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Abstract

Background: Sufficient amino acid transport activity (AAT) is indispensable for appropriate fetal growth. Studies
suggest that placental nutrient uptake activity is responsive to both maternal and fetal nutrient demands. We
hypothesize that under conditions of limited nutrient availability to the fetus, as often present in preeclampsia,
intrauterine growth restriction (IUGR), and insufficient weight-gain during pregnancy, a general adaptive response
aimed to increase amino acid transport activity may be observed in the placenta.

Method: A total of 40 placentas from full-term (n = 10) and pre-term (average gestational period = 34.8 weeks,
n = 10) normal pregnancies, IUGR (n = 10), and preeclampsia (n = 10) associated pregnancies were looked at by
immunohistochemistry followed by relative qualitative scoring to compare expression levels and localization of
System L, ASCT2, and mTOR proteins.

Result: Microvillous syncytiotrophoblast (ST) in placenta of pregnancies complicated by IUGR or preeclampsia (PE)
showed significant increases in the levels of System L amino acid transport proteins 4F2hc and LAT1 compared to both
full-term control and pre-term (early gestation control) pregnancies seperately (p < 0.05). Elevated mTOR protein was
uniquely higher in IUGR placentas compared to full-term controls (P = 0.0026). Total cellular ASCT2 transporter protein
levels were similar in all groups, however, levels of ASCT2 protein localized to the ST microvillous membrane (MVM)
were significantly lower in IUGR compared to both full-term and pre-term pregnancies (P = 0.0006, 0.03, respectively).
Additionally, ASCT2 and mTOR protein levels were positively associated with maternal pre-pregnancy BMI (P = 0.046,
0.048, respectively).

Conclusion: There are three important findings based upon the present study. First, in conditions of limited nutrient
availability, such as PE or IUGR, there is an overall increase in the level of System L and mTOR protein expression in the
ST, suggestive of an adaptive response. Second, a decrease in ASCT2 protein at the ST MVM suggests a post-translational
event that may decrease AAT activity in IUGR placentas. Third, a physiological link between transporter expression and
pre-pregnancy BMI is suggested based upon a positive association observed with ASCT2 and mTOR expression values.
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Background
Fetal growth restriction, as observed in intrauterine growth
restriction (IUGR) and preeclampsia (PE), affects not only
perinatal outcomes, but is also an important risk factor
for developing diabetes, cardiovascular disease and other
health problems in adulthood [1-3]. Nutrient availability
and placental transport capacity are key determinants of
fetal growth [4,5]. Amino acid transport in particular is
intimately linked to fetal growth [6,7]. Lower activities for
several of the amino acid transporter (AAT) systems have
been documented in the placenta of IUGR fetuses includ-
ing System A [8-10], System L [11], and taurine trans-
port [12-14]. In vivo animal model studies also support
the primary role of reduced amino acid transport activ-
ity in the development of IUGR [15,16]. The etiology of
fetal growth restriction necessitates a better under-
standing of placental amino acid transport regulation.
Placental amino acid transport activity resides within

the syncytiotrophoblast (ST) cells [17,18]. Efficient trans-
port requires the coordination of both Na+-dependent
and Na+-independent transporters. Sodium-dependent
transporters, including System A (sodium-dependent
neutral amino acid transporter 1 (SNAT1), −2, and −4/
SLC38A1,-2,-4) and System ASC (ASCT1/SLC1A4 and
ASCT2/SLC1A5), are largely responsible for maintaining
intracellular neutral amino acid substrate levels. The
activity of System A in the microvillous membrane has
been well described [8,10,19]. Na+-dependent ASCT2
expression has also been localized to placenta microvilli
[20]. In normal tissues and cancer cells ASCT2 is critical
to cell growth and survival as its glutamine transport
activity supports amino acid exchangers including LAT1
[21-23]. However, there are no reports on ASCT2 activity
relative to placenta function and fetal growth restriction.
The sodium-independent transporters of System L (LAT1
and LAT2) exchange intracellular glutamine and other
substrates for essential amino acids (EEAs) including
Leucine and branched-chain amino acids (BCAA). LAT1 is
expressed in the microvilli as a heterodimeric glycoprotein
composed of the transporter-specific light chain LAT1/
SLC7A5, and the common heavy chain 4F2hc/CD98/
SLC3A2 [17,24]. The transport of branched-chain and
EEAs has been shown to be affected in both IUGR
(decreased) and LGA-associated placenta (increased) [19].
While the relationship between changes in amino acid

