
Ramos et al. BMC Medical Genetics 2012, 13:101
http://www.biomedcentral.com/1471-2350/13/101
RESEARCH ARTICLE Open Access
The contribution of FTO and UCP-1 SNPs to
extreme obesity, diabetes and cardiovascular
risk in Brazilian individuals
Adauto V Ramos1,2, Luciana Bastos-Rodrigues1, Bruna A Resende1, Eitan Friedman3, Luciana Campanha-Versiani1,
Debora M Miranda4, Marta Sarquis5 and Luiz De Marco1*
Abstract

Background: Obesity has become a common human disorder associated with significant morbidity and mortality
and adverse effects on quality of life. Sequence variants in two candidate genes, FTO and UCP-1, have been
reported to be overrepresented in obese Caucasian population. The association of these genes polymorphisms with
the obesity phenotype in a multiethnic group such as the Brazilian population has not been previously reported.

Methods: To assess the putative contribution of both FTO and UCP-1 to body mass index (BMI) and cardiovascular
risk we genotyped SNPs rs9939609 (FTO) and rs6536991, rs22705565 and rs12502572 (UCP-1) from 126 morbidly
obese subjects (BMI 42.9 ± 5.6 kg/m2, mean ± SE) and 113 normal-weight ethnically matched controls (BMI 22.6 ±
3.5 kg/m2, mean ± SE). Waist circumference, blood pressure, glucose and serum lipids were also measured. Each
sample was also genotyped for 40 biallelic short insertion/deletion polymorphism (indels) for ethnic assignment
and to estimate the proportion of European, African and Amerindian biogeographical ancestry in the Brazilian
population.

Results: Cases did not differ from controls in the proportions of genomic ancestry. The FTO SNP rs9939609 and
UCP-1 SNP rs6536991 were significantly associated with BMI (p= 0.04 and p<0.0001 respectively). An allele dose
dependent tendency was observed for BMI for rs6536991 sample of controls. No other significant associations
between any SNP and hypertension, hyperlipidemia and diabetes were noted after correction for BMI and no
significant synergistic effect between FTO and UCP-1 SNPs with obesity were noted. There was not an association
between rs9939609 (FTO) and rs6536991 (UCP-1) in with maximum weight loss after 1 year in 94 obese patients
who underwent bariatric surgery.

Conclusion: Our data are consistent with FTO rs9939609 and UCP-1 rs6536991 common variants as contributors to
obesity in the Brazilian population.
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Background
Obesity, defined by the World Health Organization
(WHO) as body mass index (BMI) above 30 kg/m2 is an
increasingly important clinical and public health chal-
lenge in both developed and developing countries and
is associated with several co morbidities such as type 2
diabetes, hypertension, cardiovascular diseases and
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metabolic syndrome [1,2]. More than 400 million adults
were obese in 2005, with more than 700 million adults pre-
dicted to be obese by 2015 [2]. Although obesity is largely
attributed to an imbalance between energy intake and ex-
penditure multiple lines of evidence such as twin and adop-
tion studies [3,4] are consistent with obesity having a
contributing genetic component. Thus, in all likelihood
obesity is a multifactorial condition due to complex inter-
actions between environmental and genetic factors [2,5,6].
While genes play a role in determining obesity trait,

the identification of the genes involved remains elusive
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for the most part [6,7]. Three independent genome-
wide (GWAS) studies reported significant association
between obesity (determined by BMI) and common
genetic variants in the fat mass and obesity-associated
(FTO) gene including the SNP rs9939609 [8-10]. This
association was also replicated in genetically heteroge-
neous populations of Caucasians and Asians [11-14],
but discordant results have been observed in African
populations [15-17]. Furthermore, the differences in risk
allele frequencies and linkage disequilibrium structure
across ethnicities can provide further insights to refine
the association signal and identify the true risk variant.
Of particular interest is the fact that the FTO variants

do not seem to affect BMI or the risk of obesity in Afri-
can American [9,15], Chinese Hans [18] or Oceanic
populations [19]. The minor allele frequency in these
populations is less than half of that reported for popula-
tions of European descent and the patterns of linkage
disequilibrium are also distinct.
In addition, many association studies were also per-

formed in various populations to elucidate the potential
contribution of UCP-1 polymorphisms to various obesity
phenotypes [20,21]. Uncoupling protein 1 (UCP1) is
abundant in brown adipose tissue, and dissipates energy
through heat. Energy expenditure is a complex trait
comprising metabolic rate at rest, and physical activity,
diet-induced and adaptive thermogenesis [22]. The con-
tribution of the thermoregulatory mechanisms to body
weight regulation appears to be critical in homeothermic
animals [23]. As such UCP-1 is candidate gene for
obesity [24-26].
The association of both FTO and UCP-1 polymorph-

isms with the obesity phenotype in the Brazilian popula-
tion has not been reported, and that was the aim of the
present study.

