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Abstract

Background: MicroRNA (miRNA) signatures are not only found in cancer tissue but also in blood of cancer patients.
Specifically, miRNA detection in blood offers the prospect of a non-invasive analysis tool.

Methods: Using a microarray based approach we screened almost 900 human miRNAs to detect miRNAs that are
deregulated in their expression in blood cells of melanoma patients. We analyzed 55 blood samples, including 20
samples of healthy individuals, 24 samples of melanoma patients as test set, and 11 samples of melanoma patients as
independent validation set.

Results: A hypothesis test based approch detected 51 differentially regulated miRNAs, including 21 miRNAs that were
downregulated in blood cells of melanoma patients and 30 miRNAs that were upregulated in blood cells of melanoma

for melanoma.

patients as compared to blood cells of healthy controls. The tets set and the independent validation set of the
melanoma samples showed a high correlation of fold changes (0.81). Applying hierarchical clustering and principal
component analysis we found that blood samples of melanoma patients and healthy individuals can be well
differentiated from each other based on miRNA expression analysis. Using a subset of 16 significant deregulated
miRNAs, we were able to reach a classification accuracy of 97.4%, a specificity of 95% and a sensitivity of 98.9% by
supervised analysis. MiRNA microarray data were validated by gRT-PCR.

Conclusions: Our study provides strong evidence for miRNA expression signatures of blood cells as useful biomarkers

Background

For many human cancer entities, there is still a lack of
high-performing biomarkers. In the past years, different
tumor markers have been identified not only in tissue but
also in blood, urine, or saliva of cancer patients. Several
types of biomarkers can be distinguished. Prognostic bio-
markers differentiate between "good outcome” and "bad
outcome” tumors. Predictive biomarkers assess the prob-
ability for a treatment response, and pharmacodynamic
biomarkers can be used to guide dose selection for cer-
tain drugs [1]. Furthermore, early detection biomarkers
can indicate the onset of a tumor. Most recently, microR-
NAs (miRNAs) have been introduced as new cancer
markers in the biomarker landscape and are suggested as
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targets or future therapy approaches [2,3]. MiRNAs are
endogenous small noncoding RNAs that regulate transla-
tion and transcription. The expression of miRNAs has
been demonstrated to be highly specific for tissues and
developmental stages. In addition, miRNAs appear to
contribute to the molecular classification of tumors [4].

Recent proof-of-principle studies indicate that analysis
of miRNA expression in sera and peripheral blood cells is
a promising approach for a blood-based diagnosis of can-
cer and other diseases [5-9]. We recently showed that
complex miRNA expression patterns, rather than single
miRNAs, can serve as biomarker signatures. Specifically,
we were able to separate patients with different human
diseases, including lung cancer [10] and Multiple Sclero-
sis [11] from healthy individuals by blood testing.

In this study, we describe a highly specific miRNA
expression profile for melanoma patients. Malignant mel-
anomas represent the most aggressive form of skin can-
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cer. According to the World Health Organization (WHO)
the number of melanoma cases continues to increase in
incidence, faster than any other type of cancer. Melanoma
accounts for about 4% of skin cancer cases but for as
many as 74% of all deaths of skin cancer. The 5-year sur-
vival rate is as low as 5% for patients with advanced mela-
noma [12].

Currently, there is no promising standard therapy avail-
able for the treatment of patients with melanoma in an
advanced stage. In order to improve prognosis it is crucial
to detect melanoma in a very early stage, especially with
metastasis occuring very early in the progression of the
disease.

Several studies described altered miRNA expression
fingerprints in melanoma with the majority of these stud-
ies analyzing miRNA expression in formalin fixed paraf-
fin embedded cancer tissue [13-15] and few studies
analyzing cancer cell lines [16,17]. Most notably, miRNAs
have also been shown to be significantly correlated with
metastasis in melanoma [18].

As of now there is, however, no evidence for altered
miRNA expression in peripheral blood samples of mela-
noma patients. Here we used the Geniom Real Time Ana-
lyzer (GRTA) microarray platform (febit biomed GmbH,
Heidelberg) to analyze all human miRNAs as annotated
in the Sanger miRBase version 12.0 [19-21].

In total, we analyzed 35 blood samples of melanoma
patients and 20 blood samples of healthy individuals. The
35 melanoma samples include a test set of 24 samples and
an independent validation set of 11 melanoma samples.

