
RESEARCH ARTICLE Open Access

A Cross-Species Analysis of a Mouse Model of
Breast Cancer-Specific Osteolysis and Human
Bone Metastases Using Gene Expression Profiling
Anguraj Sadanandam1,6*, Mitsuru Futakuchi2, Costas A Lyssiotis3,4, William J Gibb5 and Rakesh K Singh1*

Abstract

Background: Breast cancer is the second leading cause of cancer-related death in women in the United States.
During the advanced stages of disease, many breast cancer patients suffer from bone metastasis. These metastases
are predominantly osteolytic and develop when tumor cells interact with bone. In vivo models that mimic the
breast cancer-specific osteolytic bone microenvironment are limited. Previously, we developed a mouse model of
tumor-bone interaction in which three mouse breast cancer cell lines were implanted onto the calvaria. Analysis of
tumors from this model revealed that they exhibited strong bone resorption, induction of osteoclasts and
intracranial penetration at the tumor bone (TB)-interface.

Methods: In this study, we identified and used a TB microenvironment-specific gene expression signature from
this model to extend our understanding of the metastatic bone microenvironment in human disease and to
predict potential therapeutic targets.

Results: We identified a TB signature consisting of 934 genes that were commonly (among our 3 cell lines) and
specifically (as compared to tumor-alone area within the bone microenvironment) up- and down-regulated >2-fold
at the TB interface in our mouse osteolytic model. By comparing the TB signature with gene expression profiles
from human breast metastases and an in vitro osteoclast model, we demonstrate that our model mimics both the
human breast cancer bone microenvironment and osteoclastogenesis. Furthermore, we observed enrichment in
various signaling pathways specific to the TB interface; that is, TGF-b and myeloid self-renewal pathways were
activated and the Wnt pathway was inactivated. Lastly, we used the TB-signature to predict cyclopenthiazide as a
potential inhibitor of the TB interface.

Conclusion: Our mouse breast cancer model morphologically and genetically resembles the osteoclastic bone
microenvironment observed in human disease. Characterization of the gene expression signature specific to the TB
interface in our model revealed signaling mechanisms operative in human breast cancer metastases and predicted
a therapeutic inhibitor of cancer-mediated osteolysis.
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Background
Bone is one of the most common sites for metastasis in
human breast cancer. Bone metastasis results in cancer-
related pain, pathological fracture, hypercalcemia, neuro-
logical defects, and immobility; all of which increase the
risk of mortality and decrease the quality of life for breast

cancer patients [1-4]. While a number of strategies exist
to treat breast cancer bone metastases (e.g., surgery,
radiation and/or chemotherapy), none are curative.
Furthermore, these treatment methods have limited effi-
cacy due in part to the fact that they do not effectively
target the interaction between tumor cells and bone [5].
Even though the bisphosphonate class of drugs (which
target the tumor-bone interface) have been shown to
improve the quality of life and disease-free survival in
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some patients, more therapeutic targets and agents are
desirable [6].
Within the osteolytic lesions of bone metastases, tumor

cells interact with osteoclasts (bone resorbing cells) and
osteoblasts (bone forming cells), thereby inhibiting nor-
mal bone development and ultimately leading to bone
destruction [1-4]. As for osteoclasts, their interaction
with tumor cells is reciprocal: tumor cells produce factors
(e.g., parathyroid hormone-related peptide; interleukin-6;
tumor necrosis factor; and macrophage colony stimulat-
ing factor, M-CSF) that directly or indirectly induce the
formation of osteoclasts, and activated osteoclasts pro-
duce factors (e.g., transforming growth factor, TGF-b;
insulin growth factor, IGF; and bone morphogenetic pro-
teins, BMPs) that stimulate tumor growth and bone
destruction [1]. Despite a general comprehension of this
process, we are still far from a complete mechanistic
understanding and lack well defined targets for therapeu-
tic intervention.
Several animal models have been developed to study

the mechanisms governing cancer-mediated osteolysis.
However, there is no single animal model that ideally
replicates the entire metastatic process from primary
breast tumor to bone metastasis. Nevertheless, several
models that represent various aspects of bone metastasis
have been used successfully to study specific features of
the disease. For example, Arguello, et al. developed a
model in which melanoma cells injected into the left ven-
tricle of the heart ultimately form bone metastases [7].
This model was later used to study various mechanisms
behind breast cancer-specific osteoclast formation and
bone metastasis [8-10]. Our group has also developed a
rat model to study bone metastatic microenvironment in
which prostate tumors were directly transplanted onto
the calvariae of syngeneic animals. These tumors exhib-
ited pathological osteoblastic and osteoclastic changes
[11]. More recently, we used this approach with mouse
breast cancer cell lines and found that the tumor cells
induce osteolytic changes in the bone microenvironment
[12-15]. With this model, we found that cathepsin G
cleaves the receptor activator of nuclear factor-B ligand
(Rankl) leading to enhanced activation of osteoclasts in
the breast cancer bone microenvironment [15]. Further-
more, we also demonstrated the importance of TGF-b
signaling and osteoclast activation in the breast cancer
bone microenvironment [12,14]. While this series of
observations has furthered our understanding of the
mechanisms underlying osteolysis, their relevance to
human breast cancer remained unknown.
To address this question, we reanalyzed gene expres-

