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Abstract

showing altered expression in LOH regions.

down-regulated in the tumor samples.

resolution platform.

Background: A major challenge in the interpretation of genomic profiling data generated from breast cancer
samples is the identification of driver genes as distinct from bystander genes which do not impact tumorigenesis.
One way to assess the relative importance of alterations in the transcriptome profile is to combine parallel analyses
that assess changes in the copy number alterations (CNAs). This integrated analysis permits the identification of
genes with altered expression that map within specific chromosomal regions which demonstrate copy number
alterations, providing a mechanistic approach to identify the ‘driver genes..

Methods: We have performed whole genome analysis of CNAs using the Affymetrix 250K Mapping array on

22 infiltrating ductal carcinoma samples (IDCs). Analysis of transcript expression alterations was performed using
the Affymetrix U133 Plus2.0 array on 16 IDC samples. Fourteen IDC samples were analyzed using both platforms
and the data integrated. We also incorporated data from loss of heterozygosity (LOH) analysis to identify genes

Results: Common chromosome gains and amplifications were identified at 1g21.3, 6p21.3, 7p11.2-p12.1, 8g21.11
and 8g24.3. A novel amplicon was identified at 5p15.33. Frequent losses were found at 1p36.22, 8g23.3, 11p13,
11923, and 22g13. Over 130 genes were identified with concurrent increases or decreases in expression that
mapped to these regions of copy number alterations. LOH analysis revealed three tumors with whole chromosome
or p arm allelic loss of chromosome 17. Genes were identified that mapped to copy neutral LOH regions. LOH
with accompanying copy loss was detected on Xp24 and Xp25 and genes mapping to these regions with
decreased expression were identified. Gene expression data highlighted the PPARa/RXRa. Activation Pathway as

Conclusion: We have demonstrated the utility of the application of integrated analysis using high resolution CGH
and whole genome transcript analysis for detecting driver genes in IDC. The high resolution platform allowed a
refined demarcation of CNAs and gene expression profiling provided a mechanism to detect genes directly
impacted by the CNA. This is the first report of LOH integrated with gene expression in IDC using a high

Background

Breast cancer is the most frequently diagnosed malig-
nancy among women. In 2008, an estimated 184,450
new cases of breast cancer occurred in the United States
and during that same year, it is estimated that almost
41,000 women died of breast cancer [1]. The most
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common type of breast cancer is infiltrating ductal car-
cinoma (also called invasive ductal carcinoma) (IDC),
which accounts for approximately 80 percent of all
breast cancer cases. Overall, these numbers reflect a
reduction in breast cancer-related mortality due to
improved screening and therapeutic options [2]. How-
ever, these statistics do not completely depict the inno-
vation in the treatment perspectives that have occurred
in the past decade. Particularly, the genomic era has
been characterized by an exponential increase in the
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number of putative therapeutic targets by defining
subtypes based on molecular profiles [3].

High-throughput molecular profiling resources permit
an almost complete inventory of transcript expression
or DNA copy number alterations in cancer specimens.
However a major challenge in the biological interpreta-
tion of these vast data sets remains. The role of chromo-
somal copy number alterations (CNAs) in the neoplastic
process is well documented. Genome-wide comparative
genomic hybridization (CGH) has been used to profile
IDCs in a large number of studies [4]. These studies
have suggested recurrent gains at 1q31-q32, 8p12, 8q12
and 8q24, 11q13, 17q12, 17q23-q24, and 20q13, recur-
rent losses are observed at 1p, 6q, 8p, 11q23-qter, 13q,
16q, 17p and 22q [5].

With the emergence of array-based CGH (aCGH)
technologies it is now possible to resolve regions of
genomic CN gain and deletion at ultra high resolution.
In addition to improved resolution, we are also able to
incorporate statistical methods to identify novel regions
of loss or gain that correlate to known CN gains or
deletions. We have used Affymetrix 250K Mapping
arrays to profile the genome of 22 infiltrating ductal
breast tumors at a 5.8 Kb resolution. One major advan-
tage of our approach is that the SNP arrays can also
identify loss of heterozygosity events that result from all
genetic events that give rise to LOH, even in the
absence of a CNA. LOH is expected to expose recessive
mutations in critical genes in the genomic regions
defined by the LOH.

Gene expression profiling using microarray analysis
has shown to be a powerful tool to predict tumor beha-
vior. It has been shown that using the gene expression
profile of the tumor, prognosis can be more accurately
predicted than by clinical variables alone. One way to
assess the relative importance of gene expression
changes is to combine complementary analyses from the
same biological samples that assess changes in the phy-
sical genomic profile. This type of integrated analysis
can potentially identify genes within specific chromoso-
mal regions that demonstrate CNA with corresponding
increases or decreases in gene expression, thereby pro-
viding a filter to determine the ‘drivers’ of the CNA.
Recently several reports have described this integrated
approach to the analysis of breast cancer [6-14]

Here we report the analysis of CNA in a series of fro-
zen, micro-dissected IDC specimens. We have used 14
of the same samples to perform transcript expression
analysis. We have then integrated these two high resolu-
tion data sets to identify regions of consistent copy
number alterations and the genes that map to these
regions that simultaneously display transcript expression
alterations. Using assimilation of these two whole gen-
ome analyses approaches, we have identified genes
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showing up or down regulation which map specifically
to regions of copy number gains or losses. We also
incorporated data from LOH analysis to identify genes
showing altered expression in LOH regions.

Methods

Twenty three frozen breast samples were chosen for ana-
lysis. All tumors were obtained under Institutional
Review Board approved protocols. Twenty one of these
were IDCs and 2 were metastatic lymph node biopsies.
All tumors were fresh frozen, micro-dissected and
assessed by a pathologist to assure that over 80% of the
cells present were neoplastic. Clinical features of the
samples are presented in table 1. For gene expression
analysis, 4 normal control samples were obtained from
tissues adjacent to tumors of 2 patients used in the study
and 2 from adjacent tumors obtained from patients not
included in the study (see patient numbers Table 1)

Copy Number Analysis using SNPArray CGH

The Affymetrix GeneChip 250K Mapping Assay is
designed to detect > 250,000 Single Nucleotide Poly-
morphisms (SNPs) in samples of genomic DNA. Array
experiments were performed previously described [15].
Briefly, 250 ng of genomic DNA was digested with the
restriction enzyme STY. The assay utilizes a strategy
which reduces the complexity of human genomic DNA
up to 10 fold by first digesting the genomic DNA and
then ligating STY adaptor sequences onto the DNA
fragments. The complexity is further reduced by a PCR
procedure optimized for fragments of a specified size
range (200-1100 bp). Following these steps the PCR pro-
ducts (amplicons) are fragmented, end-labeled, and
hybridized to the array.