As analysis tools we employed different well known sta-
tistical measures, including t-test, Wilcoxon Mann-Whit-
ney test (WMW), a linear model with p-values computed
by an empirical bayes approach (limma) [22,23], Area
under the receiver operator characteristic curve (AUC),
and fold changes. We classified melanoma patients and
healthy subjects using Support Vector Machines (SVM)
[24] that have been evaluated with a filter subset selection
technique and standard 10-fold cross validation (CV).

Our study provides evidence for a novel and complex
miRNA expression profile in blood cells of melanoma
patients.

Methods

Samples

The study was conducted in compliance with the Helsinki
Declaration. The local ethics committee ("Arztekammer
des Saarlandes") approved the study. All participants of
this study have given written informed consent. The 35
blood samples of melanoma patients were collected in
two independent institutions. We used the 24 blood sam-
ples from one institution as test set and the 11 blood sam-
ples from the second institution as validation set. The
control samples were obtained from 20 healthy volun-
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teers. Information on age and sex of all blood donors and
detailed clinical informations for all melanoma patients is
given in the Additional Files (Additional File 1, Table S1).

miRNA extraction and microarray screening

Blood drawing of melanoma patients and isolation of
RNA was performed as previously described [10]. Sam-
ples were analyzed with the Geniom Realtime Analyzer
(GRTA, febit gmbh, Heidelberg, Germany) using the
Geniom Biochip miRNA homo sapiens. Each array con-
tains 7 replicates of 866 miRNAs and miRNA star
sequences as annotated in the Sanger miRBase 12.0 [19-
21]. Sample labeling with biotine was carried out by
microfluidic-based enzymatic on-chip labeling of miR-
NAs (MPEA [25]).

In brief, following hybridization of the miRNA with the
Geniom biochip for 16 hours at 42°C the biochip was
washed automatically and a program for signal enhance-
ment was processed with the GRTA. The detection pic-
tures were evaluated using the Geniom Wizard Software.
For each array, the signal intensities for all miRNAs were
extracted from the raw data file. As each miRNA is spot-
ted in seven replicates, we obtained seven intensity values
for each miRNA. Following background correction, we
calculated the median of the seven replicate intensity val-
ues for each miRNA. We applied quantile normalization,
to normalize the data across different arrays [26]. Further
analysis was carried out using the normalized and back-
ground subtracted intensity values.

The microarray data were deposited in the publicly
available database Gene Expression Omnibus (GEO;

http://www.ncbi.nlm.nih.gov/projects/geo/, GSE20994).

Measures for single biomarker analysis

First, we analyzed the miRNA expression to detect miR-
NAs that show a different expression in different groups
of blood donors. To this end, we applied different statisti-
cal measures to monitor differences between these mea-
sures. The set of approaches contains parametric t-test
(unpaired, two-tailed), Wilcoxon Mann-Whitney test
(WMW, unpaired, two-tailed), a linear model with p-val-
ues computed by an empirical Bayes approach (limma)
[22,23], the area under the receiver operator characteris-
tics curve (AUC) and fold quotients. The AUC is here
defined as the "value" of a miRNA with respect to its abil-
ity to separate two different groups of blood donors. We
calculated the AUC for each miRNA as follows: the nor-
malized intensities of all miRNAs for all blood samples
from melanoma patients and healthy controls were used
as threshold values. For all thresholds ¢, we considered
RNA from blood of melanoma patients that generate
miRNA intensity values above ¢ as true positives (TP),
RNA from blood of melanoma patients that generate
miRNA intensity values below ¢ as false negatives (FN),
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RNA from blood of healthy subjects that generate
miRNA intensity values below ¢ as true negatives (TN),
and RNA from blood of healthy subjects that generate
miRNA intensity values above ¢ as false positives (FP).
Likewise for all thresholds, specificity (TN/(TN+FP)) and
sensitivity (TP/(TP+FN)) were computed. The Receiver
Operator Characteristics (ROC) curve shows the sensi-
tivity as function of one minus the specificity. AUC values
can range from 0.5 to 1. An AUC of 0.5 for a miRNA
means that the distribution of intensity values generated
by RNA from blood of melanoma patients and healthy
subjects cannot be distinguished. The more the AUC
value of a miRNA differs from 0.5, the better this miRNA
is suited to separate between the two groups of blood
donors (melanoma patients and healthy individuals). An
AUC of 1 corresponds to a perfect separation.

