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Triggering of suicidal erythrocyte death by
uremic toxin indoxyl sulfate
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Abstract

Background: Anemia in end stage renal disease is attributed to impaired erythrocyte formation due to erythropoietin
and iron deficiency. On the other hand, end stage renal disease enhances eryptosis, the suicidal erythrocyte death
characterized by cell shrinkage and phosphatidylserine-exposure at the erythrocyte surface. Eryptosis may be triggered
by increase of cytosolic Ca2+-activity ([Ca2+]i) and by ceramide, which sensitizes erythrocytes to [Ca2+]i. Mechanisms trig-
gering eryptosis in endstage renal disease remained enigmatic. The present study explored the effect of indoxyl sulfate,
an uremic toxin accumulated in blood of patients with chronic kidney disease.

Methods: Cell volume was estimated from forward scatter, phosphatidylserine-exposure from annexin V binding,
ceramide abundance by specific antibodies, hemolysis from hemoglobin release, and [Ca2+]i from Fluo3-fluorescence.

Results: A 48 hours exposure to indoxyl sulfate significantly increased [Ca2+]i (≥ 300 μM), significantly decreased
forward scatter (≥ 300 μM) and significantly increased annexin-V-binding (≥ 50 μM). Indoxyl sulfate (150 μM) induced
annexin-V-binding was virtually abolished in the nominal absence of extracellular Ca2+. Indoxyl sulfate (150 μM) further
enhanced ceramide abundance.

Conclusion: Indoxyl sulfate stimulates suicidal erythrocyte death or eryptosis, an effect in large part due to stimulation
of extracellular Ca2+entry with subsequent stimulation of cell shrinkage and cell membrane scrambling.
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Background
Severe complications of end stage renal disease include
anemia [1,2], which is at least in part the result of re-
stricted renal erythropoietin release and subsequent im-
pairment of erythropoiesis [3,4]. In end stage renal
disease erythropoiesis is typically further compromized
by iron deficiency [5,6]. In addition, compelling evidence
points to accelerated clearance of circulating erythro-
cytes in end stage renal disease [7]. The accelerated
clearance of erythrocytes in end stage renal disease may
at least partially be due to enhanced eryptosis, a suicidal
death of erythrocytes characterized by cell shrinkage and
cell membrane scrambling with phosphatidylserine ex-
posure at the erythrocyte surface [8,9]. As a matter of
fact, the concentration of phosphatidylserine exposing
erythrocytes has been found to be twice as high in pa-
tients on dialysis than in the common population [10].
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As phosphatidylserine exposing erythrocytes are rapidly
cleared from circulating blood in vivo [9], a doubling of
phosphatiylserine exposing erythrocytes in circulating
blood is expected to reflect a decrease of erythrocyte life
span to half. As long as erythrocyte formation is not en-
hanced, a decrease of erythrocyte life span would lead to
a quantitatively similar decrease of erythrocyte count in
circulating blood. Thus, the contribution of eryptosis to
anemia in CKD patients is probably substantial.
The most important trigger of eryptosis is enhanced

cytosolic Ca2+ concentration ([Ca2+]i) [8,9]. The increase of
[Ca2+]i may result from Ca2+ entry through Ca2+-permeable
cation channels [9], which are activated by oxidation [9].
Increased [Ca2+]i leads to eryptotic cell shrinkage by acti-
vation of Ca2+-sensitive K+ channels [9], K+ exit, hyperpo-
larization, Cl- exit and thus cellular KCl and water loss [9].
Increased [Ca2+]i triggers phosphatidylserine exposure at
the cell surface by triggering cell membrane scrambling
[9]. Eryptosis may further be stimulated by ceramide [9],
energy depletion [9], caspase activation [9,11,12] and
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deranged activity of kinases such as protein kinase C [9],
AMP activated kinase AMPK [9], cGMP-dependent pro-
tein kinase [9], Janus-activated kinase JAK3 [13], casein
kinase [14,15], p38 kinase [16], as well as sorafenib
[17] and sunitinib [18] sensitive kinases. Eryptosis is
further triggered by a wide variety of xenobiotics and
is enhanced in a variety of clinical disorders [9,19-37].
Little is known about mechanisms underlying en-