Methods
Participants
We recruited 126 obese patients with mean BMI of 42.9 ±
5.6 kg/m2, mean ± SE) from the Bariatric Surgical Clinics
of Hospital Felicio Rocho and 113 non-obese controls
from General Endocrine Clinic (Hospital Felício Rocho)
with mean BMI of 22.6 ± 3.5 kg/m2, mean ± SE). Obesity
was defined as BMI ≥ 30 kg/m2 and non-obese was
defined as BMI < 30kg/m2. Height and weight were mea-
sured with participants dressed in lightweight clothing
without shoes. Waist circumference, blood pressure,
glucose and serum lipids were also measured. Waist cir-
cumference, blood pressure, glucose and serum lipids
were also measured. All patients were followed up by
the staff of these clinics and data on medication use and
diagnosis were considered for enrollment in the study as
well as to define disease status.
We genotyped one SNP of the FTO gene and three of
the UCP-1 gene. The weight of 94 obese patients was
obtained one year after bariatric surgery. All participants
signed a written informed consent, and the study was
approved by the Ethics Committee of the Universidade
Federal de Minas Gerais.
Genotyping
Genomic DNA extraction was performed from whole
blood using a standard protocol. The FTO rs9939609
and UCP-1 rs6536991, rs2270565 and rs12502572 were
genotyped by allelic discrimination Taqman assays (Ap-
plied Biosystems, Foster City, CA). PCR was performed
in 96-well format in a total of 10μl reaction volume
using 10ng of genomic DNA and FAM/VIC dye labeled
allelic probes with the Taqman Universal Fast Master
mix and subjected to 95°C for 15 min, and 40–50 cycles
of 95°C for 15 sec and 60°C for 45 seconds on an ABI
9800 Fast Thermocycler (Applied Biosystems, Foster
City, CA). The Taqman assay plates were transferred to
ABI 7500 Fast Real Time PCR system in which the
fluorescence intensity in each well of the plate was
recorded and genotypes were analyzed using Sequence
Detection Software 1.3. Genotyping quality control pro-
cedures included genotyping 10% duplicates for accuracy
checking and inclusion of both positive and non-
template controls in each 96-well plate. Genotyping suc-
cess rate was 99.5%. Genotyping accuracy as determined
by concordance between duplicates was 100%.
In addition, each sample was independently typed for

40 biallelic short insertion/deletion polymorphisms (indels)
to establish the ancestry of our studied sample [27].
Statistical analyses
Allele and genotype frequencies were compared be-
tween case and control groups with the χ2 test using
the Unphased software program v.3.0.13. Deviation of
allele frequency from Hardy-Weinberg equilibrium
(HWE) was tested for all SNPs using the Haploview
software. In addition, linkage disequilibrium (LD) pat-
tern between the three studied SNPs near the UCP-1
was tested also using Haploview. One thousand permu-
tation tests were done for the SNPs near the UCP-1.
We performed 1,000 permutations in each test to esti-
mate the global significance of the results for all analyses
and to validate the expectation-maximization values. Pu-
tative associations with the FTO and UCP-1 loci, includ-
ing suitable adjustment for age, were assessed via
regression analysis. In table 1, the p-value was calculated
using Mann–Whitney U test to compare continuous
variables, and chi-square analysis was performed to
compare categorical variables. We used the Structure
software to estimate the proportion of European, African



Table 1 Clinical characterization of obese and control
subjects*

Anthropometric
measure

Obese
(n=126)

Control
(n=113)

