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Abstract

Background: Preeclampsia affects 3-8% of pregnancies and is a major cause of maternal and perinatal morbidity
and mortality worldwide. This complex disorder is characterized by alterations in the immune and vascular systems
and involves multiple organs. There is strong evidence for a genetic contribution to preeclampsia. Two different
single nucleotide polymorphisms (SNPs) in the endoplasmic reticulum aminopeptidase 2 (ERAP2) gene were recently
reported to be associated with increased risk for preeclampsia in two different populations. ERAP2 is expressed in
placental tissue and it is involved in immune responses, inflammation, and blood pressure regulation; making it is
an attractive preeclampsia candidate gene. Furthermore, ERAP2 expression is altered in first trimester placentas of
women destined to develop preeclampsia.

Methods: A case-control design was used to test for associations between two SNPs in ERAP2, rs2549782 and
rs17408150, and preeclampsia status in 1103 Chilean maternal-fetal dyads and 1637 unpaired African American
samples (836 maternal, 837 fetal).

Results: We found that the fetal minor allele (G) of rs2549782 was associated with an increased risk for
preeclampsia in the African American population (P = 0.009), but not in the Chilean population. We found no
association between rs17408150 and risk for preeclampsia in the Chilean population. Association between
rs17408150 and risk for preeclampsia was not tested in the African American population due to the absence of the
minor allele in this population.

Conclusions: We report an association between fetal ERAP2 and preeclampsia in an African American population.
In conjunction with previous studies, which have found maternal associations with this gene in an Australian/New

Zealand population and a Norwegian population, ERAP2 has now been associated with preeclampsia in three
populations. This provides strong evidence that ERAP2 plays a role in the development of preeclampsia.

Background

Preeclampsia (PE) affects 3-8% of pregnancies world-
wide, with rates varying by ethnicity, and leads to poten-
tially devastating complications for both the mother and
fetus[1,2]. Preeclampsia is clinically characterized by
high blood pressure and proteinuria, usually occurring
after 20 weeks of gestation. Although this serious disor-
der is common during pregnancy, its etiology remains
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poorly understood[1]. Preeclampsia is considered a dis-
ease of the placenta, with shallow trophoblast invasion
[3-5] and poor spiral artery remodeling[6-8] being cen-
tral features of this disorder. It is postulated that
immune, vascular, and inflammatory disturbances parti-
cipate in the placental dysfunction that ultimately pro-
duces the preeclampsia phenotype[9].

A genetic susceptibility to preeclampsia has been
established with both maternal and fetal genes contri-
buting to disease[2,10-17]. Preeclampsia is a multi-fac-
torial trait, with multiple genes, as well as
environmental and social factors contributing to disease
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risk[18-20]. Johnson et al. recently reported that Endo-
plasmic reticulum aminopepetidase 2 (ERAP2) was asso-
ciated with preeclampsia in an Australian/New Zealand
family-based study and a Norwegian case-control study
of maternal samples[21]. Although ERAP2 was asso-
ciated with risk for preeclampsia in both populations,
different polymorphisms of the gene were identified in
each group. ERAP2 is expressed in the syncytiotropho-
blast and it is a member of the oxytocinase subfamily of
M1 aminopeptidases, which are known to play a critical
role in the maintenance of normal pregnancy[22-24].
Additionally, ERAP2 is involved in the regulation of
blood pressure, immune responses, and pro-inflamma-
tory cytokine production[22,25-28]. It was recently
shown that ERAP2 expression was altered in first trime-
ster placentas of pregnancies destined to develop pree-
clampsia[29]. The involvement of ERAP2 in multiple
pathways known to influence the risk for preeclampsia,
its expression in placental tissue, and the previously
described altered expression of ERAP2 in placentas
before maternal symptoms developed[29]; suggest that
the fetal ERAP2 gene contributes to the development of
preeclampsia.