transporter activities and pathological fetal growth is well
established, their regulation is still poorly understood. The
mammalian Target of Rapamycin (mTOR) protein appears
to be a key component of AAT regulation [6,25,26].
mTOR is a Ser/Thr protein kinase which functions in
diverse cell types, connecting growth factor signals with
energy and nutrient levels, to control protein metabolism
and cell growth [27]. In the placenta, mTOR has been
shown to affect the activities of the System A, System L,
and taurine AAT [25,28]. Further in vitro evidence ties
mTOR activity to the sub-cellular localization of System A
(SNAT2) and System L (LAT1) transporters [26].
Several lines of evidence support an adaptive model of

fetal nutrient transport by which transporter function is
altered based upon nutrient availability and fetal demand.
Under limiting conditions, transport activity is increased
in mice and trophoblast cell cultures [29,30]. Detailed ana-
lysis of tumor cells, in which amino acid transport activity
and growth must also be adapted to fit limiting nutrient
conditions, found that mTOR responses to amino acid
concentrations are dependent on ASCT2 and LAT1
transporters, and their substrates L-Glutamine and Leucine,
respectively [23,31,32]. The available evidence suggests
that a similar system is present in the placenta ST, sensing
fluctuations in nutrient availability and maintaining trans-
port activities to achieve optimal fetal growth conditions
[33]. These observations point to the importance of Sys-
tem L, ASCT2, and mTOR in the placenta as they pertain
to fetal growth pathologies.
Preeclampsia and IUGR often arise from the common

defect in placental development of impaired spiral artery
remodeling [34,35]. This results in altered blood flow,
and possible exposure of the developing fetus to a limited
oxygen and nutrient supply. Pre-pregnancy BMI and inad-
equate maternal weight-gain during pregnancy may also
result in restricted nutrient supply, and are additional risk
factors for fetal growth restriction [36,37]. We hypothe-
sized that in all conditions predicted to cause limited
amino acid availability to the placental/fetal unit, similar
adaptive responses aimed at increasing transport capacity,
including increased AAT protein levels, may be observed.
In the present study we investigated if the expression of
4F2hc, LAT1, ASCT2, and mTOR proteins in the placenta
is changed in potentially nutrition-restricted conditions
including preeclampsia and IUGR, or if their expression
may be associated with maternal pre-pregnancy body
mass index (BMI) or weight gain during pregnancy.

Methods
Study population and sample collection
Placental tissue collection was carried out with informed
consent under the approval of the University of Occupa-
tional and Environmental Heath (UOEH) IRB Committee.
Placentas were obtained primarily after caesarean delivery
at full-term or pre-term from women with uncomplicated
pregnancies giving birth to babies with normal birth
weight (appropriate-for-gestational-age; AGA, full-term
and pre-term control pregnancies), as well as from
pregnancies complicated by IUGR or preeclampsia.
Preeclampsia (n = 10) was defined as gestational hyper-

tension and proteinuria after 20 weeks gestation. Gesta-
tional hypertension was defined as new onset elevated
maternal systolic blood pressure (BP) more than 140 mmHg
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or diastolic BP more than 90 mmHg. Proteinuria was
defined as more than 300 mg protein in a 24 hour urine
collection or more than 1+ on a catheterized urine
specimen or more than 2+ on a voided specimen, or a
random urinary protein/creatinine ratio of more than >0.3
[38]. IUGR (n = 10) was defined by a birth weight below
the 10th percentile (small for gestational age, SGA) in an
otherwise uncomplicated pregnancy. Birth weight centiles
were based upon Japanese gender-specific fetal growth
data (adjusted for gestational age). Eight of ten IUGR
babies exhibited asymmetric growth profiles. Asymmetric
growth usually signifies IUGR-affected growth in the third
trimester, resulting in a disproportionately low birth
weight or length in comparison with occipital frontal
head circumference. However, asymmetric growth has
no universally accepted formula. Babies were consid-
ered to have asymmetric growth when the percentiles
were disproportionate, generally following the pattern
of total weight before liner growth before head cir-
cumference (i.e. weight centile < length centile < head
centile). For these data, we defined “significantly less
than” to mean plotting in nonadjacent percentile cat-
egories (<3rd, 3–5, 5–10, 10–25, 25–50, 50–75, 75–90,
90–95, 95–97, and > 97), wherein weight centile must
be at least two categories below length and/or head
circumference.
Table 1 shows the demographic data of case and con-

trol study subjects. Data are expressed as mean ± stand-
ard deviation (s.d.). The expected differences in blood
pressure at delivery were observed among normal
Table 1 Characteristic averages of pregnancy groups