P value

Age 40.3 ± 12.7 50.0 ± 17.3 <0.0001

Gender (M/F) 21/105 20/93 0.355

Height (m) 1.63 ± 0.09 1.60 ± 0.09 0.038

Weight (kg) 115.0 ± 21.4 58.3 ± 10.4 <0.0001

BMI 42.9 ± 5.6 22.6 ± 3.5 <0.0001

Waist circumference (cm) 119 ± 13 79 ± 12 <0.0001

Dislipidemia (%) 54.9 46 0.631

HDL (mg/dl) 51 ± 12 47 ± 15 0.0248

LDL (mg/dl) 121 ± 35 125 ± 34 0.3355

Triglycerides (mg/dl) 151 ± 91 134 ± 65 0.3075

Diabetes (%) 17.2 11.4 <0.0001

Glucose (mg/dl) 105 ± 42 89 ± 21 <0.0001

Hypertension (%) 40.9 21.2 0.005

Systolic blood pressure (mmHg) 136 ± 14 131 ± 18 0.0016

Diastolic blood pressure (mmHg) 87 ± 9 82 ± 9 <0.0001

*Mann–Whitney U test and chi-square analysis.
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and Amerindian biogeographical ancestry of each group
and the Unphased software to analyze the polymorph-
isms and their association with obesity, diabetes, lipids,
hypertension and metabolic syndrome. Nonparametric
analysis was performed by the GraphPad Prism 5 to
analyze a significant synergistic effect between FTO and
UCP-1 SNPs with obesity. Difference in BMI between
genotypes was analyzed using a multiple linear regres-
sion, with BMI as the dependent variable and genotype
as the independent variable, and with gender as cov-
ariate for BMI. Statistical significance was taken at a
p- value <0.05 for all comparisons.
Results
Clinical characteristics of the 239 participants in this
study are shown in Table 1. The study sample consisted of
239 Brazilian individuals, aged 18–72 years old. Patients
were 126 severely obese subjects (BMI 42.9 ± 5.6 kg/m2)
with a mean age of 40.3 ± 12.7 years (mean ± SE)
(range 18–71 years). Controls were 113 normal-weight
Table 2 Position and Hardy-Weinberg equilibrium of SNPs

SNP name Chromosome Chromosome
position

Gene

rs6536991* 4 141481581 UCP1

rs2270565 4 141483471 UCP1

rs12502572 4 141485134 UCP1

rs9939609* 16 53820686 FTO

*tag SNPs; ** HWpval: HWE P value’. X2 tests.
(or somewhat overweight) subjects (BMI 22.6 ± 3.5 kg/m2)
with a mean age of 50.0 ± 17.3 years old (mean ± SE)
(range 18–72 years).
Genotyping was performed for one FTO SNP

(rs9939609) and for three UCP-1 SNPs (rs6536991,
rs2270565 and rs12502572). All SNPs were in Hardy-
Weinberg equilibrium (P-value 0.88, 0.12, 0.35 and 0.49
for rs9939609, rs6536991, rs2270565 and rs12502572
respectively). Table 2 shows the position and Hardy-
Weinberg equilibrium of SNPs. The calculated power
estimate for the rs2270565 and rs12502572 was 49.4%
and 61.0%, respectively.
The minor allele frequencies (MAFs) observed in this

study (0.435, 0.383, 0.056 and 0.480 for rs9939609,
rs6536991, rs2270565 and rs12502572, respectively)
were close to those in dbSNP (http://www.ncbi.nlm.nih.
gov/snp) population (0.355, 0.319, 0.073 and 0.467,
respectively).
As shown in Table 3, the FTO SNP rs9939609 and

UCP-1 SNP rs6536991 demonstrated a statistically sig-
nificant association with the obesity phenotype as mea-
sured by BMI (p= 0.04 and p< 0.0001 respectively).
However two UCP-1 SNPs rs2270565 and rs12502572
were not associated with the obesity phenotype (p= 0.25
and p= 0.35 respectively). An allele dose-dependent ten-
dency was observed for BMI just for rs6536991 sample
of controls (Figure 1). Pairwise LD demonstrated one
LD block in the UCP-1 gene comprising two SNPs
(rs2270565 and 12502572, D_ = 1.0, LOD 5.29, r-squared
0.082). There was also a moderate LD in UCP-1
rs6536991 and rs12502572 polymorphisms (D_ = 0.781,
LOD 37.81, r-squared 0.525) as well as between the
polymorphisms rs6536991 and rs2270565 (D_ = 0.637,
LOD 0.6, r-squared 0.015).Clinical characteristics of
the studied population by FTO rs9939609 and UCP-1
rs6536991 genotypes are shown in Tables 4 and 5,
respectively.
There was a seemingly statistically significant associ-

ation between rs6536991 with diabetes (p=0.01),
rs6536991 with hypertension (p=0.003) and rs6536991
with dyslipidemia (p=0.035) which disappeared after
BMI stratification. A borderline association between
rs9939609 with diabetes (p=0.05) also disappeared after
BMI stratification. We did not find a significant syner-
gistic effect between FTO and UCP-1 SNPs with obesity.
SNP Type Ancestral
allele