sion profiles generated from our previous studies using
the syngeneic mouse model of breast cancer specific
osteolysis that was developed by implanting 3 different
cell lines - 4T1 (highly metastatic), Cl66 (moderately

metastatic) and Cl66-M2 (low metastatic) - onto the
calvariae bone of BALB/C mice [12-15]. The gene expres-
sion profiles were generated from microdissected tumors
in which the tumor-bone (TB) interface and the tumor
alone (TA) area were isolated independently. Then we
identified a TB signature involved in bone destruction by
comparing the gene expression profiles of the TA area
and TB interface from the dissected tumors. Lastly, using
our TB signature, open-access gene expression data, and
pathway analytics, we demonstrated that our model
mimics human disease and predicted key pathways and a
potential therapeutic agent for breast cancer osteolysis.

Methods
Mouse osteolytic model and microarray
Mouse breast cancer cell lines - 4T1, Cl66 (66Cl4) and
Cl66M2 - with different metastatic potential [16-18] were
maintained in culture and were implanted under the dor-
sal skin flap onto the calvaria of female BALB/c mice, as
described [12]. Mice were euthanized and necropsied to
examine osteolytic lesions at 4 weeks post implantation.
The tissues for histological examination were prepared as
described [12]. All studies were carried out in accordance
with the Institutional Animal Use and Care Committee
(IAUCC) of the University of the Nebraska Medical Cen-
ter. Calcified frozen tissues were serially sectioned into
10 μm slices and then microdissected to separate the TB
interface from the TA area. RNA isolation and gene
expression profiling of the TB interface and TA area were
performed using Affymetrix GeneChip® Mouse Genome
430A 2.0 Array, as described [14].

Analysis of gene arrays and public microarray datasets
The CEL files for all the samples from Affymetrix Gene-
Chip® were processed and MAS 5.0-normalized using the
SimpleAffy [19] program and robust multiarray (RMA)-
normalized using BRB Array tools [20]. The log2 MAS
5.0-normalized data was used for subsequent analyses.
Fold-change at the TB interface with respect to the TA
area for tissues, standard deviation (SD) across TA sam-
ples, and median-centered analysis within the TA area
were calculated for each of the cell lines (4T1, Cl66 and
Cl66-M2) to identify genes up- and down-regulated in the
respective samples. The genes were ranked from highest
to lowest expression based on the values from fold-change
or median-centered analysis.
The following publicly available Affymetrix microarray

data were obtained from Gene Expression Omnibus
(GEO) [21]: GSE13563 for normal bone from mouse cal-
varia (n = 2), mandible (n = 2) and ulna (n = 2);
GSE14017 (n = 29) and GSE14018 (n = 36) for metastases
from breast cancer [22]; GSE11259 (n = 9) for 4T1 pri-
mary tumor data [23]; and GSE17563 (n = 3) for osteoclast
precursors treated with human RANKL at different time
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points [24]. All the GEO data were processed and normal-
ized as described above. Affymetrix microarray data for
breast tumors (n = 118) [25] and cancer cell lines (n = 54)
[26] were also compared with the TA area gene expression
profile.
The NearestTemplatePrediction algorithm (NTP)

[27,28] was used to predict the class of a given sample
with statistical significance (false discovery rate, FDR <
0.2) using a predefined set of markers that are specific to
multiple classes (TB interface vs. TA area). Microarray
data from different studies and platforms were sample-
and gene-normalized and then pooled using the Distance
Weighted Discrimination (DWD) algorithm, as described
[29,30]. The significance of expression between the mouse
model and human bone metastases was estimated using
SubMap [31]. Hierarchical clustering of genes and samples
were performed using the Cluster software [32]. Visualiza-
tion was performed with TreeView [32] and Hierarchical
Clustering Viewer from GenePattern [33].

Gene ontology (GO) and pathway analysis
The association of gene signature with known pathways
was determined using gene ontology (GO) [34], pathways
from Kyoto Encyclopedia of Genes and Genomes (KEGG)
[35], and Broad Institute based Molecular Signature Data-
bases (MSigDB) [36]. The enrichment analysis was per-
formed using the TB signature and the GlobalTest
package (Version 4.2.0) [37,38].