For all hypothesis tests, the resulting p-values were
adjusted for multiple testing by Benjamini-Hochberg
[27,28] adjustment. We compared detected sets of rele-
vant miRNAs by using venn-diagrams.

Cluster Analysis and Principal Component Analysis
We carried out a hierarchical clustering approach to
detect clusters of miRNAs and blood samples. In detail,
we applied bottom up complete linkage clustering and
used the Euclidian distance measure.

In addition, we carried out a standard principal compo-
nent analysis (PCA) and provide scatter plots of the first
versus second principal component [29,30].

Classification analysis

In addition to the single biomarker analysis and unsuper-
vised clustering we also carried out classification of sam-
ples using miRNA expression patterns by applying
Support Vector Machines (SVM, [24]) as implemented in
the R e1071 package [31]. In detail, different kernel (lin-
ear, polynomial, sigmoid, radial basis function) SVM have
been evaluated, with the cost parameter sampled from
0.01 to 10 in decimal powers. The measured miRNA
expression profiles were classified using 100 repetitions
of standard 10-fold cross validation (CV). As a subset
selection technique we applied a filter approach based on
t-test. In detail, the s miRNAs with lowest p-values were
computed on the training set in each fold of the CV,
where s was sampled from 1 to 866 (corresponding to 866
analyzed human miRNAs and miRNA star sequences).
The respective subset was used to train the SVM and to
carry out the prediction of the test samples. As result, the
mean accuracy, specificity, and sensitivity were calculated
together with the 95% Confidence Intervals (95% CI) for
each subset size. To check for overtraining we applied
permutation tests. Here we sampled the class labels (mel-
anoma and healthy) randomly and carried out classifica-
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tions using the permuted class labels. All statistical
analysis was performed using R [31].

quantitative Real Time-PCR

To validate the microarray results we performed quanti-
tative Real Time-PCR (qRT-PCR). We analyzed 13 miR-
NAs that showed significant deregulation in the
microarray experiments, including hsa-miR-106b, hsa-
miR-107, hsa-miR-1280, hsa-miR-151-3p, hsa-miR-17%,
hsa-miR-18a, hsa-miR-199a-5p, hsa-miR-20a, hsa-miR-
20b, hsa-miR-30a, hsa-miR-362-3p, hsa-miR-550% and
hsa-miR-664, using TagMan” MicroRNA Assays (Applied
Biosystems). The qRT-PCR was performed on ten mela-
noma samples and ten samples of healthy individuals. We
used RNU48 as endogenous control.

Results

Using the Geniom Realtime Analyzer microarray plat-
form, we analyzed the expression of 866 miRNAs in
blood cells of 20 healthy volunteers and 35 patients with
melanoma. Out of these 35 patients, 31 (88.57%) had mel-
anoma of clinical stages 0, IA, IB, IIA, or IIB. One patient
(2.86%) had a stage IIIB melanoma, and three patients
(8.57%) had stage IV melanoma (see Additional file 1,
Table S1).

To achieve improved statistical significance we com-
pared the three hypothesis tests including t-test, Wil-
coxon Mann-Whitney test (WMW), and a linear model
with p-values computed by an empirical bayes approach
(limma). We considered all miRNAs with adjusted p-
value below 0.001 to be significant. All tests combined
identified 213 miRNAs that showed a different expres-
sion in blood of melanoma patients as compared to the
blood of healthy individuals. A more detailed view on the
results of the three hypothesis tests is presented as three-
way venn-diagram in Figure 1. In total, 117 miRNAs were
detected in all three tests, additional 35 in both the
WMW test and the t-test, additional 22 in both the
empirical bayes test and the WMW test, and additional 4
in both the empirical bayes test and the t-test. With 167
miRNAs the t-test detected the highest number of dereg-
ulated miRNAs. Since the majority of the 213 miRNAs
was identified in all three tests, the data demonstrate a
high concordance of the employed hypothesis tests.