Copy Number Data Analysis

Following the washing staining and scanning the .CEL
files generated from Affymetrix Command Console were
transferred to PARTEK Genomics Suite 6.5. We first
adjusted the raw probe intensities based on the GC con-
tent of the sequence. This correction has been shown to
improve the accuracy of CNA calls [16]. This adjust-
ment was followed by probe-level normalization of sig-
nal intensity while simultaneously adjusting for fragment
length and probe sequences across all samples. The data
were then background corrected using RMA and quanti-
lie normalized. The baseline was generated from the
250K Mapping 270HapMap set obtained from CEPH
(Centre Etude du Polmorphisme Humain) individuals.
Overall quality assessment was performed using Princi-
ple Components Analysis (PCA) (Figure 1). A 2- way
analysis of variance (ANOVA) was then performed on
the data using tissue type and scan date as variables.
Scan date showed significant contribution to the PCA
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Table 1 Clinical information and array platform used for each sample
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Patient Number

Tissue

Diagnosis

Experiments/Arrays

breast tumor

1

2 breast tumor

3 breast tumor

4 breast tumor

4 non-tumor breast
5 breast tumor

6 breast tumor

7 breast tumor

8 breast tumor

9 Lymph node

9 breast tumor
11 breast tumor
12 breast tumor
13 breast tumor
13 non-tumor breast
14 breast tumor
15 breast tumor
16 Lymph node
17 breast tumor
18 breast tumor
19 breast tumor
20 breast tumor
21 breast tumor
22 breast tumor
23 breast tumor
24 breast tumor
25 breast tumor
26 non-tumor breast
27 non-tumor breast

poorly differentiated infiltrating ductal carcinoma
infiltrating ductal carcinoma
infiltrating carcinoma
infiltrating ductal carcinoma
adequate control tissue, T-0400, NOS
infiltrating ductal carcinoma
poorly differentiated infiltrating ductal carcinoma
infiltrating ductal carcinoma
infiltrating ductal carcinoma
metastatic ductal carcinoma to lymph node
infiltrating ductal carcinoma
infiltrating ductal carcinoma and high grade DCIS
infiltrating ductal carcinoma
infiltrating ductal carcinoma
adequate control tissue, T-0400, NOS
infiltrating ductal carcinoma
infiltrating ductal carcinoma
metastatic ductal carcinoma to lymph node
Invasive ductal carcinoma
Invasive ductal carcinoma
Invasive ductal carcinoma
Invasive ductal carcinoma
Invasive ductal carcinoma
Invasive ductal carcinoma
Invasive ductal carcinoma
Invasive ductal carcinoma
Invasive ductal carcinoma
adequate control tissue, T-0400, NOS
adequate control tissue, T-0400, NOS

250K, 133plus2.0
250K, 133plus2.0
250K

250K, 133plus2.0
133Plus2.0
250K, 133plus2.0
250K, 133plus2.0
250K, 133plus2.0
250K, 133plus2.0
250K

250K

250K

250K, 133plus2.0
250K, 133plus2.0
133Plus2.0

250K

250K

250K, 133plus2.0
250K

250K, 133plus2.0
250K

250K, 133plus2.0
250K

250K, 133plus2.0
133Plus2.0
133Plus2.0
133plus2.0
133Plus2.0
133Plus2.0

(see figure 1) and therefore was removed as a batch
effect (figure 1b). The resultant data was then used to
generate CNA for each sample. Detection of CN gains
and deletions was performed using the Genomic

Segmentation algorithm available in PARTEK Genomics
Suite to obtain the different CN state partitions. This
algorithm is similar to HMM segmentation but instead
of searching for regions from a specified list of states,
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Figure 1 Principle Components Analysis of Copy Number Data. Principle Components Analysis PCA is a method of dimensionality
reduction to look for overall trends in the data. In figure 1a it can be seen that “scan date” has had a significant impact on the data implying
that processing of the samples at different times has contributed significantly to the variance in the samples meaning that this significant
contribution may obscure the main effects. Figure 2b shows the PCA plot following batch removal of the effect of Scan Date. A mixed model
ANOVA was used to estimate the effect of scan date and removed from the data.
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the Genomic Segmentation Algorithm finds breakpoints
in the data. This algorithm has several advantages over
HMM. Cancer derived samples are likely to contain dif-
ferent populations of cells, which may not display the
same copy number variations. For this reason, copy
number often will not fall into biologically predicted
bins and occasionally become continuous variables. Seg-
mentation looks for changes in genomic abundance, not
regions of a specific copy number state, enabling seg-
mentation to be highly effective in cases where tissue
heterogeneity can lead to non-integer copy number
intensities. The Genomic Segmentation Algorithm does
not bin the regions into predefined states; instead
regions will be called with a mean at any copy number
state with no redefined normal bin filtered out. The dif-
ferent segments are then defined as regions of locally
stable copy number states and each region is compared
to the expected normal value and assigned a likelihood
of being a CNA using two one-sided t-tests. The resul-
tant p-values are used to filter out regions of change
that are rare or due to noise. Noise is significant in copy
number data so that the algorithm does not consider
normal at a diploid number of 2 but instead is consid-
ered a range of+/-2.3. Therefore, cutoff values of 2.3 for
gains and 1.7 for losses were used and amplifications
were defined as states exceeding 4.5 copies

We specified that each segment must contain a mini-
mum of 10 consecutive filtered probesets. The 250K
Mapping array has SNP probes placed average distance
of 10 KB between probes therefore the copy number
segments we are identifying are a minimal size of
100 KB, Although, in practice, this will not be the case
on every chromosomal region because the marker den-
sity varies significantly across the genome. A threshold
p-value of p = 0.001 for two adjacent regions having sig-
nificantly different means using a two sided t-test was
implemented. The signal to noise ratio was set at 0.3
and is estimated by the calculation of local estimates of
standard deviation to determine if probes differ from
neighboring probes across all samples. This estimate
determines how robust the algorithm will be when
applied to samples with highly variant genomes. The
signal to noise setting is the minimum difference
between two potential consecutive settings divided by
the chromosomal variant estimate. We specified that the
CNA had to occur in at least 5/24 samples.