Connectivity Map analysis
Gene symbols were mapped to HG-U133A array probes.
They were then used to query the Connectivity Map
database [39].

Results
The TA area resembles the primary tumor
Previously, we transplanted three breast cancer cell lines -
4T1 (highly metastatic), Cl66 (moderately metastatic) and
Cl66-M2 (low metastatic) - onto the calvarial bone of
BALB/C mice [12,14]. Irrespective of the cell lines used,
histochemical analysis of these tumors demonstrated that
they exhibited tumor-induced osteolysis and osteoclast
activation similar to that observed in breast cancer bone
metastasis [12,14]. Metastatic lesions from the osteolytic
tumors were microdissected into two cohorts - TB inter-
face and TA area - and gene expression profile analyses
were performed [12,14]. Herein, we reanalyzed these gene
expression data sets in search of a breast cancer osteolysis-
specific gene signature.
Our reanalysis illustrates that there is little similarity in

gene expression in the TA area samples among the three
cell lines (Figure 1A). This is altogether not too surpris-
ing given that these cell lines were originally derived
from different mouse tumors [16-18]. Consistently, the

sublines Cl66 and Cl66-M2 [16-18], share the most simi-
larity in gene expression (Figure 1A).
The TA area was grown in a non-canonical tumor

microenvironment (i.e., bone instead of breast) and as
such can be considered a metastatic tumor. Nevertheless,
we still expect that the gene expression profile from the
TA area (grown near bone) will resemble previously
reported profiles for the cell lines (grown in the breast)
used in this study, especially given the fact that the pri-
mary tumor and its metastatic tumor have been reported
to have similar gene expression profiles [40]. To confirm
that the TA area expression signature of each cell line
resembles that of primary tumors, we used a public gene
expression profile of tumors grown in the breast from the
4T1 and Cl66 (66Cl4) cell lines [23]. Reassuringly, the up-
regulated genes from the TA area of 4T1 cells significantly
(FDR p < 0.2) predicted primary tumors from 4T1 cells
and the down-regulated genes predicted tumors from
Cl66 using the NTP algorithm (Figure 1B). Since the gene
signature from the TA area of 4T1 cells are reported rela-
tive to Cl66 and Cl66-M2, most of the down-regulated
genes represent those up-regulated in Cl66 and Cl66-M2.
These results demonstrate that the gene expression profile
from our microdissected TA area samples represents that
of primary tumors.
In an effort to translate our findings from our mouse

breast tumor model to human disease, we compared the
gene expression profile from the TA area of our mouse
model to that of primary human breast tumors and cancer
cell lines using the NTP algorithm. Specifically, we com-
pared microarray data from 118 primary breast tumor
samples [25] to the gene expression profile from the 4T1
and Cl66 TA areas. Interestingly, 37 breast tumor samples
(top bar in pink) were significantly associated with 4T1
TA area and 34 breast tumor samples were significantly
associated with Cl66 TA area (top bar in green) with an
FDR p < 0.2 (Figure 1C). Our analysis also predicted that
16 (top bar in pink) and 3 (top bar in green) out of 54
human breast cancer cell lines [26] resemble 4T1 and
Cl66 tumors, respectively (Figure 1D). Again, the down-
regulated TA area genes represent the TA area of Cl66
and Cl66-M2. This analysis predicts that it is possible to
use these 19 human breast cancer cell lines in our mouse
model and that similar results could be obtained.

TB interface-specific gene expression signature
In order to identify genes that are important for the inter-
action of breast cancer cells with the tumor microenviron-
ment, we reanalyzed the gene expression at the TB
interface and compared that profile to the gene expression
profile at the TA area for each of the cell lines. Despite the
expected heterogeneity in gene expression from cell line
to cell line, we were able to identify 934 genes (TB signa-
ture) that were consistently different between the TB
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Figure 1 The TA area resembles matched primary tumors, human breast tumors and cancer cell lines. A. Hierarchical clustering of
median centered gene expression from the TA area of the three cell lines (4T1, Cl66 and Cl66M2). B. The gene expression profile of primary
syngeneic tumors derived using the 4T1, CI66 and 67NR mouse cell lines [23] resembled the TA area in our osteolytic breast cancer model as
predicted by NTP algorithm (FDR < 0.2). Primary tumor samples and prediction significance (FDR < 0.2) are color coded and displayed at the top
of the hierarchical cluster. C. The gene expression profile of primary human breast tumors [25] and D. human breast cancer cell lines resembled
the TA area of either the 4T1 (up-regulated genes from 4T1 TA area, top bar in pink) or Cl66 (down-regulated genes from 4T1 TA area, top bar
in green) of the osteolytic breast cancer model as predicted by NTP algorithm. Prediction significance (FDR < 0.2) for each sample is shown in
the colored bar on the top of the hierarchical cluster. Samples predicted with FDR p > 0.2 do not resemble either the TA area or the TB
interface.
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interface and the TA area. Among these, 359 were up-
regulated and 575 were down-regulated with at least a 2-
fold change at the TB interface across all the three cell
lines. Figure 2A illustrates the top 50 known up- and
down-regulated genes. The top differentially expressed
genes are detailed in Tables 1 and 2.
The gene expression profile of the TB interface was

identified relative to the TA area, and, as such, should be
enriched for transcriptional processes associated with the