Hardy-Weinberg
p value **

Intron C 0.12

Missense mutation T 0.35

Intron A 0.49

Intron A 0.88

http://www.ncbi.nlm.nih.gov/snp
http://www.ncbi.nlm.nih.gov/snp


Table 3 Association between FTO (rs9939609), UCP-1 (rs6536991, rs2270565 and rs12502572) with obesity and Hardy-
Weinberg equilibrium (HWE)

Genotype Patients Controls P OR 95% CI HWE

n % n %

rs 9939609

TT 34 27 41 36 0.04 1 - 0.88

TA 60 48 57 50 1.27 0.71-2.27

AA 32 25 15 13 2.57 1.2-3.52

Allele

T 128 51 139 62 0.02 1 -

A 124 49 87 38 1.55 1.07-2.23

rs6536991

TT 10 8 17 15 <0.0001 1 - 0.12

TC 87 69 42 37 3.52 1.48-8.35

CC 29 23 54 48 0.91 0.37-2.25

Allele

T 107 42 76 34 0.046 1 -

C 145 58 150 66 0.69 0.47-1.0

rs2270565

TT 109 87 104 92 0.25 1 - 0.35

TA 16 13 9 8 1.70 0.72-4.01

AA 1 1 0 0 2.968e+007 1109e+007-7943e+007

Allele

T 234 93 217 96 0.13 1 -

A 18 7 9 4 1.86 0.82-4.21

rs12502572

GG 40 32 46 41 0.35 1 - 0.49

GA 61 48 47 42 1.49 0.84-2.64

AA 25 20 20 18 1.44 0.70-2.97

Allele

G 141 56 139 62 0.22 1 -

A 111 44 87 38 1.26 0.87-1.81

Figure 1 Association between rs6536991 and BMI in control
group.
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Difference in BMI between genotypes was analyzed
using a multiple linear regression and confirmed the
association between FTO rs9939609 (p=0.0420) and
UCP-1 rs6536991 (p<0.001) genotypes with BMI.
There was not an association between rs9939609

(FTO) and rs6536911 (UCP-1) with maximum weight
loss in 94 obese patients one year after bariatric surgery
(p=0.410 and p=0.394 respectively).
Using genotyping data for 40 polymorphic indel loci,

which form a powerful ancestry informative test battery
(27) the proportion of Europeans, Africans and Amerin-
dians were 0.872 ± 0.021, 0.087 ± 0.017 and 0.039 ±
0.092 (mean ± SE), respectively for the cases and 0.928 ±
0.012, 0.037 ± 0.006 and 0.033 ± 0.061, respectively



Table 4 Clinical and laboratory dataa (FTO rs9939609 genotype)

Age
(years)

Weight
(Kg)

Height
(cm)

Waist
(cm)

bBMI
(kg/m2)

cHDL
(mg/dl)

dLDL
(mg/dl)

eTG
(mg/dl)

fSBP
(mmHg)

gDBP
(mmHg)

Fasting Glucose
(mg/dl)

Obese

TT 37.7 ±13.3 115.8±25.2 163.3±10.2 116.5±14.2 43.1±6 52.8±16.1 126.2±33.9 149.9±101.2 137.1±14.7 86.2±7.3 109.9±58.8

(33.1-42.4) (107–124.6) (159.7-166.8) (111.4-121.5) (41–45.1) (46.9-58.6) (114–138.5) (113.5-186.4) (131.9-142.2) (83.6-88.7) (88.7-131.1)

TA 42.6±12.6 115.8±19.4 163.2±8 122.0±12.8 43.3±5.7 51.1±10.9 126.2±34 161.0±98.7 135.2±13.9 86.3±8.9 105.4±40.3

(39.8-45.7) (110.8-120.8) (161.1-165.3) (118.6-125.4) (41.9-44.8) (48.2-54) (117.1-135.3) (134.8-187.2) (131.6-138.8) (84–88.6) (94.7-116.1)