In the present study, we investigated whether the pre-
viously described associations between ERAP2 and risk
for preeclampsia [21] replicated in other ethnic groups
and extended our study design past maternal only sam-
ples to also include fetal samples. We examined the
association between ERAP2 and risk for preeclampsia in
two distinct case-control cohorts: Chilean (1103 mater-
nal-fetal dyads) and African American (836 maternal
and 837 fetal samples). We genotyped the two SNPs in
ERAP2, rs17408150 and rs2549782, that were previously
identified as being associated with preeclampsia. Our
results demonstrate that the rs2549782 SNP of the fetal
ERAP?2 gene is significantly associated with risk for pree-
clampsia in the African American population; further
suggesting that this gene plays a key role in the develop-
ment of disease and may provide insight into the dispar-
ity between preeclampsia rates between ethnic groups.

Methods

Chilean study design and population

A case-control study was initiated by searching the clini-
cal database and bank of biological samples of the Peri-
natology Research Branch (Eunice Kennedy Shriver
National Institute of Child Health and Human Develop-
ment, NIH, DHHS) and included Hispanic women and
their neonates in the following groups: 1) Cases -
women with preeclampsia and their neonates (n = 528
dyads); and 2) Controls - women who delivered at term
with a normal pregnancy outcome and their neonates (1
= 575 dyads). Participants received obstetrical care at
the Sotero del Rio Hospital in Santiago, Chile (an
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affiliate of the Pontificia Catdlica de Chile in Santiago,
Chile). Exclusion criteria included: (1) known major
fetal anomaly or demise; (2) multi-fetal pregnancy; (3)
serious maternal medical illness (renal insufficiency,
congestive heart disease, etc.); (4) refusal to provide
written informed consent; and (5) a clinical emergency,
which prevented counseling of the patient about partici-
pating in the study, such as fetal distress or maternal
hemorrhage. All women provided written informed con-
sent before collection of the samples. The use of clinical
data and collection and utilization of maternal and neo-
natal blood for research purposes was approved by the
Institutional Review Boards of the Sétero del Rio Hospi-
tal, the Eunice Kennedy Shriver National Institute of
Child Health and Human Development, NIH, DHHS
and Virginia Commonwealth University. Ethnically, the
Chilean population is estimated at nearly 95% white and
mestizo (mixed white and Amerindian); 3% Amerindian;
and 2% other. Mixtures between the conquering Spa-
niards, largely Andalusians and Basques, and the
Mapuches (Araucanians) produced the principle Chilean
racial type (2002 census).

African American study design and population

A case-control study was initiated by searching clinical
databases and bank of biological samples at the Uni-
versity of Pennsylvania and the Perinatology Research
Branch (Eunice Kennedy Shriver National Institute of
Child Health and Human Development, NIH, DHHS),
at Wayne State University. Study subjects included
African American women and neonates in the follow-
ing groups: 1) Cases - women with preeclampsia (n =
424) and neonates born to women with preeclampsia
(n = 375); and 2) Controls - women who delivered at
term with a normal pregnancy outcome (n = 412) and
neonates delivered at term to women with a normal
pregnancy outcome (n = 462). Participants in this
study received obstetrical care at the University of
Pennsylvania Medical Center, Philadelphia, PA or the
Hutzel Women’s Hospital, Detroit, MI. The criteria for
cases, controls, and exclusion of subjects in the African
American study were the same as described for the
Chilean study. Of the maternal and neonatal subjects
identified, 78% of samples were identified as maternal-
neonatal dyads. To obtain adequate sample sizes for
this study, therefore, maternal and neonatal samples
were tested independently and un-paired samples were
included in each group. The use of clinical data and
collection and utilization of maternal blood, cord
blood, and neonatal cheek swabs for research purposes
was approved by the Institutional Review Boards of the
University of Pennsylvania, Wayne State University, the
Eunice Kennedy Shriver National Institute of Child
Health and Human Development, NIH, DHHS, and
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Virginia Commonwealth University. African American
ethnicity was self-reported for all samples.

Clinical definitions

Preeclampsia was defined based on the presence of
gestational hypertension (systolic blood pressure =140
mmHg and/or diastolic blood pressure 290 mmHg)
and proteinuria (2300 mg in a 24-hour urine collec-
tion, two or more dipstick measurement of 1+, or one
or more dipstick measurement >2+) according to
ACOGI1] and the National High Blood Pressure Edu-
cation Program[30]. Patients were considered to have a
normal pregnancy outcome if they did not have any
medical, obstetrical, or surgical complication, and
delivered a term neonate (>37 weeks) of appropriate
birth weight for gestational age[31,32] without
complications.