LOH analysis

For analysis of LOH events the raw image data from the
24 samples was incorporated into Genotyping Console
(Affymetrix Inc., CA, USA) which automatically gener-
ates genotype calls using the Bayesian Robust Linear
Model with Mahalanobis (BRLMM) distance classifier
algorithm http://media.affymetrix.com/support/
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technical/whitepapers/brlmm_whitepaper.pdf. A geno-
type and confidence score is assigned for each observa-
tion. The resultant .CHP file contains calls (AA, BB or
AB) for each SNP probe set. The .CHP file was then
imported into PARTEK Genomics Suite ver 6.4. PAR-
TEK analysis of LOH uses a Hidden Markov Model
(HMM) to find regions that are most likely to be loss
events based on the genotype error and the expected
heterozygous frequency at each SNP. We used an
unpaired analysis where the probability of observing a
heterozygous SNP in a region of LOH is the genotype
error rate. In a region without LOH, the probability of
observing a heterozygous SNP is estimated using the
observed frequency from the baseline samples. The het-
erozygosity rate (HET rate) is calculated as the number
of AB calls/total number of calls, therefore low het rates
imply LOH. By default the frequency of heterozygous
calls in a normal region is .3. We used a het rate of
<0.07 for detecting LOH events. The allelic ratios for
the SNPs at each reported event were graphed and
visually examined and any reported regions that were
found in areas of poor probe density or close to centro-
meres were identified. We report only those LOH events
which occurred in 3/24 samples. The analysis limits the
number of markers on the LOH fragment to a mini-
mum of 10. The LOH data was then assimilated and
compared with copy number and with gene expression
data.

We also analyzed the data using PennCNV [17] for
comparison. This algorithm generates data listing 6
states of copy number events. A log R ratio (LRR) which
is a measure of normalized and total signal intensity is
calculated along with the B-allele frequency which is a
measure of normalized allele intensity.

Gene Expression Analysis

RNA obtained from the tumors and accompanying nor-
mal tissues was used to prepare cRNA for hybridization
to the Affymetrix U133Plus 2.0 oligonucleotide arrays as
described previously [15]. This analysis included 16 IDC
samples and 4 control breast tissues. All procedures
were carried out as specified by the manufacturer. Fol-
lowing hybridization to the U133Plus 2.0 arrays, the
resultant raw CEL files were transferred to PARTEK
Genomics Suite version 6.5 and normalized using
GCRMA with quantile normalization to correct for var-
iances in distribution patterns and GC nucleotide con-
tent. After performing the normalization, a PCA was
used reduce dimensionality and to examine whether
clusters could be explained by the first few principle
components, which are ordered by the Eigen values of
the covariance matrix. Analysis of Variance (ANOVA)
was then performed on the entire data set. Figure 2
shows the histogram of variance and the PCA plot of
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Figure 2 PCA and ANOVA of Transcript Expression Data. Analysis of Variance (ANOVA) was performed on the entire data set and a gene list
was generated Figure 2a shows the histogram of variance indicating that the major variance was due to the differences between tumor and
normal samples and scan date variance is almost the same as that attributed to type 1 error. PCA was used reduce dimensionality and to
examine whether clusters of tumors separated from normal samples or if other variables, such as scan date contributed to the variance. It can
be seen that the tumors are spread throughout the three dimensional space of the plot while the normal samples form a tight cluster at the
base of the the plot on the right. Concordance of the clustering structure was observed between the two dimensionality-reduction procedures
(data not shown). Analysis of Variance (ANOVA) was then performed on the entire data set and a gene list was generated using an FDR of 0.05,
2-fold expression changes and a p-value for fold change of 0.05. Figure 2 shows the histogram of variance and the PCA plot of the effect of the

scan date on the data.

Sources of Variation

Factors

the effect of the scan date on the data. A gene list was
then generated using an FDR (Benjamini Hochberg) [18]
of 0.05 and a 2 fold cut off for fold change. Figure 2
shows the histogram of variance and the PCA plot of
the effect of the scan date on the data.

To assess the possible functional connections
between the differentially expressed genes (DEGs), a
pathways analysis, which assesses statistically overre-
presented functional terms within a list, was conducted
using Ingenuity Pathways Analysis (Ingenuity Systems®)
(IPA). The probability that a specific set of genes has a
significant number of members in a canonical pathway
is assigned a p-value which is calculated by Fisher’s
Exact Test (right tailed). The p-value indicates the
probability of observing the fraction of the focus genes
in the canonical pathway compared to the fraction
expected by chance in the reference set, with the
assumption that each gene is equally likely to be
picked by chance.

Integration Analysis

Using PARTEK Genomics Suite, an analysis was per-
formed on 14 samples with complementary datasets
from both SNP-CGH and expression profiling. Each
sample is analyzed for overlapping events in copy
number and gene expression analysis. For the Affyme-
trix GeneChip U133A platform, an FDR of 0.05 and
2-fold expression changes and was used evaluate either
up- or down- regulation of gene expression. Copy
number alterations were defined as <1.3 (loss) or >2.3
(gains). Concordant changes in SNP-CGH and gene

expression as defined above (i.e. chromosomal gain
with up-regulation of gene transcript and vice versa)
were calculated for each tumor. For an overlay event
we specified the loss/under-expression (or gain/over-
expression) had to occur in at least 3 of the 14 over-
lapping data sets.

Results

Copy Number Analysis

Following Genomic segmentation to obtain the different
CN state partitions, the gains/losses and CN amplifica-
tions were identified. The CNA was required occur in at
least 5/24 samples. Our final data summarization used
cutoff values for copy numbers of 1.7 or less for losses
and 2.3 or greater for CN gains. Figure 3 shows the
ideogram of the copy number gains and losses. The
length of each bar represents average copy number.
Using these criteria, we found 6011 discreet regions of
CN gains (3903) and losses (2018). Virtually every chro-
mosome has regions of CNA.