Full term control

Maternal age 31.0 ± 6.4

Maternal BMI (kg/m2) 21.3 ± 6.6

Percent nulliparous 70

Blood pressure at delivery (mmHg)

Systolic (mmHg) 121 ± 9

Diastolic (mmHg) 73 ± 9

Blood pressure <20 weeks GA

Systolic (mmHg) 118 ± 7

Diastolic (mmHg) 77 ± 11

Gestational weeks at delivery 39.2 ± 1.5

Birth weight (g) 2835 ± 435

Birth weight centile 35.8 ± 25.1

Placental weight (g) 558 ± 141

Smoking (%) 0

Ceasarean delivery (%) 90

Continuous variables are shown as mean ± s.d. Dichotomous variables are given as
BP, blood pressure; n =10 samples/case condition.aP value < 0.0001 (Full term control
cP value 0.0009 (Full term control vs Preeclampsia); dP value 0.0055 (Preeclampsia vs IUG
pregnancy, preeclampsia, and IUGR (systolic/diastolic:
121 ± 9/73 ± 9 mmHg, 162 ± 19/97 ± 10 mmHg, and
122 ± 24/77 ± 22 mmHg), and all were normotensive
pregnancy before 20 weeks gestation. Gestational weeks
at delivery of pre-term controls, preeclampsia and IUGR
were about 5 weeks earlier compared to uncomplicated
full term pregnancies. Infant birth weight centile was
significantly lower in preeclampsia or IUGR compared
to uncomplicated full term and preterm pregnancies.
The incidence of maternal smoking was not different
between groups. Caesarean section in uncomplicated
pregnancy was due to repeat-caesarean section or breech
presentation. A limited number of samples were obtained
after vaginal delivery, particularly in the pre-term normal
pregnancy group due to the limited number of available
samples.
The clinical characteristics for each newborn with

IUGR or born to women with preeclampsia is presented
in Table 2. Newborns 1 to 10 are normotensive IUGR-
associated, and 11 to 20 are associated with preeclampsia.
All but two infants (number 12 and 14) born to women
with preeclampsia also fit the criteria of SGA. The rate of
oligohydramnios was 30% in both preeclampsia and
IUGR. The infant of patient number 5 in Table 2 exempli-
fies asymmetric growth. This infant has a birth weight
centile of 1.4 (category < 3rd), length percentile < 3, and
head circumference centile 10–25 (two categories greater
than birth weight and length). Eight of ten IUGR babies,
and six of the eight SGA babies in preeclampsia, exhibited
asymmetric profiles.
Preterm control Preeclampsia IUGR

31.0 ± 4.9 34.0 ± 4.3 31.6 ± 6.0

20.0 ± 3.7 23.8 ± 5.0 17.8 ± 1.2

30 30 70

116 ± 7 162 ± 19 a 122 ± 24

66 ± 10 97 ± 10c 77 ± 22d

109 ± 6 141 ± 11 105 ± 21

59 ± 10 87 ± 6 64 ± 12

34.4 ± 0.7 33.6 ± 2.0a 34.5 ± 3.1a

1993 ± 236 1446 ± 333a 1465 ± 335a

30.4 ± 19.8 5.2 ± 7.3a 2.6 ± 3.6a

448 ± 122 348 ± 91b 332 ± 82a

10 0 10

30 80 60

a percentage. Smoking status was self-reported. BMI, body mass index;
vs Preeclampsia, IUGR); bP value 0.0003 (Full term control vs Preeclampsia, IUGR);
R).