To further specify our search for miRNAs differentially
expressed between blood of melanoma patients and of
healthy controls, we added two additional filters. First, we
only considered miRNAs that were at least 2-fold up- or
down-regulated in their expression level in blood cells of
melanoma patients compared to blood cells of healthy
controls. Second, we calculated the median intensity val-
ues combined for all melanoma and combined for all nor-
mal blood samples and excluded miRNAs, with a
combined median intensity value below 100 in either
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Figure 1 Venn-diagram for the comparison of three hypothesis
tests. Numbers of miRNAs that are differentially expressed in blood
cells of melanoma patients as compared to healthy controls. The
three-way venn-diagram indicates the numbers of miRNA identified as
significant by t-test (blue circle), Wilcoxon Mann-Whitney test (green
circle), and a linear model with p-values computed by an empirical
bayes approach (limma, red circle). The numbers inside the intersec-
tions of circles denotes the number of miRNAs significant for two or
three of the tests.

melanoma or in normal blood samples. Median intensity
values lower than 100 are likely to be due to background
noise. By using this high stringent threshold we tried to
avoid false positives. Using these two empirically deter-
mined thresholds we identified 51 differentially expressed
miRNAs, including 21 miRNAs downregulated and 30
miRNAs upregulated in blood cells of melanoma patients
compared to blood cells of healthy individuals. Table 1
shows the 51 significantly deregulated miRNAs sorted by
their AUC value. We validated the microarray results of
13 out of the above mentioned 51 miRNAs by using qRT-
PCR. We analyzed ten randomly selected samples of mel-
anoma patients and ten randomly selected samples of
healthy controls that have already been analyzed by
microarray. We found a correlation of 0.93 between the
microarray data and the qRT-PCR data. Table 2 com-
prises the comparison of the fold changes in the miRNA
expression between the analyzed melanoma and control
samples of the microarray results and the qRT-PCR
results.

We further compared the fold quotients in both the 24
melanoma blood samples that were used as test set and
the 11 melanoma blood samples that were used as valida-
tion set. To reduce the noise, we only considered miRNAs
with a median intensity level of at least 50 in any of the
two sets. In this step we used a less stringent threshold of
50 to obtain more data points and little background noise
has a less stringent influence on the correlation calcula-
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tions. We computed for each melanoma set (i.e. test set
and validation set) the fold quotient versus the controls
and determined the correlation. The scatter-plot in Fig-
ure 2 presents the logarithm of fold quotients of the test
set on the x-axis and of the validation set on the y-axis.
The correlation of fold quotients between both mela-
noma test and validation set was as high as 0.81. These
results demonstrate the reproducibility of the miRNA
profiling in blood cells of melanoma patients.

We also analyzed the miRNA expression profiles of the
melanoma test set, the melanoma validation set and the
set of healthy controls by hierarchical clustering. Since
many miRNAs contributed mostly noise to the clustering,
we used only the 50 miRNAs with the highest data vari-
ance for clustering. As shown in the dendrogram in Fig-
ure 3, control samples and melanoma sample fall in two
different major clusters. Melanoma samples of the test set
and melanoma samples of the validation set are mixed
within the same major cluster. Splitting the dendrogram
in two groups and computing a contingency table we
found that all control samples belong to one cluster and
all melanoma samples belong to the other cluster. We
obtained a p-value of approx. 3 * 10-16 for this clustering
using two-tailed Fisher's Exact test.

To provide a low-dimensional visualization of the high-
dimensional data we carried out a principal component
analysis. Investigating the eigenvalues of the first princi-
pal components, we found that the first component con-
tained the highest overall data variance while the first and
second principal component combined contributed to
approximately half of the overall variance. A plot of the
first versus the second principal component is shown in
Figure 4. The principal component analysis largely con-
firmed the results of the hierarchical clustering. Again,
the control samples could clearly be differentiated from
the melanoma samples.