hanced eryptosis in endstage renal disease. At least in
theory, eryptosis may be stimulated by some uremic
toxins. As a matter of fact, eryptosis has previously been
shown to be triggered by the uremic toxins vanadate [9],
acrolein [38] and methylglyoxal [9]. A further uremic
toxins that could contribute to anemia in chronic kidney
disease is indoxyl sulfate [39,40], which is at least par-
tially effective by suppression of erythropoietin produc-
tion [41]. Further effects of indoxyl sulfate include
downregulation of Klotho [42], induction of oxidative
stress [42,43], up-regulation of NFκB [42], aortic calcifi-
cation and aortic wall thickening [42], interference with
wound repair [44], triggering of cell senescence [42],
stimulation of cardiac and renal fibrosis [42,45] and accel-
eration of renal disease progression [42]. Indoxyl sulfate is
generated by colonic microbes [46] and accumulates in
blood, if renal excretion is impaired [42]. Indoxyl sulfate
induces apoptosis, the suicidal death of nucleated cells, an
effect involving ERK1/2 and p38 MAP kinase [47].
The present study explored, whether eryptosis is stim-

ulated by indoxyl sulfate. To this end, the effect of in-
doxyl sulfate on [Ca2+]i, cell volume, ceramide formation
and phosphatidylserine abundance at the erythrocyte
surface were determined.
Methods
Erythrocytes, solutions and chemicals
Leukocyte-depleted erythrocytes were kindly provided by
the blood bank of the University of Tübingen. The study
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Figure 1 Effect of indoxyl sulfate on erythrocyte forward scatter. A. O
for 48 hours to Ringer solution without (−, grey) and with (+, black) presen
the normalized erythrocyte forward scatter (FSC) following incubation for 4
indoxyl sulfate (5–600 μM). *,*** (p < 0.05, 0.001) indicate significant differen
is approved by the ethics committee of the University of
Tübingen (184/2003 V). Erythrocytes were incubated
in vitro at a hematocrit of 0.4% in Ringer solution con-
taining (in mM) 125 NaCl, 5 KCl, 1 MgSO4, 32 N-2-
hydroxyethylpiperazine-N-2-ethanesulfonic acid (HEPES),
5 glucose, 1 CaCl2; pH 7.4 at 37°C for 48 h. Where indi-
cated, erythrocytes were exposed to indoxyl sulfate potas-
sium salt (Sigma-Aldrich, Steinheim, Germany) at the
indicated concentrations. In Ca2+-free Ringer solution,
1 mM CaCl2 was substituted by 1 mM glycol-bis(2-ami-
noethylether)-N,N,N’,N’-tetraacetic acid (EGTA).
FACS analysis of annexin-V-binding and forward scatter
After incubation under the respective experimental
condition, 50 μl cell suspension was washed in Ringer
solution containing 5 mM CaCl2 and then stained
with Annexin-V-FITC (1:200 dilution; ImmunoTools,
Friesoythe, Germany) in this solution at 37°C for
20 min under protection from light. In the following,
the forward scatter (FSC) of the cells was determined,
and annexin-V fluorescence intensity was measured with
an excitation wavelength of 488 nm and an emission wave-
length of 530 nm on a FACS Calibur (BD, Heidelberg,
Germany).
Measurement of intracellular Ca2+