Sample collection

Maternal blood samples were obtained from the mother
at the time of enrollment in the protocol. Umbilical
cord blood samples or neonate cheek swabs were
obtained immediately after delivery. Blood samples were
collected with a vacutainer into tubes containing EDTA.
The plasma tubes were balanced and centrifuged at
1300g for 10 minutes at 4°C to separate cellular compo-
nents from clear plasma, and the samples were stored at
-70°C until assay.

DNA extraction

DNA was extracted from maternal and cord blood with
a Qiagen Autopure system using standard procedures
(Qiagen). DNA was extracted from neonate check swabs
using traditional methods as previously described[33].

Genotyping

Single-nucleotide polymorphism analysis was performed
using real-time allelic discrimination TagMan assays
(Applied Biosystems) with modifications. All PCR reac-
tions contained 25-75 ng of DNA, 6.25 ul TagMan Uni-
versal Master Mix (Applied Biosystems) (2x), 0.3 ul
TaqMan Genotyping Assay (Applied Biosystems) (20x),
and water for a final volume of 12.5 ul. Real-time PCR
was performed on an ABI 7500 Fast Real-Time PCR
Machine (Applied Biosystems) under the following con-
ditions: 50°C for 2 min, 95°C for 10 min, and 40 cycles of
amplification (92°C for 15 sec and 60°C for 1 min). For
each cycle, the software determined the fluorescent signal
from the VIC- or FAM- labeled probe (Applied Biosys-
tems). Allelic discrimination for ERAP2 was performed
using TaqgMan Genotyping assays C___3282749_20 for
SNP rs2549782 and C___25649505_10 for SNP
rs17408150 (Applied Biosystems).
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Statistical Analysis

Logistic regression in R was used to test for differences
in clinical characteristics between disease classes for
non-genetic variables. Fisher’s exact tests implemented
in the PLINK software[34] were used to test individual
SNPs for genetic associations with case-control status
and to confirm Hardy-Weinberg equilibrium. SNPs with
an independent effect were further investigated by mul-
tiple logistic regression in R to condition by covariates
found to be significantly different between cases and
controls in the clinical characteristics analysis. An addi-
tive term for the significant SNP(s) was coded as 0, 1, or
2, based on copy number of the minor allele. Allele fre-
quencies from the control groups were used to deter-
mine the odds ratios at which our study design had 80%
power at an alpha of 0.05. Power calculations were
made using the Genetic Power Calculator[35], assuming
a 5% disease prevalence.

Results

Clinical Characteristics of the Study Populations

Table 1 displays the demographic and clinical character-
istics of mothers and neonates from pregnancies with
preeclampsia as well as controls. For Chilean subjects,
no significant differences were observed in maternal age
or fetal sex between groups. Consistent with previous
epidemiologic studies, Chilean patients with preeclamp-
sia showed a significantly higher body mass index (BMI)
(P <0.001) and fewer previous live births (P = 0.007). In
accordance with preeclampsia resulting in intrauterine
growth restriction and indicated preterm birth, offspring
born to Chilean women with preeclampsia showed a sig-
nificantly lower gestational age at delivery and birth
weight (P < 0.001). Similar results were observed in
African American subjects. Maternal age was not signifi-
cantly different between cases and controls for either the
maternal or the fetal study groups, whereas, gestational
age at delivery and birth weight were significantly differ-
ent between cases and controls for both groups (P <
0.001). Additionally, in the fetal group, mothers with
preeclampsia showed a significantly higher BMI (P =
0.049) and fewer previous live births (P = 0.040).
Although these measures were not significant in the
maternal study group, they were trending in the same
direction. In the fetal group, there were significantly
more female neonates than male (P = 0.024). Significant
differences in fetal sex have been reported in the litera-
ture, but results vary with some studies reporting a bias
towards male fetuses, some reporting a bias towards
female fetuses, and still others reporting no differences
in fetal sex in association with preeclampsia[36-44]. No
significant difference in fetal sex was observed between
cases and controls in the maternal study group.
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Table 1 Maternal and fetal characteristics of pregnancies diagnosed with preeclampsia and controls