Table 2 Clinical characteristics of IUGR and preeclampsia

Patient # Oligo-hydramnios Birth weight centile Length centile Head circumference centile Growth profile

1 - 0.3 0.0 10.1 Asymmetrical

2 - 9.3 3.8 41.2 Asymmetrical

3 - 9.2 42.0 78.0 Asymmetrical

4 + 1.3 2.3 19.3 Asymmetrical

5 - 1.4 2.4 11.0 Asymmetrical

6 - 1.4 13.9 12.5 Asymmetrical

7 - 0.0 0.6 0.6 Symmetrical

8 - 3.8 6.0 28.3 Asymmetrical

9 + 0.0 0.1 0.8 Symmetrical

10 + 0.0 0.0 8.2 Asymmetrical

11 + 7.1 14.0 35.1 Asymmetrical

12 - 16.1 65.2 33.8 Symmetrical

13 - 0.4 0.0 21.1 Asymmetrical

14 - 20.7 13.1 55.7 Asymmetrical

15 + 1.7 18.4 55.9 Asymmetrical

16 - 0.6 1.8 12.3 Asymmetrical

17 - 4.2 10.5 0.1 Symmetrical

18 - 0.6 8.2 3.1 Symmetrical

19 - 0.2 1.3 0.5 Symmetrical

20 + 0.4 0.0 19.1 Asymmetrical

Clinical data of IUGR (no.1-10) and Preeclampsia (no.11-20) pregnancies are shown above.
+, positive for oligohydramnions; − , negative for oligohydramnions.
Birth weight centile is listed as a continuous variable. Asymmetric growth was determined by comparison of birth weight, length, and head circumference centiles
for each neonate as described in Methods.
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Immunohistochemistry
Formalin fixed paraffin embedded placental tissue sam-
ples (1 sample per placenta, collected between the rim
and point of chord insertion) were obtained from the
tissue bank facility of the UOEH Pathology Department
with IRB approval (full term pregnancy, n = 10; pre-term,
n = 10; preeclampsia, n = 10; and IUGR, n = 10). Paraffin
sections (3.5 μm) were incubated overnight at 37°C or 1
hr at 65°C, deparaffinized in xylenes and rehydrated in
ethanol and water. Slides underwent antigen retrieval in
citrate buffer, pH6.0, followed by peroxidase blocking
(Block, Dako, Tokyo, Japan) before incubation with the
appropriate primary Ab diluted in PBS, 1 hr, RT. Detection
was performed using Envision HRP-conjugated secondary
Ab and DAB color development system (DAKO) for
consistent development time between samples. Immuno-
histochemistry (IHC) results were qualitatively estimated
in a blinded fashion by two individuals. Chromogenic
signal intensity was assigned a relative score of 0 (no sig-
nal), 1 (weak signal detected), 2 (moderate), and 3 (strong)
[39]. The scores of five fields of view were averaged for
each slide. For each placenta sample and each antigen,
two or three slides made from non-consecutive sections
were stained and scored in independent IHC experiments.
Antibodies and chemicals
Primary antibodies recognized Cytokeratin7 (Sigma, St.
Louis, MO, USA); 4F2hc and LAT1 (KEO20 and KEO23,
respectively, Transgenic, Inc., Kobe, Japan); mTOR (ab2732,
Abcam, Tokyo, Japan); and ASCT2/SLC1A5 (H-52, Santa
Crus, CA, USA). All chemicals were purchased from Sigma
unless noted.

Data presentation and statistics
The sample size (n) is the number of different placentas
representing each case or control group. Clinical charac-
teristics data (Tables 1 and 2) were assessed by ANOVA.
IHC scoring was assessed by t-test. Statistical significance
was accepted at p < 0.05.

Results
Comparison of AAT protein expression levels between
PE, IUGR and both full- and pre-term uncomplicated
pregnancies using Immunohistochemistry
To begin investigating the regulation of AAT under con-
ditions of normal and limiting nutrient availability, the
expression level and localization of three AAT proteins,
LAT1, 4F2hc, and ASCT2, were determined in placenta
samples from IUGR, PE and both full-term and maternal
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age-matched pre-term controls using immunohistochem-
istry (IHC). Cytokeratin 7 (CK7) was included as a ST
cell marker, and as a control for levels of non-nutrient
transport-associated proteins. CK7 was present predomin-
antly throughout the ST of the microvillous. CK7 levels
were similar between all four pregnancy groups (Figure 1,
A-D). AAT proteins 4F2hc, LAT1, and ASCT2 were also
localized to the ST of the microvillous (Figures 1, E-H,
and 2, I-P).
A

B

C

D

Figure 1 Localization of Cytokeratin and the AAT 4F2hc. Immunohistoc
from Full-term control (CTRL) (A,E), Preterm control (B,F), PE (C,G), and IUGR, (
MVM (a), basal membrane (b), and cytoplasm (c), or cytotrophoblasts (ct). Size b
The common heavy chain subunit 4F2hc was primarily
observed in microvillous ST, as previously described
[24,40]. Staining was diffuse across the cytoplasm. Some
localized signal was present at both the apical MVM and
basal plasma membranes (Figure 1, E-H). The light chain
subunit LAT1 was also observed in the ST, with add-
itional staining in some stromal cells of the microvillous.
(Figure 2, I-L). LAT1 was partially concentrated at the ap-
ical MVM, and was detected throughout the cytoplasmic
E