After incubation erythrocytes were washed in Ringer solu-
tion and then loaded with Fluo-3/AM (Biotium, Hayward,
USA) in Ringer solution containing 5 mM CaCl2 and
2 μM Fluo-3/AM. The cells were incubated at 37°C for
30 min and washed twice in Ringer solution containing
5 mM CaCl2. The Fluo-3/AM-loaded erythrocytes were
resuspended in 200 μl Ringer. Then, Ca2+-dependent
fluorescence intensity was measured with an excitation
wavelength of 488 nm and an emission wavelength of
530 nm on a FACS Calibur.
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Figure 2 Effect of indoxyl sulfate on phosphatidylserine exposure and hemolysis. A. Original histogram of annexin-V-binding of erythro-
cytes following exposure for 48 hours to Ringer solution without (−, grey) and with (+, black) presence of 600 μM indoxyl sulfate. B. Arithmetic
means ± SEM (n = 24–25) of erythrocyte annexin-V-binding following incubation for 48 hours to Ringer solution without (white bar) or with (black
bars) presence of indoxyl sulfate (5–600 μM). For comparison, arithmetic means ± SEM (n = 5) of the percentage of hemolysis is shown as grey
bars. *,*** (p < 0.05, 0.001) indicates significant difference from the absence of indoxyl sulfate for the respective measurements (ANOVA).
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Measurement of hemolysis
For the determination of hemolysis the samples were
centrifuged (3 min at 400 g, room temperature) after in-
cubation, and the supernatants were harvested. As a
measure of hemolysis, the hemoglobin (Hb) concentra-
tion of the supernatant was determined photometrically
at 405 nm. The absorption of the supernatant of eryth-
rocytes lysed in distilled water was defined as 100%
hemolysis.
Determination of ceramide formation
For the determination of ceramide, a monoclonal antibody-
based assay was used. After incubation, cells were stained
for 1 hour at 37°C with 1 μg/ml anti-ceramide antibody
(clone MID 15B4, Alexis, Grünberg, Germany) in PBS
containing 0.1% bovine serum albumin (BSA) at a dilution
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Figure 3 Effect of indoxyl sulfate on erythrocyte cytosolic Ca2+ conce
following exposure for 48 hours to Ringer solution without (−, grey) and with
(n = 20) of the Fluo3 fluorescence (arbitrary units) in erythrocytes exposed for
indoxyl sulfate (5–600 μM).
of 1:5. The samples were washed twice with PBS-BSA.
Subsequently, the cells were stained for 30 minutes with
polyclonal fluorescein-isothiocyanate (FITC)-conjugated
goat anti-mouse IgG and IgM specific antibody (Pharmingen,
Hamburg, Germany) diluted 1:50 in PBS-BSA. Unbound
secondary antibody was removed by repeated washing
with PBS-BSA. The samples were then analyzed by flow
cytometric analysis with an excitation wavelength of
488 nm and an emission wavelength of 530 nm.
Statistics
Data are expressed as arithmetic means ± SEM. As in-
dicated in the figure legends, statistical analysis was
made using ANOVA and t test as appropriate. N de-
notes the number of different erythrocyte specimens
studied. Since different erythrocyte specimens used in
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48 hours to Ringer solution without (white bar) or with (black bars)



Figure 4 Effect of Ca2+ withdrawal on indoxyl sulfate-induced
annexin-V-binding. Arithmetic means ± SEM (n = 10) of the
percentage of annexin-V-binding erythrocytes after a 48 hours treat-
ment with Ringer solution without (white bar) or with (black bars)
150 μM indoxyl sulfate in the presence (left bars, + Ca) and absence
(right bars, - Ca) of calcium. *** (<0.001) indicates significant differ-
ence from respective control (absence of indoxyl sulfate) (ANOVA)
### (p < 0.001) indicates significant difference from the respective
values in the presence of Ca2+.
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distinct experiments are differently susceptible to triggers
of eryptosis, the same erythrocyte specimens have been
used for control and experimental conditions.