To confirm the results of the unsupervised cluster anal-
ysis, we employed a supervised statistical learning
approach. We carried out SVM classification together
with a feature subset selection relying on t-test p-values.
In detail, we applied radial basis function SVMs that have
been evaluated using 10-fold CV. The CV runs have been
repeated 100 times to estimate the classification variance.
To test for data overfitting, we carried out 100 permuta-
tion tests, i.e., we applied the same statistical approach to
a data set with randomly assigned class labels for mela-
noma and control samples. The best classification accu-
racy has been obtained by using a subset that consists of
16 miRNAs including hsa-miR-186, hsa-let-7d*, hsa-miR-
18a*, hsa-miR-145, hsa-miR-99a, hsa-miR-664, hsa-miR-
501-5p, hsa-miR-378%, hsa-miR-29c*, hsa-miR-1280, hsa-
miR-365, hsa-miR-1249, hsa-miR-328, hsa-miR-422a,
hsa-miR-30 d, and hsa-miR-17*. By using these 16 miR-
NAs, we separated melanoma from healthy controls with
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Table 1: 51 significantly deregulated miRNAs sorted by their AUC value.
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miRNA median melanoma  median normal fold change wmw adjp ttest adjp limma adjp AUC
hsa-miR-452* 189.7 633.3 0.3 0 0.00046 0 0.99
hsa-miR-216a 89.1 197.3 0.5 0.000001 1.7E-05 0.000039 0.98
hsa-miR-186 206.5 26.2 7.9 0.000001 0 0 0.97
hsa-let-7d* 178.6 37.7 4.7 0.000001 0 0 0.96
hsa-miR-17* 433.5 941.8 0.5 0.000001 0 0 0.96
hsa-miR-646 150.9 350.6 0.4 0.000001 0.00038 0 0.96
hsa-miR-217 86.3 183.8 0.5 0.000001 0.00055 0.000003 0.96
hsa-miR-621 178.6 486.7 0.4 0.000001 0.00011 0 0.95
hsa-miR-517* 109.9 230.8 0.5 0.000001 0.00022 0 0.95
hsa-miR-99a 217.3 85 2.6 0.000002 0 0 0.95
hsa-miR-664 557 173 3.2 0.000002 0 0 0.94
hsa-miR-593* 175.4 356.7 0.5 0.000002 0.00027 0 0.94
hsa-miR-18a* 3974 135 29 0.000002 0 0 0.94
hsa-miR-145 358 94.6 3.8 0.000002 0 0 0.94
hsa-miR-1280 6779.6 2676.2 25 0.000002 0 0 0.93
hsa-let-7i* 122.8 281.4 0.4 0.000003 0.00045 0 0.93
hsa-miR-422a 279.2 104.5 2.7 0.000004 0 0 0.92
hsa-miR-330-3p 2131 443.2 0.5 0.000004 0.00052 0 0.92
hsa-miR-767-5p 107.1 2324 0.5 0.000004 0.00022 0.000001 0.92
hsa-miR-183* 195.9 87.7 2.2 0.000004 1E-06 0 0.92
hsa-miR-1249 144.8 46.1 3.1 0.000004 0 0.000004 0.92
hsa-miR-20b 2163.5 5665.8 0.4 0.000004 2E-06 0.000001 0.92
hsa-miR-509-3-5p 157 3714 0.4 0.000004 0.00046 0 0.92
hsa-miR-519b-5p 725 155.1 0.5 0.000004 2.9E-05 0.000398 0.92
hsa-miR-362-3p 449 167.8 2.7 0.000004 4E-06 0 0.92
hsa-miR-501-5p 106.5 27.8 3.8 0.000004 0 0.000002 0.92
hsa-miR-378* 103.7 29.4 35 0.000004 0 0.000002 0.92
hsa-miR-365 160.5 65.1 2.5 0.000006 0 0.000001 0.91
hsa-miR-151-3p 999 422.6 24 0.000006 1E-06 0 0.91
hsa-miR-342-5p 196.8 92.1 2.1 0.000008 1E-06 0.000003 0.91
hsa-miR-328 175.4 323 54 0.000008 0 0.000001 0.9
hsa-miR-181a-2*  154.8 64.7 24 0.000016 4E-06 0.000004 0.89
hsa-miR-518e* 88.1 196.4 0.4 0.000019 0.00045 0.000586 0.89
hsa-miR-362-5p 2454 119.5 2.1 0.000023 8E-06 0.000001 0.88
hsa-miR-584 198.2 46.9 4.2 0.000023 1.5E-05 0.000008 0.88
hsa-miR-550* 808.5 313.8 26 0.000024 2.6E-05 0.000003 0.88
hsa-miR-30a 682.9 334.8 2 0.000027 4E-06 0.000002 0.88
hsa-miR-221* 54.3 113.8 0.5 0.000029 0.00011 0.00039 0.88
hsa-miR-361-3p 263.9 929 2.7 0.000033 2E-06 0.000003 0.88
hsa-miR-625 185.8 63.3 29 0.000037 1.7E-05 0.000038 0.87
hsa-miR-146a 326.8 161.8 2 0.000037 3.9E-05 0.000003 0.87
hsa-miR-214 1723 3834 0.4 0.000042 0.00038 0.000001 0.87
hsa-miR-106b 8639.8 18881 0.5 0.000044 8.5E-05 0.000019 0.87
hsa-miR-18a 1060.8 2560 0.4 0.000053 0.00074 0.000013 0.86
hsa-miR-30e* 101.7 47.8 2.1 0.000022 5E-06 0.000098 0.86
hsa-miR-125a-5p  370.8 147.4 25 0.000059 3.3E-05 0.000001 0.86
hsa-miR-142-3p 105.3 2 53 0.000082 1.7E-05 0.000009 0.85
hsa-miR-107 725.8 1938.9 0.4 0.000092 0.00097 0.000034 0.85
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Table 1: 51 significantly deregulated miRNAs sorted by their AUC value. (Continued)