AA 38.8±12.1 112.7±21.2 163.8±9.2 117.4±12.3 41.8±4.8 49.8±10.1 107.6±33.4 134.3±59.9 136.3±13.4 87.3±9.5 99.0±20

(34.4-43.2) (105.1-120.4) (160.5-167.2) (112.9-121.8) (40–43.5) (46.1-53.4) (95.6-119.7) (112.7-155.9) (131.4-141.1) (83.9-90.7) (91.8-106.3)

Control

TT 53.3±17.6 56.4±10.7 160.3±8.9 77.4±11.1 21.9±3.4 46.0±12.3 119.3±33.9 143.9±63.9 130.0±18.5 80.4±9.6 91.1±28.1

(47.8-58.9) (53–59.8) (157.5-163.1) (73.3-81.4) (20.8-22.9) (41.7-50.4) (107.3-131.3) (121.2-166.5) (124.2-135.9) (77.4-83.4) (81.3-100.9)

TA 49.8±15.8 60.2±11 160.2±8.2 81.7±12.4 23.4±3.7 48.4±16.1 129.4±33.3 124.5±66.9 131.8±18 81.9±8.8 85.1±13.9

(45.6-54.0) (57.2-63) (158.1-162.4) (77.9-85.6) (22.4-24.4) (43.4-53.5) (119–139.8) (103.6-145.3) (127.11-136.6) (70.6-84.3) (80.8-89.4)

AA 41.7±20.2 56.0±5.3 160.6±10.8 72.6±10.4 21.8±2.1 45.9±17.9 126.8±35.4 136.4±64.3 130.3±15.1 82.9±6.5 93.0±18

(30.5-52.9) (53–58.9) (154.6-166.5) (66–79.2) (20.6-23) (35.1-56.7) (105.4-148.2) (97.5-175.3) (121.9-138.6) (79.3-86.6) (82.6-103.4)
aData shown as average ± SD and 95% confidence interval of the mean; bBMI, Body Mass Index; cHigh Density Lipoprotein; dLDL, Low Density Lipoprotein; eTG, Triglycerides; fSBP, Systolic Blood Pressure; gDBP,
Diastolic Blood Pressure. TT denotes homozygous carriers of the T allele, TA heterozygous carriers, and AA noncarriers of FTO.
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Table 5 Clinical and laboratory dataa (UCP-1 rs6536991 genotype)

Age
(years)

Weight
(Kg)

Height
(cm)

Waist
(cm)

BMI
(kg/m2)

HDL
(mg/dl)

LDL
(mg/dl)

TG
(mg/dl)

SBP
(mmHg)

DBP
(mmHg)

Fasting Glucose
(mg/dl)

Obese

TT 40.5±9.5 124.2±29.4 164.3±10.1 124.6±17.5 45.6±7.8 47.2±6.2 113.1±30.1 142.1±48.1 131±8.7 83.5±6.7 98.5±15.8

(33.7-47.3) (103.2-145.2) (157.1-171.5) (112.1-137.1) (40–51.2) (42.7-51.7) (91.6-134.6) (107.7-176.5) (124.7-137.3) (78.7-88.3) (87.2-109.8)

TC 39.8±12.6 114.6±20.9 163.6±8.8 119.7±12 42.6±5.8 50.6±13.2 119.6±35.7 154.0±96.7 137.4±14.1 87.2±8.7 107.7±48.6

(37.1-42.5) (110.2-119.1) (161.8-165.5) (117.1-122.3) (41.4-43.8) (47.8-53.5) (111.8-127.4) (132.8-175.1) (134.4-140.4) (85.3-89) (97.1-118.3)

CC 41.9±14.2 113.0±20 162.4±8.9 116.5±14.7 42.7±4.7 54.4±10.7 129.3±32.1 145.4±85.7 133.4±14.5 85.7±8.9 98.9±23.2

(36.5-47.3) (105.4-120.6) (159–165.8) (111–122.1) (40.9-44.5) (50.1-58.6) (116.6-142) (112.2-178.7) (127.9-138.9) (82.3-89.1) (89.9-107.9)

Control

TT 51.2±16.3 64.0±9.7 161.0±6.1 85.8±11.2 24.7±3.4 54.8±15 134.1±39.1 127.5±52.4 135.7±21.7 81.6±6.3 80.0±12.6

(42.9-59.6) (59–69) (157.8-164.2) (78.6-93) (22.9-26.4) (46.1-63.5) (111.5-156.7) (97.2-157.8) (124.5-146.9) (78.4-84.9) (72.7-87.2)