TB microenvironment. Indeed, three of the top four genes
up-regulated at the TB interface (i.e., receptor activator of
NF-kB ligand, Rankl; integrin binding sialoprotein, Ibsp;
and matrix metalloproteinase 13, Mmp13) are well estab-
lished as mediators of bone metastasis [7,11-13,15,41,42].
Table 1 highlights the fold-change of these genes at the
TB interface as compared to the TA area (from the Affy-
metrix microarray profiling). Furthermore, we have pre-
viously validated the expression and function of several of
these genes in our mouse model [12-15]. Collectively,
these data strongly suggest that our analysis identified
genes uniquely enriched in and important for the meta-
static bone microenvironment.

The TB microenvironment is different than normal bone
Next, we compared the specificity of our TB specific
gene set against that from the normal bone microenvir-
onment. To this end, we used a public gene expression
profile containing data for normal mouse calvarial bone,
normal mouse ulnar bone and normal mouse mandibu-
lar bone (GSE13563). Our TB signature was compared
against this data set using the NTP algorithm. As shown
in Figure 2B, none of the calvarial or ulnar samples are
enriched for the TB-signature (FDR p > 0.2), though
one of the mandibular bone samples is predicted to be
similar to TB microenvironment. This data demon-
strates that the TB interface is genetically different from
the microenvironment of normal bone.

The TB interface resembles the metastatic bone
microenvironment of human breast cancer
A primary concern with any animal model is whether it
accurately represents human disease. To address this, we
applied NTP using the TB signature and publicly avail-
able gene expression profiles of human breast metastases
(i.e., brain, lung and bone) [22]. As shown in Figure 3A,
60% of the samples from bone metastases were signifi-
cantly predicted (FDR p < 0.2) to belong to the TB inter-
face of our model. Importantly, the gene expression
profiles of metastases from both brain and lung did not
correlate with the TB interface data.
In addition, we also performed the Gene Set Enrichment

Analysis (GSEA) [36] based SubMap algorithm [31] to
predict if the TB interface gene expression profile resem-
bles bone metastases from humans. Here, SubMap analy-
sis with the TB signature was used to compare different
human metastases samples (brain, bone and lung) to the
sample sets from our mouse model (TB interface and TA
area). Interestingly, de novo analysis showed that TB inter-
face samples significantly (FDR < 0.2) resemble bone
metastases samples but not lung or brain samples. TA
area samples also do not resemble any of the metastases
(Figure 3B). Furthermore, the Rankl and Mmp13 genes,
which are up-regulated at the TB interface, are also up-

Figure 2 The TB interface gene signature does not resemble
normal bone. A. Top genes differentially expressed at the TB
interface common to all the three cell lines. Data are expressed in
fold-change relative to TA area: (up-regulated genes (≥2-fold) are
shown in red, and down-regulated genes (≤-2-fold) are shown in
green. B. The NTP algorithm was used to predict whether normal
calvarial bone, ulnar bone and mandiblular bone resemble the TB
interface of our mouse osteoclastic model. Samples predicted with
FDR p > 0.2 do not resemble either the TA area or the TB interface.
Samples and prediction significance are shown on the top of the
hierarchical cluster.
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regulated in the human bone metastases samples. Collec-
tively, these data demonstrate that the osteolytic bone
microenvironment in our mouse model mimics the bone
microenvironment in human breast cancer but not that of
other metastatic microenvironments (i.e., lung and brain
metastases).

The TB interface resembles osteoclastogenesis in culture
The Rankl-mediated differentiation of osteoclast precur-
sors (OCPs) to mature osteoclasts is a key step in breast
cancer-specific bone metastasis [43]. Since Rankl is
among the most highly up-regulated genes at the TB
interface, we suspected that osteoclastogenesis may be
occurring at the TB interface in our mouse model. To
address this possibility, we performed NTP analysis using
our TB signature and a publicly available gene expression
profile from OCPs that have been differentiated into
osteoclasts in vitro [24]. The osteoclasts used in the
aforementioned data set were generated following a two
stage differentiation protocol: OCPs were pretreated with
macrophage colony stimulating factor (M-CSF) and then
treated with human RANKL for 0, 24 or 72 h. Terminal
osteoclast differentiation requires at least 72 h of RANKL

treatment [24]. NTP analysis of our TB signature pre-
dicted that it was similar to OCPs treated with RANKL
for 72 h with a FDR of p = 0.2. Interestingly, our TB sig-
nature did not correlate with either RANKL-untreated
OCPs or those only treated for 24 h (Figure 3C). This
analysis suggests that osteoclastogenesis is occurring at
the TB interface in our model.