Amplifications were defined as the more than 4.5
copies. A 5 MB amplification at 13q34 (13:108610073-
11406382) had 9-14 copies in 5-6 samples. Another 7.3
MB amplification was detected at 11q13 (11:68276247-
70252778) in 5-10 samples with copy numbers ranging
from 5-7. Other amplified regions included 1p12, 1p13,
1q44, 4q22.3, 5p12, 5p15.33, 6p21.1, 6p24.3, 7p15.2,
8p23.3, 8q12.1, 8q21.3 8q23.3, 8q24.11-q24.13, 9p24,
10p13, 10p14, 10p15.1-p15.3, 11p13, 12p13.31, 12q14.1,
15q12, 15q14.1, 15q24.1, 15q26.3, 17q12, 18p11.32,
20p12.3 and Xpl11.3.
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Figure 3 Copy Number Alterations in Infiltrating Ductal Carcinoma. Copy number data was generated using Genomic segmentation to
obtain the different CN state partitions. The baseline was the HapMap 270 set of samples. The gains/losses are shown in red and blue
respectively for each chromosome. Each copy number event was required occur in 5/22 samples. The cutoff values for copy numbers of 1.7 or
less for deletions and 2.3 or greater for CN gains. The length of each bar represents the average copy number across all samples. The range is

19 20 21 22 X

High frequency gains were detected at 5p15.33,
8q21.11, 6p21.3, 7p11.2-7p12.1, 8q24.3 and 1q21.3. The
regions with gains or amplifications in the largest num-
ber of tumors, defined as the minimal region of overlap,
are often small and flanked by adjacent regions where
the CN gain region is extended in size in a fewer num-
ber of samples. This is shown in figure 4a where a small
amplification of 4.9 copies on chromosome 8q21.11 was
detected in 19 samples and this region is surrounded by
an amplification or gain in a fewer number of tumors.
Another region of amplification on chromosome 8q24.3
(8:142253102-142791192), was .53 MB in size with an
average copy number of 5 in 17/24 tumors. This repre-
sents the most frequently amplified region in a much
larger region of CN gain extending from 8q24.22-q24.3
(8:137928635-146264219) an 8.3 Mb region in 5-17/24
samples. A similar situation exists for a copy number

gain on chromosome 1q32 in18/24 tumors. The .2 Mb
gain (1:199059280-200016637) is extended to a 15 Mb
(1:198105319-213121513) contiguous gain in 5-18
tumors. A frequent gain was detected at 17q22-q23.2
(17:53263663-57020608) but the smallest region of over-
lap was defined at 17q23.3 (56639372-56770843) in 14
tumors. This analysis demonstrates the utility of the
SNP array in pinpointing small regions of CN gain at a
high resolution.

A region not commonly associated with breast can-
cer was identified showing amplification or gain in the
largest number of tumors. There were two minimal
regions of overlap in 19 tumors at 5p15.33 while
the entire gain extends to the 5p15.32 as shown in
figure 4b.

In general, fewer tumors carried common copy num-
ber losses. We set the homozygous deletion rate at <.5
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Figure 4 Minimal Regions of Overlap in Copy Number. A amplified region on chromosome 8q21.11 is shown in 4a. The minimal region of
overlap has an average of 4.9 copies in 19 samples. This small region is 13 KB (8: 75237536-75250960) and is surrounded by an amplification or
gain in 7-18 samples. This extended region is 90 KB and begins at 8p11 and extends to the telomere (8:41489634- 133808163). 4b shows an
novel copy number region of gain at 5p15.33 where two minimal regions of overlap were detected. The first extends 101 KB (5:1836735-
1938410) and the second is 19 KB (5:3180419-3199829) while the entire amplified region extends 5.6 MB from 5p15.33-p33.2 (5:165712-5779631).
The bottom trace shows the SNP intensity plot for the region. The larger dots are smoothed data and the fine dots are unsmoothed. The first

average copy across samples. Using this approach we did
not detect any homozygous deletions. Using the
PennCNV algorithm, several were detected, however,
they were detected in fewer than 2 samples and in most
cases less than 10 SNPs were mapped to the fragments.
Chromosome 11q22.3 showed a homozygous deletion in
tumors 21 and 24 but no genes map to the region.
Another deletion was detected at 11q23.1 was detected
in tumors 1 and 3, however this fragment was only 15
KB and again, no genes were mapped to the region.

Other homozygous deletions were detected at 11q14.2,
12q21.31 and 3p24.1. The small size and few SNPs on
the fragments indicates that these may be artifacts of
processing.

The highest frequency loss in 14/24 tumors at 11q23
(11:116268571-1116440064) is the minimal region of
overlap and is extended to a larger region by the loss in a
fewer number of tumors. Other regions of frequent
regions of loss included; 1p36.22, 9q21.32, 11p13, 15q14,
and 22q13.2 in 13-14/24 tumors. Loss at 8p is commonly
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identified and our analysis defined 3 large regions of loss
including 8p23.3-p23.2 (8:716948-4795012), 8p23.3-
p23.1 (8:4845891-9209368) and 8p23.1-p21.1 (8:9277842-
30642261). These large contiguous regions also contained
smaller minimal regions of overlap. The copy number
data is available in Additional file 1, Table S1.

The CNAs that were detected were compared to copy
number variant regions (CNVR) reported in The
Database of Genomic Variants. http://projects.tcag.
ca/variation/ng42m_cnv.php. In many cases CNVRs
map into our larger regions of copy number alterations
but do not constitute the entire CNA. In one instance,
however, a copy number gain detected at chromosome
4p16.1, (14:9690464-9733791) overlapped significantly
with a reported CNVR 1819.4 (14:9708917-9843664).
No further information on this CNVR is available as it
was not further investigated using the HapMap 470
samples therefore there are no estimates of copy
number available at this loci.

Loss of Heterozygosity LOH

The allelic ratio plots for the SNPs at each reported
event were visually examined and any that were found
in regions of poor probe density or close to centromeres
were excluded. For example, regions on 16p11.2 and
16q11.2 bordered the centromere and were categorized
as amplified with LOH, however visual inspection
suggested that these were SNP-poor regions and these
were excluded from further analysis. A similar situation
existed at 8ql1.1 where there was a paucity of SNPs in
the region making it difficult to validate the LOH event.
The regions of LOH that met our criteria of arising in
at least 3 samples, with fragments containing > 10 LOH
markers and greater than 20 KB in length are shown in
figure 5 where each horizontal bar represents a single
tumor. Several tumors show whole chromosome LOH,
for example tumor 1 has whole chromosome LOH on
chromosomes 1, 6 and 17. Tumor 19 also shows LOH
of all chromosome 17 while tumorl5 shows loss of the
q arm. A frequent LOH event on chromosome 12q24.31
(12:121425794-122926070) is shown in detail in figure 6.
The allelic ratio plot shows the migration of the allelic
ratio away from the central line 0 which represents AB
calls towards the -1 and 1 grid lines which represent
AA and BB calls. Additional file 2, Table S2 lists all the
LOH events and details regarding the samples numbers
and fragment length.