Results and discussion
The present study aimed to test whether indoxyl sulfate
exposure triggers eryptosis, the suicidal erythrocyte
death, which is characterized by cell shrinkage and by
cell membrane scrambling. Cell volume was determined
utilizing flow cytometry. As shown in Figure 1, a
48 hours treatment with indoxyl sulfate led to a decrease
Ceramide-dependent fluorescence
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Figure 5 Effect of indoxyl sulfate on ceramide formation. A. Original h
exposure for 48 hours to Ringer solution without (−, grey) and with (+, black)
ceramide abundance after a 48 hours incubation in Ringer solution without (w
cates significant difference from control (absence of indoxyl sulfate) (t test).
of forward scatter, an effect reaching statistical signifi-
cance at 300 μM indoxyl sulfate concentration. Accord-
ingly, indoxyl sulfate treatment was followed by
erythrocyte shrinkage.
In order to analyze cell membrane scrambling,

phosphatidylserine exposing erythrocytes were identi-
fied by annexin-V-binding in FACS analysis. As
shown in Figure 2, a 48 hours treatment with
indoxyl sulfate dose dependently increased the per-
centage of annexin-V-binding erythrocytes. This
effect reached statistical significance at 50 μM
indoxyl sulfate concentration. Accordingly, indoxyl
sulfate stimulated erythrocyte cell membrane scram-
bling leading to phosphatidylserine exposure at the
cell surface.
To explore, whether indoxyl sulfate exposure leads

to hemolysis, the percentage of hemolysed erythro-
cytes was quantified by determination of hemoglobin
abundance in the supernatant. As shown in Figure 2,
treatment of erythrocytes for 48 hours with indoxyl
sulfate did not significantly increase the hemoglobin
concentration in the supernatant. (Figure 2). Thus,
indoxyl sulfate triggered phosphatidylserine trans-
location at the cell membrane without appreciably
permeabilizing the cell membrane to hemoglobin.
Both, cell shrinkage and cell membrane scrambling

are known to be triggered by an increase of cytosolic
Ca2+ concentration ([Ca2+]i). Further experiments
were thus performed to elucidate the effect of in-
doxyl sulfate on [Ca2+]i. Erythrocytes were exposed
to Ringer solution in the absence or presence of in-
doxyl sulfate (5–600 μM). The erythrocytes were
subsequently loaded with Fluo3-AM and Fluo3 fluor-
escence determined in FACS analysis. As shown in
Figure 3, a 48 hours exposure of human erythrocytes
to indoxyl sulfate was followed by an increase of
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Fluo3 fluorescence, an effect reaching statistical sig-
nificance at 300 μM indoxyl sulfate concentration.
Accordingly, indoxyl sulfate increased cytosolic Ca2+

concentration.
In order to determine, whether the stimulation of cell

membrane scrambling by indoxyl sulfate was secondary
to an increase of [Ca2+]i, erythrocytes were exposed to
150 μM indoxyl sulfate for 48 hours either in the pres-
ence of extracellular Ca2+ (1 mM) or in the nominal ab-
sence of Ca2+ and presence of the Ca2+ chelator EGTA
(1 mM). As shown in Figure 4, the effect of indoxyl sul-
fate on annexin-V-binding was virtually abolished in the
nominal absence of extracellular Ca2+.
A further series of experiments was performed to de-

fine the effect of indoxyl sulfate on formation of ceramide.
Ceramide abundance at the cell surface was elucidated
utilizing FITC-labeled anti-ceramide antibodies. As shown
in Figure 5, treatment of erythrocytes with 150 μM in-
doxyl sulfate significantly increased ceramide abundance
at the erythrocyte surface.
The present study uncovers a novel effect of indoxyl

sulfate, i.e. the triggering of erythrocyte shrinkage and
erythrocyte cell membrane scrambling, both hallmarks
of suicidal erythrocyte death or eryptosis. The concen-
trations of indoxyl sulfate required for statistically sig-
nificant stimulation of eryptosis were in the range of
those encountered in uremic plasma [39,48].
The observed erythrocyte shrinkage following indoxyl