TC 52.1±15 58.0±9.7 158.4±8 81.2±17.8 23.0±3.1 42.3±11.4 133.4±35.8 157.6±67.7 134.2±17.8 83.3±9.2 91.1±27.3

(47.5-56.8) (55–61.1) (155.9-160.9) (77.5-84.9) (22.1-24) (38.3-46.2) (121.6-145.2) (135.3-179.8) (128.7-139.8) (80.4-86.2) (82.1-100.1)

CC 48.0±19.3 56.6±10.7 161.6±9.8 74.4±11.6 21.7±3.5 49.3±16.4 113.1±25.6 110.4±59.5 126.9±15.7 80.1±9.1 89.3±14.9

(42.7-53.3) (53.7-59.5) (158.9-164.2) (70.6-78.2) (20.7-22.6) (43.8-54.9) (104.4-121.8) (90.3-130.5) (112.7-131.2) (77.6-82.6) (84.4-94.2)
aData shown as average ± SD and 95% confidence interval of the mean; bBMI, Body Mass Index; cHigh Density Lipoprotein; dLDL, Low Density Lipoprotein; eTG, Triglycerides; fSBP, Systolic Blood Pressure; gDBP,
Diastolic Blood Pressure. TT denotes homozygous carriers of the T allele, TC heterozygous carriers, and CC noncarriers of UCP-1 rs6536991.
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for the controls. The differences in the proportions of
genomic ancestries between the two groups were not
statistically significant (p = 0.822, p = 0.312 and p= 0.324,
respectively).
Discussion
Gene variants have been reported in association with
obesity or obesity-related phenotypes. However, lack of
replication has long been a big challenge in these genetic
association studies [28]. The association of the FTO gene
with human obesity is robust in populations of European
descendent [8-10]. To date, negative results have
involved non-European populations [13,14,16-19]. Al-
though the genetic architecture of the FTO locus has
not been examined in great detail in these populations
evidence is emerging that rs9939609 might be in tight
linkage disequilibrium with a casual variant in popula-
tions of European descendent. However, this linkage dis-
equilibrium may break down in other ethnic and racial
groups suggesting that these population have differences
arisen through evolutionary divergence, perhaps as a re-
sult of some negative selection pressure against the FTO
risk alleles in some African and East Asian population
[12-18].
Interestingly, the study by Frayling et al. (2007) [8]

identified FTO through a genome-wide association study
for type 2 diabetes. After adjusting for BMI, the associ-
ation with type 2 diabetes was completely abolished,
suggesting that the FTO-type 2 diabetes association was
mediated through BMI. Subsequently, the association
with BMI and obesity was unequivocally replicated in 13
cohorts comprising more the 38000 individuals [29].
The effect of FTO SNPs on BMI is modest, with those
individuals homozygous for the risk allele weighting, on
average, 3 kg more than those homozygous for the pro-
tective allele [8]. However, physical activity can attenuate
this FTO association [30]. BMI-associated SNPs lie
within a 47 kilobase (kb) linkage disequilibrium (LD)
block encompassing parts of the first two introns as well
as exon 2 of the FTO gene. Thus, the association signal
could be due to correlation between FTO intronic SNPs
and variation elsewhere in the gene or control elements
of other genes [8]. The precise mechanism by which the
FTO gene leads to obesity development is unclear [31].
The FTO gene encodes a 2-oxoglutarate-dependent nu-
cleic acid demethylase that is present in many tissues
and is most abundant in the hypothalamus where the
control center of energy balance lie [8,31]. Studies in
mice showing that Fto mRNA levels are regulated by
feeding and fasting have provided a mechanistic link be-
tween FTO and body weight and energy homeostasis
[31]. Cecil et al. (2008) [32] demonstrated that a predis-
position to obesity does not appear to be involved in the
regulation of expenditure but may have a role in the
control of food intake and food choice, suggesting a link
to a hyperphagic phenotype or a preference for energy-
dense foods.
In this report we confirmed the association of the FTO

variant with BMI in a population of Brazilians with
multi-ethnic ancestry. The obese population who was
homozygous for the risk allele weighted 3.1kg and
1.3kg/m2 more than those homozygous for the protective
allele as demonstrated by Frayling et al. (2007) [8]. We
did not find evidence of association with type 2 diabetes
or most of the obesity–related phenotypes in quantitative
trait analyses mainly after stratification for BMI as also
demonstrated by Frayling et al. (2007) [8].
In addition, many studies have looked for many candi-