F

G

H

hemistry staining for Cytokeratin 7 (A-D) and AAT 4F2hc (E-H) in placenta
D,H) associated placentas. (➢ Arrow denotes syncytiotrophoblast apical
ar in A = 100 μm).
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Figure 2 Localization of the AATs LAT1 and ASCT2. Immunohistochemistry staining for LAT1 (I-L) and ASCT2 (M-P), in placenta from Full-term
control (CTRL) (I,M), Preterm control (J,N), PE (K,O), and IUGR (L,P) associated placentas. (➢ Arrow denotes syncytiotrophoblast apical MVM (a), basal
membrane (b), and cytoplasm (c), or cytotrophoblasts (ct). Size bar in A = 100 μm).
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compartment. Subcellular localization of 4F2hc and LAT1
was similar in full-term and pre-term controls and both
PE and IUGR groups. Interestingly, 4F2hc and LAT1,
staining was of greater intensity in IUGR and PE asso-
ciated placenta compared to both the full-term and
pre-term controls (Figures 1, E-H, and 2, I-L).
To quantify these differences in AAT protein levels,

blinded scoring of the IHC results was performed. Mul-
tiple fields of view from each stained slide were assigned
a relative score of 0 (no signal), 1 (weak signal detected),
2 (moderate), and 3 (strong) based upon staining inten-
sity [39]. Scoring of signal intensity confirmed that
4F2hc and LAT1 protein levels were significantly higher
in both PE and IUGR, compared to controls (p < 0.05,
Figure 3). No significant differences were measured
between full-term and pre-term control groups, or be-
tween PE and IUGR, although 4F2hc levels in IUGR
scored the highest. For comparison, CK7-specific staining



Figure 3 Amino Acid Transporter protein levels in placenta
microvillous syncytiotrophoblasts. Protein levels were estimated
by blind scoring of IHC-stained formaldehyde fixed samples from
the 4 different pregnancy conditions (n = 10 each, * p < 0.05). Data is
presented in box and whisker format to define minimum and maximun
values (capped bars), 2nd and 3rd quartile (box top and bottom) and
median (line through box). Data was normalized to full term controls
(mean set to 1, grey dashed line).
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intensity was scored and no difference in intensity between
groups was observed (Figures 1, A-D, and 3).
ASCT2 protein was localized to both the microvillous

ST and cytotrophoblasts (CT) by IHC (Figure 2, M-P).
Staining was strongest in CT membranes and the ST
basal plasma membrane. Some variation was observed
in staining intensity in CT between samples. In some
samples, staining was very strong around the entire CT
membrane perimeter, while staining was limited to
regions bordering with the ST in others. Overall, we
were unable to detect any association of these distinct
staining patterns with samples from either uncompli-
cated or pathological conditions. Estimation of ASCT2
protein levels using the blinded scoring method found
the only significant difference in ASCT2 to be between
the IUGR and full-term control groups (Figure 3).
In addition to overall protein levels within the ST layer,
we also wished to compare AAT protein localization, a
common mechanism of AAT activity regulation [30,41].
By IHC, both 4F2hc and LAT1 appeared relatively diffuse,
with proteins being detected in ST cytoplasm and MVM,
making a quantitative estimation with respect to local-
ization very difficult. ASCT2 exhibited strong staining of
the cytotrophoblast as well as ST basal plasma membrane,
and this staining appeared consistent across all samples.
However, different patterns of staining with respect to
ST intracellular cytoclasmic space and MVM localization
were present within the sample set (Figure 4, A-D). The
same blinded scoring system was employed to grade ST
cytoplasmic and MVM localized staining intensity for
ASCT2. Pre-term control and PE placenta samples both
exhibited reduced levels of ASCT2 at the MVM and in
the intracellular compartment compared to full-term
controls, but these differences were non-significant. The
IUGR group exhibited the lowest ASCT2 levels at the
MVM (ASCT2MVM) and in the intracellular compartment
(ASCT2IC) (Figure 4). IUGR ASCT2MVM levels were
significantly different from both full-term and pre-term
control groups (P = 0.0006, 0.017, respectively), and IUGR
ASCT2IC was significantly lower than the full-term con-
trol group (P = 0.03, Figure 4E).