Pathways associated with the TB interface
To assess whether mechanisms that govern bone
metastasis in humans are also present in our osteolytic
model, we performed Gene Ontology (GO) [34]; path-
way Kyoto Encyclopedia of Genes and Genomes,
KEGG [44]; and Broad Institute based Molecular Sig-
nature Databases, MSigDB [45] canonical pathway
enrichment analysis. The enrichment analysis was per-
formed using the TB signature and the GlobalTest
package [37,38]. Table 3 shows GO terms significantly
(FDR p < 0.05) associated with our osteolytic model.
Among the GO terms significantly associated with the
TB signature is TGF-b signaling (Figure 4A). Indeed,
the TGF-b superfamily ligand Bmp10 is up-regulated
at the TB interface in all three cell lines (greater than

Table 2 Genes down-regulated in the TB interface and their fold-change relative to the TA area

Gene Affymetrix probe ID Description Fold
change

p-value FDR
p-value

Cnpy1 1437996_s_at Canopy 1 homolog (Zebrafish) -5.0 0.09 0.2

Adora3 1429609_at or
1430482_at

Adenosine A3 receptor -4.7 0.04 0.2

Tmco5 1420341_at Transmembrane and coiled-coil domains 5 -4.5 0.1 0.2

V1ra2 1427675_at Vomeronasal 1 receptor, A2 -4.4 0.07 0.2

Maf 1435828_at Avian musculoaponeurotic fibrosarcoma (v-maf) AS42 oncogene
homolog

-3.9 0.02 0.1

Dll3 1449236_at Delta-like 3 -2.9 0.04 0.2

Krtap16-
1

1425655_at Keratin associated protein 16-1 -2.9 0.01 0.1

Camta1 1433971_at Calmodulin binding transcription activator 1 -3.5 0.01 0.1

Table 1 Genes up-regulated in the TB interface and their fold-change relative to the TA area

Gene Affymetrix probe ID Description Fold change p- value FDR p- value

Ibsp 1417484_at or
1417485_at

Integrin binding sialoprotein 7.2 0.05 0.2

Tnfsf11
(Rankl)

1419083_at or 1451944_a_at Tumor necrosis factor (ligand) superfamily, member 11 5.3 0.006 0.1

Aftph 1426861_at Afitiphilin 4.8 0.05 0.2

Mmp13 1417256_at Matrix metalloproteinase 13 4.7 0.05 0.2

Anks1b 1447464_at Ankyrin repeat and sterile alpha motif domain containing 1B 4.4 0.02 0.1

Zic1 1423477_at or 1439627_at Zinc finger protein of the cerebellum 1 3.7 0.09 0.2

Drd1a 1455629_at or 1456051_at Dopamine receptor 1A 3.6 0.005 0.1

Alpk2 1452478_at Alpha-kinase 2 3.2 0.005 0.1

Smoc2 1415935_at or 1431362_a_at SPARC related modular calcium binding 2 3.2 0.01 0.1
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2-fold in Cl66 and Cl66M2; data not shown). This
would suggest that TGF-b superfamily signaling is
mediated in part by the Bmp10 ligand in our model.
Consistently, negative regulators (Sostdc1 and Cer1) of
the TGF-b pathway are down-regulated at the TB
interface and up-regulated in TA area (Figure 4A).
These data suggest that Bmp-10 mediated TGF-b
superfamily signaling is active at the TB interface but

not in the TA area. Future studies specifically over-
expressing and knocking-down members of the TGF-b
signaling pathway will be required to specifically deter-
mine the role of TGF-b signaling at the TB interface.
Pathways identified using KEGG analysis that were

significantly (FDR p < 0.05) associated with our osteoly-
tic model are shown in Table 4. Interestingly, the Wnt-
signaling pathway is significantly associated with the TB

Figure 3 The TB interface gene signature resembles human bone metastases and osteoclastogenesis. A. The NTP algorithm was used to
predict whether human breast cancer metastases (lung, bone and brain) significantly (FDR < 0.2) resemble the TB interface of our mouse
osteoclastic model. B. SubMap based de novo analysis was used to compare the TB interface and TA area gene expression profiles to human
breast cancer metastases samples. p-values are color coded in the bar. C. The NTP algorithm was used to predict whether the gene expression
profile of the TB interface resembles osteoclasts (72 h RANKL treatment; blue) or OCPs (0 and 24 h RANKL treatment; yellow and red,
respectively). Samples predicted with FDR p > 0.2 do not resemble either the TA area or the TB interface. Samples and prediction significance
are shown in the colored bar on the top of the hierarchical cluster.
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Table 3 GO terms significantly associated with TB signature.