hsa-miR-20a 3254.3 7282.8 0.4
hsa-miR-22* 17.7 45 2.6
hsa-miR-199a-5p  551.4 267.9 2.1

0.000134 0.00016 0.000062 0.84
0.000193 3.7E-05 0.000138 0.83
0.000201 0.00066 0.000042 0.83

adjp = adjusted p-value, AUC = area under the receiver operator charcteristic curve, wmw = Wilcoxon Mann-Whitney test, limma= linear model

with p-values computed by an empirical bayes approach

a high accuracy, specificity and sensitivity of 97.4%, 95.0%
and 98.9%, respectively. The results of all 100 CV runs
and 100 permutation tests are provided as box-plots in
Figure 5. For classification purposes the above mentioned
16 miRNAs do not have to meet the critera of an at least
2-fold deregulation and a combined median >100 in
either all melanoma or all normal samples. Therefore,
these 16 miRNAs are not necessarily a subset of the 51
differentially expressed miRNAs that were listed in Table
1.

An example of a classification result is shown in Figure
6. In detail, we determined the probability of being a mel-
anoma patient or a healthy control based on the miRNA
expression profiles of blood cells. The probability is cal-
culated as the logarithm of the quotient of the probabili-
ties to be diseased and the probability to be healthy. If the
quotient of the probability is greater than one, e.g. the
logarithm is greater zero, the sample is more likely to be a
melanoma sample than a control sample. As shown in
Figure 6, the majority of melanoma samples have loga-
rithmized quotients of greater 0 while the majority of
control samples have logarithmized quotients of below 0.
These results further demonstrate that miRNA expres-
sion profiling of blood cells can separate melanoma

patients from healthy individuals with high sensitivity
and specificity.

Discussion

One of the major challenges towards an improved mela-
noma treatment is the identification of appropriate mark-
ers for a most early detection of the primary lesion. For
patients with stage I melanoma the overall 5-year survival
rate exceeds 90% but can fall below 10% for stage III or IV
melanoma. It is especially important to detect melanoma
before metastasis that occurs early during melanoma pro-
gression. Equally important are the prognosis of the
patients' outcome and the prediction of the response to
treatment. Since melanoma is a very heterogeneous dis-
ease, complex biomarker profiles appear to be best suited
for the task of early tumor detection and the monitoring
of high-risk patients.

In our study we investigated the miRNA expression of
almost all currently known human miRNAs and miRNA
star sequences in peripheral blood cells of melanoma
patients. The majority (88.57%) of the melanoma patients
had a melanoma in clinical stage 0, IA, IB, IIA, or IIB.
Comparing miRNA expression profiles in blood cells of
melanoma patients and in blood cells of healthy donors,

Table 2: Comparison of the miRNA expression fold changes between the microarray and qRT-PCR results.

miRNA fold change qRT-PCR fold change microarray
hsa-miR-106b 0.54 1.09
hsa-miR-107 0.70 0.68
hsa-miR-1280 1.15 3.01
hsa-miR-151-3p 1.02 2.05
hsa-miR-17* 0.59 0.60
hsa-miR-18a 0.40 0.42
hsa-miR-199a-5p 1.08 2.77
hsa-miR-20a 0.41 0.58
hsa-miR-20b 0.48 0.88
hsa-miR-30a 0.78 1.14
hsa-miR-362-3p 0.98 2.07
hsa-miR-550* 0.65 1.02
hsa-miR-664 0.65 0.83