Comparison of mTOR protein levels between Normal, PE
and IUGR-associated placenta
Our current understanding of amino acid transporter
regulation includes a central role for mTOR in respond-
ing to nutrient levels and hormone stimuli. Therefore
we continued our immunohistological investigation of
predicted differences in AAT machinery with the exam-
ination of mTOR in these four placenta groupings. The
cellular localization of mTOR in term, pre-term, PE, and
IUGR pregnancies appeared similar, primarily cytoplasmic
in the ST (Figure 5, A-D). Stronger staining, correspond-
ing to higher mTOR protein levels, was observed in all
three groups associated with early gestation periods,
compared to full-term pregnancy. mTOR staining in IUGR
associated samples was the strongest, and significantly dif-
ferent from full-term controls (p = 0.002, Figure 5, A-D)
but not from pre-term controls (p = 0.07). In both PE and
IUGR samples, intense mTOR staining was frequently
co-localized with nuclear syncytia (Figure 5, C and D).

Examination of AAT and mTOR protein levels in relation
to weight gain during pregnancy and pre-pregnancy BMI
To further test the hypothesis that limited nutrient avail-
ability may stimulate compensatory increases in AAT
expression in order to increase transport potential, we
examined the relationship between AAT and mTOR
protein expression with weight gain during pregnancy
and pre-pregnancy BMI, factors directly associated with
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Figure 4 ASCT2 protein localization within the syncytiotrophoblast. ASCT2 protein was detected by immunohistochemistry in the placenta
of A, full-term control, B, pre-term control, C, preeclampsia and D, intrauterine growth restriction-associated pregnancies. E, ASCT2 protein expression
levels were estimated in the syncytiotrophoblast, including subcellular localization at the plasma membrane (PM), microvillus membrane (MVM), and
the intracellular compartment (IC) (* P < 0.05, size bar = 40 mM).
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placental nutrient availability and fetal growth [36,37,42].
To do this, the protein expression levels estimated by
blinded scoring of IHC results for the 40 samples repre-
senting full- and pre-term pregnancies, PE and IUGR-
associated pregnancies, were analyzed with respect to
weight gain and BMI (Table 3). First, AAT and mTOR
levels were compared between two weight gain groups,
less than adequate- and equal to or greater than adequate
weight gain/week. Adequate weight gain was defined
according to the 2009 Institute of Medicine guidelines
which take into account pre-pregnancy BMI values in
estimating adequate weight-gain ranges [43]. Briefly,
adequate weight gain ranges for different BMI values
were as follows: BMI < 18.5 kg/m2, 0.44-0.58 kg/week;
BMI of 18.5 to 24.9 kg/m2, 0.35-0.5 kg/week; BMI of
25 to 29.9 kg/m2, 0.23-0.33 kg/week; and BMI > 29.9
kg/m2, 0.17-0.27 kg/week.
Elevated placenta levels of 4F2hc were observed in the

less than adequate weight gain group relative to the
adequate and above weight gain group, although this
difference was not found to be significant by t-test
(1.26 ± .51 vs. 1.03 ± .28 respectively; p = 0.211). No
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D

Figure 5 mTOR protein expression in placenta ST. Placenta of A, full-term control, B, pre-term control, C, preeclampsia, and D, intrauterine
growth restriction-associated pregnancies were probed with antibodies recognizing total mTOR protein. (➢ Arrow denotes ns, nuclei syncytia.
Size bar in A = 100 mM). E, Estimated mTOR IHC scoring data is presented in box and whiskar format to define minimum and maximun values
(capped bars), 2nd and 3rd quartile (box) and median (line through box). Data was normalized to full term controls (mean set to 1, grey dashed
line) (n = 10 each, * p < 0.05).
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difference between weight gain groups was observed in
over-all staining levels for any of the AAT or mTOR
proteins, or ASCT2 subcellular localization (Table 3).
Second, AAT and mTOR protein level values were sorted
equally (n = 20 for each) into lower (BMI range 15.7 to
17.4) and upper pre-pregnancy BMI groups (BMI range
Table 3 Association of AA Transporter, mTOR expression with