GO ID Alias BH p-value Statistic

GO:0007219 Notch signaling pathway 0.001 2.65e-05 78.7

GO:0007155 Cell adhesion 0.001 3.39e-06 56.3

GO:0022610 Biological adhesion 0.001 3.39e-06 56.3

GO:0007178 Transmembrane receptor protein serine/threonine kinase signaling pathway 0.001 3.63e-06 77.0

GO:0007249 I-kappaB kinase/NF-kappaB cascade 0.001 4.49e-05 93.6

GO:0005164 Tumor necrosis factor receptor binding 0.001 4.49e-05 93.6

GO:0002761 Regulation of myeloid leukocyte differentiation 0.005 0.00052 96.3

GO:0045637 Regulation of myeloid cell differentiation 0.005 0.00052 96.3

GO:0007179 Transforming growth factor beta receptor signaling pathway 0.008 0.0014 93.5

GO:0017015 Regulation of transforming growth factor beta receptor signaling pathway 0.008 0.0014 93.5

Figure 4 Genes involved in pathways related to the TB interface and the TA area and prediction of a therapeutic agent that targets
the TB interface. p-values of pathway-specific genes enriched in the TB signature and in the TA area are plotted in green and red, respectively.
Differential expression of genes in: A. the TGF-b pathway as determined using the GO database; B. the Wnt-signaling pathway using the KEGG
pathway database; and C. the myeloid proliferation and self-renewal pathway [46] using MSigDB. All the enrichment analyses were done using
GlobalTest package software. D. Connectivity Map analysis predicted cyclopenthiazide as a candidate drug against the TB interface gene
signature with 4 instances. All four instances fall in or near the red area (represented by black lines in the bar on the bottom), which suggests
that cyclopenthiazide reverses the TB interface gene expression signature.
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signature (Figure 4B), and it appears to be inhibited.
Indeed, two Wnt pathway antagonists (Wif1 and Sfrp4)
are expressed greater than 2-fold at the TB interface for
all the mouse cell lines (data not shown). Among the
four most down-regulated genes at the TB interface,
relative to the TA area, two are Wnt pathway agonists
(Wnt8b and Wnt2). These data suggest that the Wnt
signaling pathway is active in the TA area but inhibited
in the TB interface. Again, future studies specifically
over-expressing and knocking-down members of the
Wnt signaling pathway may be performed to further
elucidate the role of Wnt signaling at the TB interface
and in the TA area.
We also performed enrichment analysis of the TB sig-

nature using MSigDB canonical pathway database and
GlobalTest package [37,38]. Among the pathways signif-
icantly associated with the TB interface (Table 5) were
myeloid proliferation and self-renewal [46]. Consistently,
two genes (Rankl and Myb) highly expressed at the TB
interface were significantly associated with this pathway
(Figure 4C) [45]. This data further corroborates the
NTP analysis comparing osteoclasts to our TB signature
(Figure 3C) and provides additional evidence for a role
of osteoclastogenesis at the TB interface.

Prediction and validation of therapeutic targets using the
TB signature
To predict a therapeutic agent that specifically targets the
TB interface, we queried Connectivity Map database [39]
using the TB gene signature. Probeset identifiers from
the Affymetrix Mouse Genome 430A 2.0 array were
mapped to Affymetrix Human Genome U133A array.
This was then used to query the Connectivity Map data-
base. Of the 6,100 potential therapeutic candidates, cyclo-
penthiazide had the most highly significant negative
mean connectivity scores. In other words, cyclopenthia-
zide was predicted to reverse the gene expression signa-
ture of the TB interface (Figure 4D). This analysis
suggests that cyclopenthiazide may be a potential agent
against human osteoclastic bone metastasis. Future stu-
dies aim to address this possibility by therapeutically dos-
ing our mouse model with cyclopenthiazide and
monitoring for changes in the TB microenvironment.