correlation

0.93
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Figure 2 Comparison of melanoma test and validation set. Comparison of the miRNA expression in blood cells of melanoma patients in the test
set and in the validation set. The logarithm of fold quotients of miRNAs was determined both for the 24 melanoma blood samples used as test set (x-
axis) and for the 11 melanoma blood samples used as validation set (y-axis). The correlation of both fold quotients is 0.81.
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we detected 51 differentially expressed miRNAs. A total
of 30 miRNAs was upregulated in blood cells of mela-
noma patients, whereas 21 miRNAs were downregulated.
We used highly stringent selection criteria for the identi-
fication of deregulated miRNAs to reduce the false dis-
covery rates, a problem that has recently been addressed
by McCarthy et al. [32].

We compared our results with the data deposited in the
Human miRNA and Disease Database (HMDD, http://
202.38.126.151/hmdd/mirna/md/[33]). Most notably, the
minority of the 51 deregulated miRNAs is annotated as
cancer related miRNA in the HMDD. For example, hsa-
miR-216a, the miRNA with second best AUC value has
been described to be downregulated in lung neoplasm
and is likewise more than 2-fold downregulated in mela-
noma in our study [34]. The miRNA hsa-miR-186, the
upregulated miRNA with highest AUC has been
described to be upregulated in pancreatic cancer [35].
However, most studies published so far differ significantly

from our study in two factors: First, the majority of stud-
ies describes the miRNA expression analysis in cancer tis-
sues, and second, most studies use less complete miRNA
sets. Thus, it is evident that we also identified miRNAs as
significantly deregulated in blood cells of melanoma
patients that are not yet reported as deregulated in cancer
or any non-cancer disease. One example is miR-1280 that
is upregulated 2.5-fold in our studies but not deposited in
the HMDD. Out of the 51 significantly deregulated miR-
NAs the minority of these miRNAs has been recorded in
the HMDD as deregulated in any human cancer or non-
cancer disease. In a study on genomic alterations that
were related to miRNA genes, Zhang and colleagues
reported 196 miRNA genes with copy number gains and
235 miRNA genes with copy number losses in melanoma
[36]. They also showed a copy number alteration for the
four miRNAs hsa-miR-214, hsa-miR-106b, hsa-miR-18a,
and hsa-miR-20a, all of which were deregulated in mela-
noma blood cells as shown in our study. In detail, we
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Figure 3 Cluster analysis of all analyzed blood samples. Cluster dendrogram of blood samples from healthy control subjects and from melanoma
patients of the test and validation set. Cluster analysis was done for the 50 miRNAs with the highest data variance among all tested blood samples, i.e.
samples of healthy controls (C), samples of the melanoma test set (M), and samples of the melanoma validation set (N). The healthy control subjects

found a downregulation of miRNAs hsa-miR-18a and
hsa-miR-20a in blood cells of melanoma patients. Zhang
et al. showed copy number loss for the corresponding
miRNA genes. However, while we also found a downreg-
ulation of the miRNAs hsa-miR-214 and hsa-miR-106b in
melanoma blood cells, Zhang et al. reported copy num-
ber gains for the corresponding miRNA genes. Without
knowing the nature of the blood cells that give rise to the
miRNA pattern, it is premature to speculate on a possible
link between the miRNA pattern obtained from patients'
blood and the pattern obtained from the tumor.

Out of the 51 miRNAs that were deregulated in blood
of melanoma patients four miRNAs, namely hsa-miR-
99a, hsa-miR-365, hsa-miR-30a, and hsa-miR-146a, were
deregulated in non-cancer skin diseases [37,38]. The
miRNAs hsa-miR-99a and hsa-miR-365 are downregu-
lated in Lupus vulgaris [38], but were upregulated in
blood of melanoma patients. The miRNA hsa-miR-30a
was upregulated both in Lupus vulgaris [38] and in blood
of melanoma patients. Likewise miRNA hsa-miR-146a

was upregulated both in blood cells of melanoma patients
and in non-cancer patients e.g. eczema patients [37]. The
latter miRNA was also overexpressed in psoriatic lesional
skin of psoriasis patients compared to healthy skin
[39,40]. The miRNA hsa-miR-146a that contributes to an
abnormal activation of type I interferon pathway in
human lupus [41] was also upregulated in blood cells of
melanoma patients.