Intregration of Copy Number with LOH

The assimilation of copy number and LOH data deter-
mines if regions of LOH overlap with regions of deletion
or amplification or are copy neutral events. The criteria
defined above for selecting LOH and copy number
regions were also used in this analysis. Our integration
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analysis determined that most LOH events were copy
neutral. Deletions with LOH were detected only on sev-
eral regions of the X chromosome and a region at chro-
mosome 8pl2. No regions of amplification accompanied
by an LOH event were detected. The integration plot is
shown in figure 7, with the length of the bars represent-
ing the number of tumors carrying the LOH event

We compared the data from PARTEK and PennCNV.
Copy number and LOH analysis using PennCNV gener-
ally called fewer regions of CNA or LOH as previously
reported [19]. The states defined by the PennCNYV algo-
rithm were generally similar to those defined by PAR-
TEK so that (state 1) 0 copies, corresponded to
homozygous deletions, (state 2) 1 copy, corresponded to
LOH with deletion, (state 5) 3 copies single copy dupli-
cation defined in PARTEK by CN gain with LOH, and
(state 6) 4 copies double copy duplication, also defined
in PARTEK as CN gain with LOH. The PennCNV data-
set is available in Additional file 3 Table S3. As a final
output, it does not report copy neutral LOH which is
important in studies of cancer. The algorithm has been
designed to work primarily with Illumina Bead Studio
data and is difficult to compare multiple tumors using
Affymetrix data.

Gene Expression
Following ANOVA, a gene expression difference (GED)
list was generated using an FDR of 0.05 and expression
alterations >2-fold increases or decreases. Figure 2b
shows the PCA analysis of the IDC compared to the
control samples. It can be seen that the controls from a
very discreet cluster while the tumors are more spread
across the different dimensions of the plot. Figure 2a
shows a plot of the various sources of variance asso-
ciated with ANOVA of the data and it is notable that
the major source of variance is attributable to the differ-
ences between the two tissue types and the variance
associated with the scan date is negligible and very close
to the type 1 error. The analysis provides a list of 918
genes with altered expression between the tumor and
control tissues. The majority of the alterations were 741
genes with decreased expression in the tumor tissues.
The genes showing the highest levels of decreased
expression were GPD1, KLB, SCL19A3, GLYAT,
DGAT?2, HSPB7, LVRN, CRYAB, S100B and MRAP. Of
the 177 genes displaying increased expression those
showing the highest expression included; ERBB3,
KRT18, RAB25, PRSS8, SPINT2, BSPRY, CD24, SOX4,
CLDN3 and EPB41L5. The entire DEG list is available
as Additional file 4, Table S4. The raw data files for
both SNP arrays and expression arrays are available in
GEO accessions GSE22839 and GSE22840.

The data was then analyzed using IPA version 7.5.
The canonical pathway that had the largest number of
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Figure 5 LOH regions. The plot shows LOH detected across the genome in 22 IDC samples. The genotype calls were generated using the
BBRLMM algorithm. HMM was used to isolate those regions with a high probability to be loss events based on the genotype error and the
expected heterozygous frequency at each SNP. The tumor numbers have the largest numbers closest to the chromosome. It can be seen that
tumor 1, the furthest from each chromosome shows many regions of LOH including whole chromosome allelic loss of 1,6 and 17.
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genes from our data contributing to it (18/158 mem-
bers) (p = 1.6E-05) was the PPARa/RXRa Activation
shown in Additional file 5, Figure S1. It can be seen
that all of the members of this pathway that are target
genes from our gene expression analysis show
decreased expression in the tumor tissues (shown in
green) indicating that the pathway is down-regulated.
The second canonical pathway identified by our data
was Prolactin Signaling followed by the PDGF Signal-
ing Pathway.

Copy Number and Gene Expression Integration Analysis

Using PARTEK Genomics Suite, an analysis was per-
formed on 14 samples with complementary datasets
from both SNP-CGH and expression profiling. Each
sample is analyzed for overlapping events in copy num-
ber and gene expression analysis. For the Affymetrix

GeneChip U133A platform, signal log ratios (SLR) of
gene expression were generated for each tumor via com-
parison normal tissues as a group. Copy number altera-
tions were defined as <1.3 (loss) or >2.3 (gains).
Concordant changes in SNP-CGH and gene expression
as defined above (i.e. chromosomal gain with up-regula-
tion of gene transcript and vice versa) were calculated
for each tumor. For an overlay event we specified the
loss/under-expression (or gain/over-expression) had to
occur in at least 3/14 overlapping data sets. One hun-
dred and twenty nine genes showed altered expression
levels and mapped to regions that showed correspond-
ing chromosomal loss/gain. The results are shown in
table 2 where copy number regions are shown with cor-
responding genes showing expression differences which
have been detected in >5 tumors. The entire dataset is
presented in Additional file 6, Table S5. For each tumor
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Figure 6 Allelic Ratio Plot of 12q24.3. The upper section of the figure plots the number of samples displaying LOH. The lower part of the
diagram shows the allelic ratios plotted for each of the tumors defined by the colors shown above the plot. It is notable that the spots migrate
towards 1 (AA calls) and -1 (BB calls) when the frequency of the LOH is increased, and as the frequency decreases, the more spots are plotted
towards 0 (AB calls).

showing a CNA, individual expression values expression value. ‘Negative numbers indicate that the

were examined and are presented in Additional file 6,
Table S5 where the expression values are converted to
standardized gene expression values for normal and
tumor samples. These values were obtained by subtract-
ing the probe set average across all tumors from each

gene expression value is lower than the average and
positive ones indicate higher expression.

A region showing frequent gain was detected at 1q32.1
and a single gene (PCTK3) showed increased expression
in 7/14 tumors. This gene mapped to region defined by
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Figure 7 Integration of Copy Number and LOH. The integration was performed using the data generated using the criteria outlined for LOH
and CNA described in the Materials and methods. The length of the bars indicates the number of samples. The LOH events close to the
centromeres of chromosomes 8, 16 and X are the most frequent LOH events but not certifiable due to few probes in those regions. Copy
number loss with LOH is detected at 8p12, Xp24 and Xp25. The other detected regions are copy neutral events.
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Table 2 Integration of copy number with gene expression data in > samples