Protein/cellular
localizationa

Weight gain/week of pregnancy

< adequate = or > adequate P value Trendc (<

4F2hc 1.26 ± 0.51 1.03 ± 0.28 0.211 ↓

LAT1 1.07 ± 0.25 1.10 ± 0.27 0.791 nc

ASCT2 1.12 ± 0.16 1.18 ± 0.14 0.855 nc

mTOR 1.18 ± 0.27 1.12 ± 0.27 0.537 nc

mvmASCT2b 0.58 ± 0.19 0.58 ± 0.18 0.991 nc

*Significant differences (p < 0.05) between low and high BMI groups (lower and up
aProtein expression is the average of individual sample values, as described in Meth
bmvmASCT2 refers to ASCT2 protein levels localized to the syncytiotrophoblast mic
cTrend refers to an observed increase (↑), decrease (↓), or no change (nc) in protein
17.7 to 35). In this case, significant associations were
identified. Elevated ASCT2 and mTOR protein levels
were associated with higher BMI values (p = 0.046,
0.048, respectiviely; Table 3). Overall, these observations
further help to define the extent of amino acid transporter
regulation in the placenta and its close association with
Maternal Weight Gain and BMI

Pre-pregnancy BMI

→ =/>) Low High P value Trendc (low → high)

1.11 ± 0.33 1.29 ± 0.59 0.22 ↑

1.08 ± 0.25 1.09 ± 0.27 0.93 nc

1.07 ± 0.15 1.17 ± 0.16 0.046* ↑

1.08 ± 0.31 1.26 ± 0.24 0.048* ↑

0.64 ± 0.20 0.53 ± 0.18 0.107c ↓

per 50%) was estimated by t-test.
ods, sorted into each weight gain or BMI grouping (n = 15 for each).
rovillous membrane.
expression between the weight gain or BMI groupings.
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both nutrient availability and maternal metabolism as it
relates to pre-pregnancy BMI.

Discussion
Summary
Amino acid transporter and mTOR protein levels in
placental syncytiotrophoblast cells were estimated by
immunohistochemistry in a blinded and relative qualita-
tive scoring system [39]. Our findings support the adaptive
response hypothesis of placental nutrient transport func-
tion, and suggest that AAT protein levels and cellular
localization are affected by limiting nutrient availability.
Specifically, increases in protein levels of System L amino
acid transporter LAT1 and regulator mTOR, as well as
changes in subcellular localization of ASCT2 protein were
observed in PE and IUGR, compared to full- and pre-term
normal pregnancy controls.

The importance of AAT and the adaptive response
Fetal growth is dependent on maternal nutrient supply
and placenta nutrient transport capacity. The latter is
determined by the expression and regulation of multiple
transport systems. Several lines of evidence confirm that
reduced amino acid transport capacity significantly
contributes to the IUGR phenotype including lower
placental AAT activities, and protein levels in isolated
syncytiotrophoblast membranes [8,11-14,19]. However,
the mechanism by which placental AAT activity may
be reduced so severely as to promote IUGR it is not
known. The experiments described here were aimed at
investigating AAT protein levels in situ and associations
during normal and restricted growth conditions. Our
observations of elevated 4F2hc and LAT1 protein in ST of
PE and IUGR placenta may be unexpected and potentially
conflicting with the reports described above of both re-
duced AAT activities and protein levels in isolated micro-
villous membranes. However, these data do support the
involvement of an adaptive response in placentas associ-
ated with both PE and IUGR in the form of increased
transporter protein expression. In the adaptive response
model nutrient supply and fetal demand are sensed by
the placenta and adjustments are made to maintain an
adequate nutrient supply [34]. This adaptive response
is well described in muscle believed to be important in
the placenta for regulation of System L, as well as Sys-
tem A and other transporter systems [6,30,41,44].
Similar changes in AAT protein expression were ob-

served in PE as in IUGR, which we argue is because
the PE group is also associated with conditions of reduced
blood flow and nutrient restriction. PE is currently de-
scribed as a disease with two distinct contributing sets of
factors, insufficient placentation (placental preeclampsia),
and maternal deficiencies of the endothelium and other
systems (maternal preeclampsia) [35]. Staff, et al., state
that all PE cases are likely due to a combination of both
maternal and placental factors. Our PE sample set (n = 10)
included 8 SGA births, and two births below the 20th cen-
tile gestational weight at birth. Therefore, while nutrient
insufficiency may not be as severe in some IUGR cases,
placental insufficiency and limiting nutrient availability
is likely a major component of all PE cases included in
this study.