Discussion
Mouse Model of the Osteolytic Microenvironment in
Breast Cancer
Animal models that faithfully recapitulate aspects of
human breast cancer-specific bone metastasis provide

Table 4 KEGG pathways significantly associated with TB-signature

KEGG ID Alias p-value BH Statistic

04060 Cytokine-cytokine receptor interaction 7.60e-05 0.003 75.3

01100 Metabolic pathways 8.88e-05 0.003 52.8

05016 Huntington’s disease 9.74e-05 0.003 57.9

04310 Wnt signaling pathway 1.07e-04 0.003 72.0

00061 Fatty acid biosynthesis 1.26e-04 0.003 98.2

04912 GnRH signaling pathway 1.26e-04 0.003 57.6

04020 Calcium signaling pathway 3.59e-04 0.007 67.1

05010 Alzheimer’s disease 4.15e-04 0.007 66.5

04650 Natural killer cell mediated cytotoxicity 5.35e-04 0.008 60.9

04012 ErbB signaling pathway 6.28e-04 0.009 59.9

Table 5 MSigDB pathway signatures significantly associated with TB signature

Alias p-value BH Statistic

INTRINSICPATHWAY 0.0004 0.0007 96.9

BLOOD_CLOTTING_CASCADE 0.0004 0.0007 96.9

HSIAO_LIVER_SPECIES_GENES 0.0004 0.0007 96.9

TPA_SENS_MIDDLE_DN 0.0004 0.0007 96.9

TPA__SENS_LATE_DN 0.0004 0.0007 96.9

TPA__SENS_EARLY_DN 0.0004 0.0007 96.9

HSA04610_COMPLEMENT_AND_COAGULATION_CASCADES 0.0004 0.0007 96.9

BROWN_MYELOID_PROLIF_AND_SELF_RENEWAL 0.0062 0.010 60.2

BROWN_GRAN_MONO_DIFFERENTIATION 0.0121 0.017 38.9

KAMMINGA_EZH2_TARGETS 0.0521 0.068 65.2
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powerful tools to study the complex molecular mechanism
(s) by which breast cancer cells metastasize to and interact
with the bone microenvironment [47,48]. Previously, we
developed mouse models of bone osteolysis for prostate
and breast cancer by implanting syngeneic tumor cells
onto the calvaria of animals using a simple surgical techni-
que. These models produced osteolytic lesions at the TB
interface of the implant region, thereby allowing us to
explore the cellular and molecular interactions between
malignant cells and skeletal tissue [11,12,15]. Because the
tumor cells are implanted directly into the bone microen-
vironment (albeit, at an atypical location for breast cancer
bone metastasis), it was important to confirm that the
interactions observed in our model reflect those observed
between metastatic human breast cells and the bone
microenvironment. Building on our previous work, we
now demonstrate that the TB microenvironment in our
model appears very similar to that of human breast cancer
bone metastases based on gene expression data. As such,
this mouse model can be readily used to study the cellular
and molecular mechanisms driving human breast cancer-
metastasis and osteolysis. Furthermore, this model also
provides a powerful preclinical setting to test cyclopenthia-
zide and other therapeutic agents that specifically target
breast cancer osteolysis.

Gene Expression Profile Analysis
There has been tremendous growth in both the develop-
ment of high-throughput microarray technology to mea-
sure gene expression in tissue and cells and in high-
dimensional methods to analyze such data [49,50].
Together with this, many of the gene expression micro-
array data sets generated from different labs are now
available in open-access databases [21,51], which enables
the comparison and integration of data acquired from
different batches, laboratories and experimental plat-
forms [52]. Importantly, this has opened up opportu-
nities to perform cross-species comparisons of mouse
models and human disease [30].
In the current study, we applied microarray technology

to generate a signature specific to the TB interface of our
mouse model. The robustness of our TB-signature is sup-
ported by the fact that it was derived from a common set
of genes regulated at the TB interface across a heteroge-
neous set of three mouse breast cancer cell lines. Combin-
ing gene expression profiling and molecular pathology, we
demonstrated that the TB interface of our model truly
represents the tumor microenvironment and not the nor-
mal bone microenvironment. Subsequent cross-species
comparative transcriptomic analysis demonstrated that
many human bone metastases samples are associated with
the TB interface in a statistically significant manner.
Importantly, there was no association between our breast
TB interface and human brain or lung metastases.

Together, these data demonstrate that our model specifi-
cally mimics human breast (and not lung or brain) cancer
bone metastases. Furthermore, analysis of a panel of
human breast cancer cell lines predicted 16 that have simi-
lar gene expression characteristics to those of the 4T1
tumors. This suggests that our osteolytic model may be
adapted to study human breast cancer bone metastasis
directly using any of these 16 human cell lines.