Cyto-  Gene Symbol p-value Fold- length Copy Number Location Copy # Mean copy

band Change (bps) state Samples #
1921.2 SV2A 0.000790217 2.35 1228718 ¢hr1.147361719.148590436 gain 6 293
1921.2 LOC730631 0.000454988 2.12 1228718 ¢hr1.147361719.148590436 gain 6 293
19213 S100A14 0.00103078 1349 145569 chr1.151766410.151911978 gain 6 327
1922 MUC1 3.86E-05 5.12 1636566 chr1.152807193.154443758 gain 6 279
1g23.2 IGSF9 1.70E-06 6.69 82022 c¢hr1.158101327.158183348 gain 5 2.75
19252 TDRD5 5.76E-08 249 76749 ¢hr1.177855168.177931916 gain 6 312
1932.1 PCTK3 0.000647034 2.12 57388 ¢chr1.203711819.203769206 gain 7 212
1941 CAPN8 5.28E-05 7.01 1214960 ¢hr1.221390196.222605155 gain 6 2.76
1p34.1 ST3GAL3 0.00102362 -3.50 52158 ¢hr1.44004795.44064981 loss 5 1.14
1p13 PRRG4 1.96E-07 461 129389 ¢chr11.32799917.32929305  gain 7 342
1Mp11.2 PACSIN3 0.000775686 211 271627 chr11.4712244547394071  gain 5 348
14924.1 WDR22 546E-09 -2.06 2588491 chr14.68430400.69090879  loss 5 1.49
15023 Hs.655686 5.25E-06 11.48 1692519 chr15.68908327.69703941  gain 5 2.58
15023 Hs.655868 0.000235216 3.68 504419 chr15.69797809.70302227  gain 6 261
15924.1 NEO1 0.00012075 211 843811 c¢hr15.70912294.71756104  gain 7 337
15926.1 1SG20 1.92E-06 3.16 249550 chr15.86957456.87207005  gain 6 2.84
15926.1 FAM1748 0.000142779 4.64 127979 ¢hr15.90953124.91081102  gain 5 3.50
15926.1 FAM1748 4.31E-07 3.39 127979 ¢chr15.90953124.91081102  gain 5 3.50
5p15.33 PLEKHG4B 0.000905578 2.33 352294 chr5.165712.518005 gain 5 3.26
6p24.3 TFAP2A 0.000412702 2892 61721 chr6.10487807.10549527 gain 7 442
8g23.3 TRPS1 0.000200736 498 1434519 chr8.116140217.117574735 gain 5 365
8p22 DLCI 7.07E-05 -6.72 6333283 chr8.11614644.13945615 loss 6 149
8p21.3 GFRA2 1.72E-10 -2.18 1541653 ¢hr8.20297943.21825688 loss 6 1.38
8p21.2 EBF2 5.96E-08 -4.59 61487 ¢chr8.25917207.25978693 loss 5 1.46
8p21.2 AK057935 0.000340165 -8.34 798818 ¢hrB8.26553995.26777510 loss 6 147
8p12 Hs.654357 3.39E-06 -3.64 1469584 chr8.2912412830492208  loss 5 148
8g12.1 SDR16C5 0.00075179 797 689931 ¢hr8.56762001.57376988 gain 5 299
8p23.1 ANGPT2 2.01E-06 -6.11 168439 chr8.6342789.6444367 loss 5 1.45
8p23.1 DEFA1 /// DEFA3 /// 6.87E-05 -3.05 1406779 chr8.6789275.6889920 loss 6 1.40

LOC728358

8g21.13 CHMPAC 0.000234239 16.46 5693518 chr8.81713285.87406802 gain 5 3.22
Xq22.3 Hs.715776 2.99E-07 -9.24 16623258 ¢chrx.102883803.119358070 loss 5 1.52
Xq22.3 LOC100130886 /// TMEM164  0.000421953 -2.37 16623258 ¢chrx.102883803.119358070 loss 5 1.52
Xq24 GLUD2 6.93E-06 -265 2753995 chrX.119455338.122209332 loss 5 151
Xq25 XPNPEP2 6.87E-08 -3.81 7869983 chrX.128566292.129127918 loss 5 1.51

the larger region of CN gain that was detected in a fewer
number of tumors and not the frequently amplified
region defined by the occurrence in 18/24 tumors
defined by the copy number analysis. Interestingly,
MUCI also showed a 5-fold increase in expression and
mapped to a region on chromosome 1q22 (1: 145583178-
160740537) in 16/24 tumors in the copy number analysis
and 6/14 tumors in the integrated analysis.

Frequently deleted regions defined by copy number
analysis included 8p where 3 large contiguous regions
were identified. With the incorporation of expression
data, the regions are further refined, for example loss at
8p23.3 (8:21953232-27595453) was detected in 5-14/24
tumors used for the integration analysis. Three genes

mapping to within this region included 2 unknown ESTs
and the EBF2 gene which showed 4.5 fold decrease in
expression levels. This region contains 873 genes. Three
genes, DEFA1, DEFA3 and LOC728358, map to a refined
region in 8p23.1 (8:6789275-6889920) and the ANGPT2
gene maps an adjacent region (8:6342789-6444367) and
all show decreases expression in the tumor samples. The
DCL1 gene showed a 6.7 fold decrease in expression and
maps to region showing copy number loss in 6/14
tumors at 8p22 (8.11614644-13945615). This is the only
gene showing decreased expression out of a possible 311
mapping to this region of 8p22 demonstrating how this
approach can highlight potential tumorigenesis driver
genes from large regions of CNA.
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Table 3 Integration of LOH and Gene Expression Data.
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Cyto Copy Number Location Gene p- Fold- # Samples with # Mean of Samples State
band Symbol value Change Copy-Neutral LOH Sampleswith with loss and LOH
loss and LOH
1p13.2  chr1.111970656.112340133 Clorf183 8.2E- -2.22 2 1 1.53 CN-LOH
06
1p13.2  chr1.111970656.112340133 KCND3 1.0E- -3.75 2 1 1.53 CN-LOH
03
1p22.2 chr1.89334399.89586461 GBP4 5.1E- -2.13 2 1 1.57 CN-LOH
06
6p21.32 chr6.31698877.32259200 HSPATA /// 14E- 412 4 CN-LOH
HSPA1B 03
12924.12 chr12.109960751.111501415 ALDH2 38E-  -1138 4 CN-LOH
05
16g12.1 chr16.45091910.46733079 PHKB 5.0E- -2.06 7 CN-LOH
04
16922.1 chr16.67206157.67268948 CDH3 5.0E- 6.72 2 1 144 CN-LOH
04
164221 chr16.67268948.67273787 CDH3 5.0E- 6.72 2 1 149 CN-LOH
04
16G22.1 chr16.67273787.67334399 CDH3 5.0E- 6.72 2 1 149 CN-LOH
04
16G22.1 chr16.67273787.67334399 CDH1 41E- 4324 2 1 149 CN-LOH
09
16922.1 chr16.67334399.67396764 CDH1 41E- 4324 2 1 149 CN-LOH
09
1991341 chr19.57065800.60767150 ZNF331 12E- 434 3 CN-LOH
04
1991341 chr19.57065800.60767150 MYADM  75E-  -3.21 3 CN-LOH
07
229121 chr22.26560066.27655923 TTC28 9.8E- -5.33 3 CN-LOH
08
229121 chr22.26560066.27655923 XBP1 34E- 450 3 CN-LOH
04
Xq24 chrX.118031377.119358070 LONRF3 24E- -6.96 0 3 148 Loss
05 with
LOH
Xg25 chrX.123198797.123430595 0ODZ1 6.2E- -8.12 0 3 147 Loss
06 with
LOH
Xg25 chrX.128574610.129127918 XPNPEP2 4.6E- -333 0 3 148 Loss
07 with
LOH