While these first results do not allow any conclusion on
the disease specificity of any of the addressed miRNAs,
future miRNA profiling of a larger number of different
human diseases will contribute to the identification of
miRNAs that play a crucial role in specific human dis-
eases. Furthermore, the identification of miRNAs will
contribute to the overall understanding of the molecular
alterations underlying disease development including
melanoma progression.

In addition, and in keeping with the focus of this study,
miRNA expression profiling especially of human blood
has the potential to serve as future tumor biomarker.
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Figure 4 Principal Component Analysis of all tested blood sam-
ples. Principal Component Analysis of blood samples from healthy
control subjects and from melanoma patients of the test and valida-
tion set. The figure shows the first (x-axis) versus the second (y-axis)
principal component. Samples of healthy individuals are indicated by
C, melanoma test samples by M, and melanoma validation samples by
N. The healthy control subjects and the melanoma patients can be
clearly differentiated.

Applying SVM with a feature subset selection method we
used a set of 16 miRNAs to differentiate melanoma
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Figure 5 Classification results. Accuracy, specificity and sensitivity
by which melanoma patients are identified based on miRNA profiling
of blood. Blue boxes show the classification accuracy, specificity and
sensitivity as determined by repeated cross-validation for the subset of
16 miRNAs. Red boxes show the respective accuracy, specificity and
sensitivity for permutation test.

M
M
M M
< MMMNM MMM M
M M M
M Moy Mo .
M MM M
N M MM
3 "
= ¢ c M M
3
2 4 M
g c M
g C
8 ¢ ©
o
1 CC c o}
C
E ¢
Cc
T 9 cc o8
o]
T T T T T T
0 10 20 30 40 50
sample

Figure 6 Classification example. Example for the classification of
melanoma patients and healthy individuals based on the miRNA ex-
pression profiling of blood cells for the 16 miRNAs as detected by the
subset selection. The logarithm of the quotient of the probability to be
a melanoma patient and the probability to be a healthy individual is
given on the y-axis for each control (C) and each melanoma (M). If this
quotient is greater than one e.g. the logarithm is greater zero the sam-
ple is more likely to be a melanoma sample than a control sample.

patients and healthy blood donors with high accuracy
(97.4%). Recently, we used a subset of 24 miRNAs to dis-
criminate between blood cells of patients with lung can-
cer and healthy controls with an accuracy of 95.4% [10].
Except for lung cancer, there are no other studies that
determine and compare miRNA profiles in blood cells of
cancer patients and of normal controls [10,42]. A recent
study by Chen et al. compared miRNA profiles in blood
cells and in serum but did not separate cancer patients
from normal controls by miRNA profiling [42]. Based on
our studies melanoma patients can be separated from
lung cancer patients and Multiple Sclerosis patients with
approximately 90% accuracy by the miRNA expression
signature. Ultimately, the classification accuracy depends
on the choice of the control group and the choice of the
control group depends on the questions to be answered
by the miRNA expression profile. For example, investigat-
ing the usefulness of miRNA signatures as prognostic,
predictive, pharmacodynamic or early detection bio-
markers requires different control groups.

In this study we provide first evidence for the potential
of miRNA expression profiles to distinguish patients with
melanoma from healthy control subjects based on the
analysis of peripheral blood cells. Until now it is not
known which type of blood cells is responsible for the dif-
ferences in the miRNA expression pattern. It is conceiv-
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able that the cancer miRNA signatures arise as part of a
cancer-associated immune response. However, any
hypothesis about the origin of the miRNA signatures gen-
erated from blood awaits experimental confirmation.
Identifying the blood component responsible for specific
miRNA signatures will likely contribute not only to our
understanding of the mechanism underlying the pattern,
but also to an improved prediction and prognosis of a dis-
ease.

Finally, it remains to be proven which cancers or non-
cancer diseases also show a specific miRNA expression
pattern that might be used to tell these diseases apart
form controls and possibly apart from each other.

Conclusions

Using a subset of 16 significant deregulated miRNAs, we
distinguished melanoma patients from healthy individu-
als with an accuracy of 97.4%. The high specificity and
sensitivity of the miRNA signatures generated for blood
cells of melanoma patients underlines the potential of this
approach for future diagnostic applications. Blood based
miRNA signatures may be ideally suited as prognostic,
predictive, or pharmacodynamic biomarkers not only for
melanoma but also for other tumors.

Additional material
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