Pathways involved in the Breast Cancer Osteolytic
Microenvironment
The TGF-b pathway has a well established role in bone
metastasis [53], and previously we demonstrated the
importance of TGF-b signaling in the TB interface using
our model [12]. Here, we demonstrate that the TGF-b
receptor I is expressed and that the TGF-b pathway is
active in tumor cells and osteoclasts at the TB interface.
On the other hand, TGF-b signaling is not active in the
TA area [12]. Interestingly, the TGF-b signaling ligand
Bmp10 [54] is highly expressed at the TB interface and
TGF-b pathway inhibitors (i.e., Sostdc1 [55] and Cer1
[56]) are suppressed at the TB interface. These data sug-
gest that Bmp-10 is responsible for mediating TGF-b
pathway activation at the TB interface.
The canonical and noncanonical Wnt signaling path-

ways are involved in the formation, growth and develop-
ment of normal bone [57] and bone metastasis [58].
Activation of canonical Wnt signaling through b-catenin
both promotes osteoblast differentiation and inhibits
osteoclast formation and bone resorption [59]. Our
KEGG pathway enrichment analysis showed a significant
association of the Wnt signaling pathway at the TB
interface. Indeed, we observed that Wnt pathway
antagonists - Wif1, which is associated with decreased
bone mineral density [60], and Sfrp4, which is associated
with the suppression of osteoblast proliferation [61] -
were over-expressed at the TB interface. Furthermore,
we observed a down-regulation of the Wnt pathway
ligands Wnt2 [62] and Wnt8b [63] at the TB interface
relative to the TA area. Together these data suggest that
our mouse model exhibits (i) Wnt pathway activation in
the TA area and (ii) increased bone resorption and sup-
pressed bone formation (at least in part through Wnt
pathway activation) at the TB interface.
Osteoclasts are derived from hematopoietic precursor

cells of the myeloid lineage upon CSF-1 stimulation fol-
lowed by RANKL-mediated maturation [43]. In our cur-
rent study, we used a publicly available microarray dataset
from RANKL-differentiated OCPs. Interestingly, we found
that the gene expression profile of in vitro differentiated
osteoclasts (72 h RANKL treatment) was similar to that of
the TB interface. In addition, pathway analysis using the
MSigDB showed an enrichment of the TB-signature in a
myeloid cell line model [46] (Figure 4C). Overall, these
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results suggest that osteolysis is operative at the TB inter-
face of our mouse model.

Prediction of a Therapeutic Agent that Targets the TB
interface
The identification of new therapeutic agents that inhibit
the establishment of tumor cells in the TB microenviron-
ment will benefit patients with breast cancer bone metas-
tases [5]. This will require a thorough understanding of
the mechanisms governing breast-to-bone metastasis to
determine appropriate biological targets for intervention.
In one example, we previously demonstrated that TGF-b
signaling activity may provide such a target as pathway
attenuation in our mouse model led to a reduction in
breast tumor-induced osteolysis [12]. Herein, we used
gene expression profiles from our mouse model and
Connectivity Map database to find therapeutic agents
that target the TB interface, rather than a given pathway.
The advantage of Connectivity Map database is that it

can predict potential therapeutic agents based solely on
gene signatures [39]. In the current study, our query of
Connectivity Map database with the TB signature flagged
cyclopenthiazide in the MCF7 cell line (Figure 4D). This
analysis suggests that cyclopenthiazide has the potential
to inhibit the establishment of breast cancer cells at TB
interface.
Thiazides comprise a class of diuretic agents (of which

cyclopenthiazide is a member) that are traditionally used
to treat hypertension and edema [64]. Although thiazides
have not been widely viewed as therapeutic agents for
bone metastasis, reports abound noting that treatment of
hypertension using thiazides has the beneficial side effect
of strengthening bone [65-69]. Furthermore, Devorak
et al. have demonstrated that the bone strengthening
activity of thiazides results from their direct action on
OCPs, where thiazide analogs are able to directly induce
osteoblast differentiation [70]. These data suggest that
cyclopenthiazide may be a useful agent against osteoclastic
bone metastasis. Future efforts are aimed at validating this
prediction in the osteolytic mouse model. This study
serves as an example of how mouse breast cancer-specific
osteolytic models and gene expression analysis can be
used to identify treatment strategies for human disease.

Conclusions
In summary, we have demonstrated that the TB microen-
vironment in our mouse model of osteolytic breast cancer
metastasis is highly similar to that of human breast can-
cer-to-bone metastases. Furthermore, gene expression
profile analysis of tumors from this model: (i) identified a
TB interface specific gene signature; (ii) revealed signaling
pathways that were differentially activated at the TB inter-
face and TA area; (iii) demonstrated a role for osteoclasts
in metastatic osteolysis; and (iv) predicted a novel

therapeutic agent that specifically targets the TB interface.
These data clearly demonstrate that this mouse model can
be used to study the cellular and molecular mechanisms
driving human breast cancer-to-bone metastasis and
osteolysis. Moreover, this model also provides a powerful
preclinical setting to test thiazides and other therapeutic
agents that specifically target breast cancer osteolysis.
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