mTOR protein levels in IUGR verses PE
In addition to increases in AAT protein levels, we also
observed an increase in total mTOR protein levels in
IUGR-associated placenta. Unlike the AAT proteins, the
mTOR increase was unique to IUGR, not being observed
in the PE group. Recent work has identified the protein
kinase mTOR as an important component of the signaling
pathway between nutrient availability, insulin hormone
signaling, and AAT activity in the placenta [28,45]. Our
work is in agreement with Roos, et al., who observed
increased total mTOR protein in IUGR [25]. Here, we
extend these observations by demonstrating a link be-
tween mTOR and pre-pregnancy BMI values as well. In
cancer cells, increased mTOR signaling is believed to
allow survival under nutrient-restricted conditions of
the tumor environment [46]. Our observation is limited
to total mTOR protein levels, as it does not include an
analysis of relevant mTOR kinase substrates or the
phosphorylation state of mTOR itself. Additional work is
needed to evaluate mTOR activities in the human placenta
in vivo, comparing normal and pathological conditions.

Post-translational control of nutrient transporters
We observed a loss of ASCT2 protein in the MVM and
intracellular compartment in IUGR-associated placenta.
This may directly result in the reduced protein transport
activities expected to be so critical in the development
of IUGR. ASCT2 function may be particularly important
because of its role in maintaining intracellular levels of
glutamine, the main substrate for amino acid exchangers
including System L. The importance of ASCT2 and
glutamine transport has recently come to light with re-
ports that elevated ASCT2 activity allows many cancers
to escape the restriction of limited nutrient availability
by increasing overall amino acid transport [47]. Knock-
ing down ASCT2 protein expression in vitro confirmed
that its glutamine transport function was a rate limiting
step for other amino acid transport activities.
Our observation lends additional support to the import-

ance of post-translational regulation of nutrient transport
activities in the placenta. Reports by Roos et.al, and
Rosario et al. demonstrate the important role of post
translational regulation via protein trafficking in syncy-
tiotrphoblast cultures [26,45]. In the first, mTOR inhib-
ition was shown to reduce AAT activity [45]. More
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recently, inhibition of mTOR was shown to modify the
post translation regulation of AAT, resulting in decreased
plasma membrane localization [26]. Based upon the avail-
able data, one model predicts low mTOR activity would
be dominant to the presence of a compensatory increase
of AAT protein expression, resulting in reduced AAT
transport activity in the syncytiotroblast.

Maternal weight gain, BMI and nutrient restriction
Pre-pregnancy body-mass index (BMI) and maternal
weight gain during pregnancy has a strong influence
over fetal weight at gestation. Insufficient weight gain is
associated with an increased risk of IUGR, preterm
birth, and perinatal mortality, while sufficient weight
gain may overcome additional risks for restricted fetal
growth [36,37,42]. In 2009, the Institute of Medicine
(IOM) of the National Academy of Sciences reexamined
the guidelines for weight gain during pregnancy, and
utilized BMI values to established optimal ranges of
weight gain for the best maternal and fetal outcomes
[43]. A recent survey demonstrated the importance of
BMI values and appropriate nutritional availability to the
fetus based upon these guidelines [48]. Taking advantage
of the predicted differences in nutrient availability to the
fetus associated with BMI and changes in gestational
weight gain, we examined AAT and mTOR levels with
respect to both gestational weight gain and pre-pregnancy
BMI, independently. Interestingly, maternal pre-pregnancy
BMI, but not weight gain, was estimated to be a predictor
of both ASCT2 and mTOR levels in placenta, with higher
levels of both proteins associated with higher BMI values.
This result for ASCT2 parallels the positive association of
BMI and reduced risk of fetal growth restriction [37,43]. It
also provides additional evidence in support of the import-
ance of ASCT2 and mTOR activity in the placenta.

Conclusions
In IUGR and preeclampsia, the fetus may be exposed to
nutrient limitations caused by abnormal remodeling of
the uterine spiral arteries [49]. However, a successful
adaptive response is predicted to result in sufficient
placental nutrient transport to overcome a state of fetal
growth restriction. Our data may be explained by a model
in which two events regulate AAT activity. First, an adap-
tive response includes increased System L transporter
protein expression in ST, as observed here in both PE and
IUGR. Second, post-translational modifications altering
AAT protein localization including ASCT2 may lead to
the loss of microvillous membrane localized AAT, and
therefore an overall loss of activity, resulting in growth-
limiting levels of amino acid transporter activity.
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