The novel gain identified at 5p15.33 contained a single
gene where the 3’ end mapped -into the highest region
of overlap and the 5" end into the region showing gain
in fewer samples. PLEKHG4B (pleckstrin homology
domain-containing family G member 4B) is a member
of the pleckstrin homology domain-containing family
members which stimulate the exchange of guanyl
nucleotides associated with a GTPase of the Rho family
http://www.ncbi.nlm.nih.gov/gene.

LOH and Gene Expression

The number of genes mapping to regions of LOH was
accomplished by combining the data from the LOH and
the raw gene expression data. Fifteen genes were found
to map to regions of LOH that were detected in >3

samples. Table 3 shows the results of this analysis. Each
individual expression value was confirmed using the
standardized gene expression values described above.
The only chromosome where deletion was accompanied
by an LOH event was on the X chromosome, several
genes showing down-regulation map to Xq24 and q25.
The CDN1 and CDN3 genes on 16q22 showed copy
neutral LOH in 2 samples and loss with LOH in another
sample, however both genes demonstrated high levels of
up-regulation. Examination of the individual expression
level for the tumors showing the LOH confirmed that
the expression levels were higher than the controls in
these tumors. A similar situation was noted on 6p21.32
where the HSP1A1 gene shows copy neutral loss in
4 tumors but has increased expression levels.
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Discussion
Copy Number and Gene Expression Integration
We have conducted a genome-wide survey of infiltrating
ductal carcinoma using both transcript expression ana-
lyses, as well as copy number and LOH analyses and inte-
grated the findings from these platforms. Several similar
studies have recently been reported as the utility of this
approach is becoming recognized. This type of analysis
permits global identification of DNA copy number altera-
tions that lead to specific mRNA transcript-associated
alterations and highlights those genes that are dynamic
participants in the inception and preservation of the
malignant phenotype. Several of these have used plat-
forms with less resolution than reported here [7-13]. One
report that most closely approximated our methodology
used the higher resolution 500K Mapping array set and
Affymetrix U133A and B arrays to monitor gene expres-
sion [6]. Although our findings for CGH overlapped with
the findings of Haverty and colleagues, the genes showing
concurrent gene expression alteration did not always
overlap. The reason for the lack of concordance can be
attributed to several factors. The probe sets defining
genes on the Affymetrix U133 set were reformulated in
many cases for the design of U133 plus2 array, to adhere
more closely to the increased annotation available in
public databases such as RefSeq. The differences may
also be the different analysis algorithms used by the two
groups to define copy number and gene expression.
Gains on the q arm of chromosome 1 are more fre-
quently reported, but the exact locations vary signifi-
cantly between different studies. Yao et al [10] reported
a 1.74 MB gain on 1q21 (1:148592826-150329171), Chin
et al [11] reported two regions of gain on chromosome
1g21 (1:144220000-145870000, 153290000-154190000).
Leary et al [8] reported a common CN gain at
(1:149032752-149156996). Vincent-Salmon et al [9]
using BAC-based array CGH reported several CN gains
of 1q21 in ductal carcinomas in situ. Haverty et al [6]
reported two regions of gain (1:142593000-14288000,
1:155952000-156708000). We detected a single region of
copy gain on 1q21 which occupied 23 MB contiguous
region from 1q21.1-q24.1 (1:143388732-166837735)
which included all of the above reported regions, how-
ever the most frequently gained region was a .13 MB
region (1:149604803-149739289). No genes with expres-
sion changes mapped in this smallest region of overlap,
however four genes with concurrent increased expres-
sion were SV2A, LOC730631, S100A14 and MUCI.
These are the only genes with increased expression
from a total of 1663 genes mapping to this region. None
of these genes were reported by other studies to show
concurrent increased expression.
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Chromosome 8q24 is another frequently amplified
region in breast cancer. Naylor et al [20] using BAC-
based aCGH reported that this amplicon contained at
least 2 distinct regions. Haverty et al reported 11 dis-
creet regions of copy number gain, while Chin et al [11]
reported 5. We found 3 regions of copy number gain,
and three genes showing concurrent up-regulation of
expression; FAMS83 H, RECQL4, AND KIFC2. RECQL4
has been associated with increased metastatic potential
in breast tumors [21]

Haverty et al [6] reported several regions of amplifica-
tion at 11q13, this was also one of the most frequently
amplified regions in our data, however genes mapping
to this region did not show alteration in expression
using our analysis. Chromosomal gain at 1723 has
been reported by several groups [6,7,10,20] and the
regions do vary somewhat between studies as do the
genes showing concurrent overexpression. The current
analysis did not identify any genes within the region
with gene expression alterations.

Our analysis did not detect any homozygous deletions
although a few infrequent ones were detected by the
PennCNV analysis, the regions were very small with few
SNP markers. Loss on the p arm of chromosome 8 has
been frequently reported in breast cancer [22].
Decreased expression of DLC1 at 8p22 in a region with
copy number loss was identified, a finding supported by
Haverty and colleagues [6]. Loss of expression due to
chromosomal deletion or promoter hypermethylation
has been shown in breast tumors. Initial studies towards
understanding the function of DLC1 were based on
overexpression of the protein in different carcinoma cell
lines, demonstrating inhibition of cell proliferation,
migration and invasion [23]. Evidence supporting a
tumor suppressive function of DLC1 was provided by
Xue et al [24], who showed that knockdown of DLC1
promoted carcinogenesis of liver cells in an in vivo
model. Others have shown that DLCI1 loss is sufficient
to promote a more migratory behavior of breast cancer
cells [25]. Down regulation of ANGPT2 expression and
a loss at 8p23.1 is also supported by Haverty and collea-
gues [6]. Over expression of this gene has been shown
to degrade tumor vasculature in vivo [26] so a loss of
function would be beneficial for tumor growth.