date genes to determine genetic factors implicated in the
pathogenesis of obesity, related metabolic disorders and
diabetes. UCP-1, which plays a major role in thermogen-
esis, was suggested to be one of these candidate genes
[33]. Uncoupling protein 1 (UCP1), a 32kDa protein
located in the inner mitochondrial membrane, is abun-
dant in brown adipose tissue (BAT), in which UCP-1
allows to re-enter the matrix, bypassing the ATP syn-
thase. The usually low proton conductance of the mem-
brane is increased, which results in an acceleration of
mitochondrial respiration. The dissipation of the proton
electrochemical gradient leads to an uncoupled respir-
ation and heat production, the main function of BAT
(34). UCP-1 expression is strongly induced when
thermogenesis is required [34]. UCP1 has been reported
to play an important role in thermogenesis and energy
expenditure and is implicated in the pathogenesis of
obesity and metabolic disorders in human [35-37]. The
influence of the polymorphism of UCP-1 gene on obes-
ity had been reported in some studies [20,21] while
others found no association [38-40].
In our study we investigated the effect of UCP-1 gene

SNPs on obesity and obesity related phenotypes among
Brazilian people. Our findings show a significant associ-
ation between the minor allele rs6536991 but not on
rs2270565 and rs12502572 with obesity. Again, after
BMI stratification, the correlation between rs6536991
and type 2 diabetes, hypertension and dislipidemia dis-
appeared. Interestingly, the effect of the rs6536991 was
greater than the effect of FTO rs9939609 in our popula-
tion, with those individuals homozygous for the risk al-
lele weighting were on average, 3kg/m2 of BMI more
than those homozygous for the protective allele. Taken
together we found evidence that rs9939609 in the FTO
and rs6536991 in the UCP-1 gene increased the risk of
obesity but not obesity related phenotypes in the Brazil-
ian population studied. The SNPs rs2270565 and
rs12502572 from the UCP-1 were not correlated with
obesity and obesity related phenotype.
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The reasons for the non effect of the SNPs rs2270565
and rs12502572 could be the relatively small sample size
we report or because they were not in linkage disequilib-
rium compared to rs6536991, which showed association,
justifying different behaviors between them. Indeed, a
sample size of 445 and 350 people, respectively, would
be required to ensure an 80% power. Furthermore, we
did not find a significant synergistic effect between FTO
and UCP-1 SNPs with BMI and no significant correl-
ation with maximum weight loss one year of bariatric
surgery. Further studies examining a larger sample size
would be necessary to detect this synergistic effect or
this association with weight loss one year after bariatric
surgery [41].
Brazilians form a very heterogeneous population,

which is the result of five centuries of inter-ethnic
crosses between peoples from three continents: the
European colonizers mainly represented by the Portu-
guese, African slaves, and the autochthonous Amerin-
dians. Genomic controls help to rule out alternate
explanations regarding the influence of racial and ethnic
ancestry on this important health outcome [6]. These
three groups have admixed to a point which there is very
little correlation between skin color and ancestry [42].
Despite the more representative European ancestry, the
differences in the proportions of genomics ancestry be-
tween the two groups were not significant. These find-
ings bring interesting remarks on the social and genetic
epidemiology of obesity.
Some potential limitations should be considered in

our study. First, a limited sample size from a single cen-
ter albeit representative of our population. Second, inter-
action between lifestyle, physical activity and genes
could be a confounding factor and these were not
investigated.
Despite the recent success in identifying obesity gene

variants using the genome wide association approach, it
is well established that such variants do not cause obes-
ity without the individual being exposed to an obesity-
promoting environment. Also, only a small fraction of
the genetic contribution to obesity has presently been
identified [43]. This could be owing to a complex inter-
play between genetic and environmental factors masking
the effect of specific genetic variants.

Conclusions
In conclusion we identified two SNPs that were asso-
ciated with a greater BMI in our population. We be-
lieve that further studies are warranted, with a greater
number of subjects, to examine whether other com-
mon variants in the FTO and UCP-1 genes could be
synergistic in the increased risk for obesity or obesity
related phenotypes in the Brazilian and other multieth-
nic populations.
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