Population Preeclampsia Controls P-value
Chilean Number of dyads 528 575 -
Maternal-Fetal Dyads Maternal Age (years) 26.3 (7.5) 26.1 (6.2) 0.692
BMI (kg/m?) 264 (54) 245 (44) < 0.001
Previous live births 0.80 (1.19) 0.99 (1.08) 0.007
Birthweight (grams) 2805.7 (815.7) 34232 (303.0) < 0.001
Gestational age at delivery (weeks) 36.8 (34) 397 (1.1) < 0.001
Fetal sex (% female) 458 533 0.492
African American Number of subjects 424 412 -
Maternal Maternal Age (years) 260 (6.3) 253 (59 0.100
BMI (kg/mz) 309 (8.7) 29.7 (7.9) 0.070
Previous live births 32 (23) 33 (2.0) 0.529
Birthweight (grams) 2431.1 (893.8) 3292.1 (462.4) < 0.001
Gestational age at delivery (weeks) 36.0 (3.7) 395 (1.3) < 0.001
Fetal sex (% female) 524 484 0.253
African American Number of subjects 375 462 -
Fetal Maternal Age (years) 258 (6.5) 258 (6.1) 0.947
BMI (kg/mz) 31.0 (8.5) 29.8 (7.9) 0.049
Previous live births 3122 34 (2.1) 0.040
Birthweight (grams) 24903 (851.8) 3294.7 (469.7) < 0.001
Gestational age at delivery (weeks) 36.2 (34) 395 (1.2) < 0.001
Fetal sex (% female) 54.8 470 0.024

Data are presented as means (SD). BMI, body mass index.

Chilean Population

The minor allele (G) frequencies for rs2549782 in
maternal and fetal samples were 0.3386 and 0.3292,
respectively. The minor “A” allele frequencies for
rs17408150 in maternal and fetal samples were 0.0422
and 0.0395 respectively. The minor allele frequencies
are consistent with published data and the Johnson et
al. study[21,45]. Single SNP analysis revealed no associa-
tions between ERAP2 polymorphisms rs2549782 and
rs17408150 and preeclampsia in either maternal or fetal
samples (Table 2). All SNPs were found to be in Hardy-
Weinberg equilibrium in the maternal and fetal control
samples and no substantial linkage disequilibrium was
observed (R* = 0.087 and 0.072, respectively).

African American Population

The minor allele (G) frequencies for rs2549782 in
maternal and fetal samples were 0.4103 and 0.3990
respectively. The minor allele frequencies are consistent
with published data and the Johnson et al. study[21,45].
We did not genotype rs17408150 in this population
because the minor “A” allele is reported to be < 1.0% in
individuals of African descent[45].

To establish the genetic similarity between the Univer-
sity of Pennsylvania Medical Center and Hutzel
Women’s Hospital African American samples, and
determine if these groups were appropriately combined
into a single study population, we compared allele

frequencies for three genes: ERAP2, MTHFR, and
COMT. Allele frequencies of both COMT and MTHFR
are not only known to differ among major ethnic cate-
gories, but substantial variation has also been demon-
strated in subpopulations of each, including African
American[45-51]. Genotypes for MTHFR and COMT
were readily available for our samples and based on
their aforementioned ethnic variation, they represented
ideal genes for the genetic comparison of the two Afri-
can American sample collection locations. Minor allele
frequencies for ERAP2, MTHFR, and COMT were com-
parable between both African American study sites
(Table 3). Additionally, the same COMT haplotype
structure was identified in each group and the haplotype
frequencies were comparable. The genetic similarity of
the two groups across six variable SNPs and COMT
haplotype structure and frequency, supported combing
the groups into a single African American study
population.

