast cancer
cells inhibited MMP2 and MMP9 production and cell
invasion in vitro [34], while the invasive properties con-
ferred on inflammatory cells by CypA are a result of
MMP9 stimulation [35]. We suppressed CypA in
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NSCLC cells without changing CD147 expression (data
not shown). Gelatin zymography showed that MMP9
was down-regulated in CypA supressed cells compared
to control cells, while the expression of MMP2 did not
change significantly. This is consistent with a previous
report showing that CypA increased MMP9, but not
MMP2, expression via CD147 in rheumatoid arthritis
[29]. Therefore, CypA may promote metastasis by upre-
gulating MMP9 activity in NSCLC cells.
The initial step of tumor cell invasion is characterized

by BM breakdown, a process dependent on type IV
collagen-degrading enzymes, mainly MMP2 and MMP9
[36]. MMPs are a family of proteases that are required
for the invasion of tumor cells into surrounding con-
nective tissues, intravasation and extravasation from
blood vessels, and metastasis to distant organs [37].
MMP2 and MMP9, otherwise known as gelatinases, are
strongly upregulated in cancers of the lung, colon,
breast, skin, and prostate, which are correlated with
enhanced tumor invasiveness and metastasis [38].
MMP9 digests decorin; elastin; fibrillin; laminin; types
IV, V, XI, and XVI collagen; and gelatin. Among these,
laminin serves as an important component of the BM.
MMP9 can also activate growth factors, such as
proTGF-β and proTNF-α [39]. The inhibition of MMP9
reduced the number of colonies formed in the lung of
mice [40]. As demonstrated in this study, CypA upregu-
lated the activity of MMP9 in NSCLC cells, which could
help elucidate the mechanism of CypA effect on lung
cancer metastasis. Furthermore, MMP9 is widely
accepted as a prognostic marker in NSCLC; its expres-
sion level is correlated with survival [41]. Whether
CypA could be used as a prognostic marker in NSCLC
was evaluated by Howard using tissue microarray
immunohistochemistry; however, the results were nega-
tive [14]. Further research into CypA may change this
using larger samples or alternate methods.
Conclusions
We demonstrated for the first time that CypA knock-
down decreased metastatic activity in NSCLC cells,
and that strong CypA expression could activate MAPK
signaling pathway and plays an important role in the
cell proliferation. Therefore, CypA is a potential indi-
cator of tumor prognosis. In addition, we speculate
that CypA regulates the activity of MMP9, a key factor
in tumor metastasis, although this should be investi-
gated further in vivo, and the CypA-centered regula-
tory network should be elucidated in detail. Thus,
CypA shows promise as a novel therapeutic target
and/or prognostic indicator for lung cancer.
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