sulfate treatment presumably resulted from increase of
cytosolic Ca2+ concentration with subsequent activation
of Ca2+ sensitive K+ channels [9,49], K+ exit, cell mem-
brane hyperpolarisation, Cl- exit and thus cellular loss of
KCl with osmotically obliged water [9].
The observed indoxyl sulfate induced cell membrane

scrambling was similarly due to increased cytosolic Ca2+

activity. Accordingly, the presence of extracellular Ca2+

is required for full stimulation of cell membrane scram-
bling. The indoxyl sulfate concentrations required to
trigger phosphatidylserine exposure were lower than
those required to significantly enhance Fluo3 fluores-
cence and to decrease forward scatter. It must be kept in
mind that Fluo3 fluorescence and forward scatter may
be less sensitive than detection of annexin V binding
erythrocytes. Thus, the present observations do not
allow the conclusion that Ca2+ independent stimulation
of cell membrane scrambling does occur at low indoxyl
sulfate concentrations. Nevertheless, additional mecha-
nisms may conctribute to the stimulation of cell mem-
brane scrambling following indoxyl sulfate exposure. As
shown here, indoxyl sulfate stimulates the formation of
ceramide, which is in turn known to sensitize erythrocytes
for the scrambling effects of increased cytosolic Ca2+ con-
centration [9]. Indoxyl sulfate induces oxidative stress
[42,43], a well known trigger of eryptosis [9,12]. Indoxyl
sulfate further activates p38 MAP kinase [47], which again
has been shown to trigger eryptosis [16]. Moreover, the
machinery governing eryptosis includes caspases [9,11,12],
protein kinase C [9], AMP activated kinase AMPK [9],
cGMP-dependent protein kinase [9], Janus-activated kin-
ase JAK3 [13] and casein kinase [14,15]. At least in theory,
those mechanisms may participate in the triggering of
eryptosis by indoxyl sulfate.
Indoxyl sulfate is an uremic toxin, which could well

contribute to the accelerated erythrocyte death in end
stage renal disease. Phosphatidylserine exposing erythro-
cytes are bound to phagocytosing cells and are thus rap-
idly cleared from circulating blood [9]. In end stage
renal disease, the accelerated loss of erythrocytes is par-
alleled by impaired formation of new erythrocytes thus
leading to development of anemia [50]. The effect of in-
doxyl sulfate could be shared by other uremic toxins,
which could similarly trigger eryptosis. Uremic toxins
already known to trigger eryptosis include vanadate [9],
acrolein [38] and methylglyoxal [9]. Moreover, eryptosis
and thus clearance of affected erythrocytes from circu-
lating blood is stimulated by iron deficiency [51], which
is common in end stage renal disease and contributes to
the development of anemia in those patients [5,6].
Clearly, additional substances or disorders could contrib-
ute to the development of anemia in patients with end
stage renal disease.
Excessive eryptosis in end stage renal disease could

further trigger thrombosis and impede microcirculation.
Phosphatidylserine exposing erythrocytes adhere to the
vascular wall at least in part by interaction of the
erythrocyte phosphatidylserine and endothelial CXCL16/
SR-PSO [52]. Erythrocyte adherence to the vascular wall
is expected to interfere with blood flow [9,52]. Phospha-
tidylserine exposing erythrocytes may further stimulate
blood clotting [9,53,54]. The curtailing of blood flow fol-
lowing enhanced turnover of erythrocytes with increased
numbers of phosphatidylserine exposing erythrocytes in
circulating blood may contribute to the side effects fol-
lowing uncritical use of erythropoietin or other erythro-
poiesis stimulating agents [55-57].

Conclusion
The uremic toxin indoxyl sulfate triggers cell shrinkage
and cell membrane scrambling and thus eryptosis, the
suicidal death of erythrocytes. Indoxyl sulfate is at least
partially effective by increasing cytosolic Ca2+ and cer-
amide formation.
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