Single SNP analysis yielded a significant association
between the fetal rs2549782 and preeclampsia in the
African American population (P = 0.009), while no asso-
ciation was observed in the maternal SNP (Table 2).
Additional multiple logistic regression analysis was per-
formed on the fetal group to adjust for risk factors of
preeclampsia (BMI, previous live births, and gravidity)
that were found to be significant in the clinical measures
analysis (Table 4). rs2549782 remained significant (P =
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Table 2 ERAP2 Allelic analysis for maternal and fetal samples with and without preeclampsia
Population ERAP2 SNP Genotype (count) Minor Allele Frequency Frequency P-value Odds Ratio
Preeclampsia Controls (95% C.l.)
Chilean Maternal
rs2549782 GG (135) G 0330 0.347 0.393 0.925 (0.775, 1.104)
TG (477)
TT (491)
rs17408150 AA (2) A 0.044 0.041 0752 1.069 (0.706, 1.619)
TA (89)
TT (1012)
Fetal
152549782 GG (124) G 0333 0326 0.751 1.033 (0.865, 1.234)
TG (477)
TT (500)
rs17408150 AA (0) A 0.040 0.039 1.000 1.021 (0.665, 1.568)
TA (87)
TT (1014)
African Maternal
American 152549782 GG (147) G 0429 0.391 0.133 1.166 (0.958, 1.420)
TG (383)
TT (295)
Fetal
152549782 GG (114) G 0435 0369 0.009 1.320 (1.075, 1.619)
TG (387)
TT (268)

SNP, single nucleotide polymorphism; C.I, confidence interval. The minor allele (G) of rs2549782 was found significantly more frequently in cases than controls in

African American fetal samples.

0.012) and was associated with an increased risk for
preeclampsia (OR = 1.529; CI: 1.099, 2.128). Of the
previously identified clinical measures tested, only the
number of previous live births remained significant,
with a larger number of previous live births decreasing
the risk for preeclampsia (OR = 0.845; CI: 0.744,
0.960). All SNPs were found to be in Hardy-Weinberg
equilibrium in the maternal and fetal groups. Finally,
we used two methods to confirm that the positive
association we observed was not attributed to popula-
tion stratification based on the different African Amer-
ican sample collection locations. First, multiple logistic
regression analysis was performed in R to test whether
there was an interaction between the fetal genotype
and the sample collection location. No significant asso-
ciation was observed between a location x fetal
rs2549782 interaction and the risk for preeclampsia (P
= 0.098). Second, we performed a cluster analysis in
PLINK using a Cochran-Mantel-Haenszel model that
tested for overall disease/gene association, while con-
trolling for clusters. After controlling for the sample
collection location, the fetal rs2549782 was still signifi-
cantly associated with an increased risk for preeclamp-
sia (P = 0.027; OR = 1.302; CI: 1.029, 1.648). These
results, in addition to the absence of evidence for dif-
ferences in the rates of preeclampsia between African

American groups in the United States, justifies com-
bining these samples in this study.

Discussion

Preeclampsia is one of the leading causes of maternal
and perinatal morbidity and mortality worldwide; yet its
etiology is poorly understood[1]. It is thought that poor
placentation and inadequate maternal blood supply lead
to placental hypoxia and the placental release of factors
that contribute to intravascular inflammation[52-54],
generalized endothelial dysfunction[55-59] and the
maternal symptoms. A genetic susceptibility to pree-
clampsia is well established and genes involved with the
immune system, inflammation, hemodynamics, endothe-
lial dysfunction, oxidative stress, and angiogenesis have
been associated with preeclampsia[10,15-17]. The identi-
fication of genes involved in a variety of physiologic pro-
cesses reflects the complex nature of this disorder.

It was recently reported by Johnson et al. that the
ERAP?2 gene was associated with preeclampsia[21]. They
found an association with the rs2549782 SNP in an Aus-
tralian/New Zealand maternal cohort and the
rs17408150 SNP in a Norwegian maternal cohort. In the
present study, we sought to test whether there were
associations between the two previously identified SNPs
in ERAP2 and risk for preeclampsia in two distinct
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Table 3 Genotype and Haplotype frequencies for ERAP2,
MTHFR, and COMT for African American samples