LOH

The emergence of SNP arrays offer the ability to define
simultaneously the copy number changes and LOH
events occurring in a tumor, at high resolution and
throughout the genome. As such, they offer a powerful
and increasingly popular platform for oncogene and
tumor suppressor gene discovery. Notwithstanding,
there are few publications that report SNP-array based
LOH. Of those available, the data have been generated
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using the 10K Mapping arrays [27] or have not found
any consistent data [6]. Using our higher resolution plat-
form the most frequently detected LOH event was at
16p11.2-16q12.1 two regions bordering the centromere.
LOH has been reported in this region [27] using the
10K mapping platform, however the allelic ratio plot of
this region and chromosome 8pll, another region
showing frequent LOH were not convincing and
appeared as artifacts due to a paucity of probes in the
regions. Several tumors showed whole chromosome or
chromosome arm loss.

The merging of the copy number data with the LOH
data revealed that many of the frequently detected LOH
regions were copy neutral events suggesting a duplica-
tion of the chromosome region accompanied by the loss
of the corresponding homologous region, with the net
result that the cell retains two copies of derived from
one parental source and no copies derived from the
other. Although there were regions of copy number
losses that corresponded to LOH events they were not
frequent occurrences. LOH with deletion occurred on
8p12 and several regions on the X chromosome. Xq25
has been reported as a region of frequent LOH [28].
The integration of LOH with transcript expression data
revealed 15 genes that displayed decreased expression
and mapped to regions of LOH. Two of the cadherin
genes, CDH1 and CDH2 mapping to a CN-LOH region
at 16p22 showed up regulation. Increased CDH3
expression has been associated with tumor aggressive-
ness, being a good indicator of clinical outcome. More-
over, the aberrant expression of CDH3 in breast cancer
might be regulated by gene promoter hypomethylation
[29]. Over expression of a gene in a CN-LOH region
may indicate that the missing allele was acting in a sup-
pressive capacity. On the other hand, CDHI is com-
monly reported as downregulated in breast cancer, and
thought to be methylated [30]. The reason for the dis-
crepancy is that the probe set design for CDH1 hybri-
dizes to multiple targets and is most likely being
aberrantly called.

Gene Expression and Pathway Analysis

Our gene expression analysis divulged a set of up and
down-regulated genes that had been previously
reported in breast cancer. The pathway analysis
revealed a strong correlation between the gene expres-
sion data and the canonical PPARa/RXRa Activation.
PPARa has not been implicated in breast cancer pre-
viously. This ligand activated transcription factor
belongs to a family of nuclear receptors. PPARa and
RXRa heterodimerize and subsequently bind to PPAR
response elements in the promoters of the target genes
inducing a wide spectrum of metabolic effects [31]. As
shown in Additional file 5, Figure S1, several genes
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involved in the pathway show downregulation
upstream of the activation of PPARa/RXR. For exam-
ple, the inflammatory signal mediation shown on the
left of the diagram shows the NIK is downregulated.
The cJUN gene shows downregulation which inhibits
the binding to NFxB and thus interferes with the bind-
ing to PPARa/RXR. The end result is downregulation
of IL-6. This downregulation of genes upstream of
PPARo/RXRa activation is seen for fatty acid uptake,
glucose homeostatis, lipoprotein lipase metabolism,
mitochondrial B-oxidation growth hormone homeosta-
tis and vascular smooth muscle cell migration. The
focus of PPARa/RXRa has been mainly its role in obe-
sity and atherosclerosis, however recent data suggests
that crosstalk between PPARa and the estrogen recep-
tors exists through competitive binding to the estrogen
response elements [31]. Several of the networks gener-
ated from our data also involved lipid biosynthesis.
The Prolactin Signaling Pathway was another canonical
pathway identified as being involved in our expression
data. The majority of the genes were downregulated
and mainly involved in the cellular proliferation arm of
the Prolactin pathway.

Conclusions

We have presented an integrated profile of primary
infiltrating ductal carcinoma. The analysis of the data
has shown that regions of copy number alterations
often correlate with deregulation of gene expression.
Our data has confirmed the copy number and gene
expression data of many other studies, however when
CGH and gene expression data are integrated the find-
ings between studies are somewhat variable. Our analy-
sis supported previous findings indicating that DLC1 at
8p22 and ANGPT2 at 8p23.1 show decreased expres-
sion and map to regions of frequent loss. We identified
chromosome 5p15.33 as a novel region that was fre-
quently amplified in the tumor tissues and suggest that
the PLEKHG4B as showing increased expression. This
is the first report of global LOH integration with gene
expression and several genes mapping to regions of
LOH were identified. The gene expression analysis high-
lighted genes that are downregulated in the PPARa/
RXRo Activation Pathway.

Additional material

Additional file 1: Table S1: Copy Number Data. Data was generated

using genomic segmentation fragments identified contained >10 SNPS
in >5 samples. Most of the fragments are contiguous stretches but are

defined by the number of samples. Average from segmentation defines
the average of the copy numbers detected on each tumor.

Additional file 2: Table S2: LOH Data. Data was generated using HMM,
fragments identified contained >10 SNPs in >3 samples.
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Additional file 3: Table S3: PennCNV Analysis. Twenty two samples
were analyzed using PennCNV algorithm. Total fluorescent intensity
signals from both alleles at each SNP (log R ratio, LRR) are calculated as
well as the relative ratio of the fluorescent signals between the two
alleles (B allele frequency BAF) to generate copy number states.

Additional file 4: Table S4: Gene Expression Data. Comparison of 16
IDC samples and 4 control breast tissues. The data was analyzed using a
2-way ANOVA and the list was generated using an Benjamini-Hochberg
FDR of 0.05 and expression alterations >2-fold increases or decreases.

Additional file 5: Figure S1: PPARo/RXRa Activation Pathway. Gene
expression data was imported into Ingenuity Pathyway Analysis. This
pathway was identified as the canonical pathway with the highest
number of member from the target gene expression data. All functional
aspects of the pathway have members that show down regulation in
the list of target genes generated by the comparison of tumors to
normal samples.

Additional file 6: Table S5: Copy number and Gene Expression
Integration. The full data of copy number and genes showing
concurrent loss/gain is presented. The tumors are identified that show
the loss or gain/amplification and the expression value for each control
and tumor sample are presented. These expression values have been
converted to standardized gene expression values for control and tumor
samples. These were obtained by averaging expression values for each
probe set across all tumors so that the average is 0. Negative numbers
indicate that the gene expression value is lower than the average and

positive ones indicate higher expression.
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