Minor Allele Frequency

Group  Gene SNP/ Minor  Pennsylvania Michigan
Haplotype Allele

Maternal  ERAP2 152549782 G 0.397 0.374

MTHFR 51801133 T 0.112 0.102

comTt rs6269 G 0.393 0.384

rs4633 T 0.292 0316

rs4818 G 0.200 0215

rs4680 A 0.276 0.291

ATCA 0.249 0.270

GCCA 0.027 0.021

GCGG 0.163 0.169

ACGG 0.037 0.048

ATCG 0.043 0.045

GCCG 0.203 0.194

ACCG 0.278 0.253

Fetal ERAP2 152549782 G 0.359 0424

MTHFR  rs1801133 T 0.120 0.133

COMT rs6269 G 0408 0425

rs4633 T 0319 0.300

rs4818 G 0214 0.167

rs4680 A 0.292 0.308

ATCA 0.267 0.257

GCCA 0.022 0.051

GCGG 0.175 0.139

ACGG 0.040 0.028

ATCG 0.049 0.043

GCCG 0.207 0.235

ACCG 0.240 0.247

African American samples originated from two locations: the University of
Pennsylvania Medical Center, PA and Hutzel Women'’s Hospital, MI. Minor
allele frequencies and haplotype frequencies were calculated from control
samples only at each location. When comparing locations, no test achieved a
significant difference at the 5% level using a Z-test for differences in two
independent proportions. SNP, single nucleotide polymorphism. COMT single
SNP frequencies are listed first, followed by COMT haplotypes formed by
those SNPs. COMT haplotype SNP order: rs6269, rs4633, rs4818, rs4680.

ethnic sample sets, Chilean and African American. In
contrast to the previous study, we also included fetal
samples to determine if the fetal ERAP2 gene was asso-
ciated with risk for preeclampsia. We were motivated to
use this design by the fact that placental tissue is of fetal
origin and by interest in determining if any genetic asso-
ciation might be attributed to the sharing of alleles
between mother and fetus of one-half, in accordance
with Mendelian segregation patterns. We found that, in
African Americans, the presence of the minor allele (G)
of the rs2549782 SNP in the fetal ERAP2 gene increased
the risk for preeclampsia. We found no associations
between the two SNPs in the Chilean population, or the
rs2549782 SNP of the maternal ERAP2 gene in the Afri-
can American population.
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Table 4 Logistic regression model for preeclampsia,
including presence of the rs2549782 minor allele in
African American fetuses

Term Estimate (S.E.) P-value Odds Ratio (95% C.l.)
Fetal rs2549782 0425 (0.169) 0.012 1.529 (1.099, 2.128)
Maternal BMI 0.021 (0.014) 0.140 1.021 (0.993, 1.049)
Previous live births - 0.168 (0.065) 0.010 0.845 (0.744, 0.960)
Fetal Sex (% female)  0.355 (0.228) 0.120 1426 (0912, 2.231)
Intercept -1.810 (0492) < 0.001 -

S.E., standard error; C.l.,, confidence interval; BMI, body mass index. The minor
allele (G) of rs2549782 significantly increases the risk for preeclampsia in
African American fetal samples; after correcting for risk factors identified to
modulate risk in this population.

Preeclampsia is usually diagnosed after 20 weeks of
gestation, but it is thought that problems arising early in
pregnancy, especially during placentation, are the origin
of this disorder. ERAP2 is expressed in the syncytiotro-
phoblast and it has been reported that expression of this
gene was down-regulated in first trimester placentas of
women who subsequently developed preeclampsia
[23,29]. The identification of aberrant gene expression,
before maternal symptoms develop, suggests a role for
ERAP?2 early in the disease course.

ERAP?2 has the potential to contribute to the develop-
ment of preeclampsia in multiple ways due to its invol-
vement in the regulation of immune responses, pro-
inflammatory cytokine production, and blood pressure
[22,25-28]. Preeclampsia is associated with a predomi-
nant T Helper Cell Type 1 (Thl) immune response,
which correlates to poor placentation, inflammation,
and endothelial dysfunction[60]. One of the primary
roles of ERAP2 is Human Leukocyte Antigen (HLA)
trimming of class 1-binding peptides. Decreased levels
of HLA-G have been reported in the circulation of
women with preeclampsia and reduced cell-surface
expression has been reported in trophoblasts
[22,27,61,62]. Interferon-gamma (IFN y) regulates both
ERAP2 and ERAPI genes and they have been implicated
in immune activation and inflammation[28]. ERAPI,
which is closely related to and forms complexes with
ERAP2[61], also cleaves the cell surface receptors for
pro-inflammatory cytokines.

Pregnancy is a pro-inflammatory state, and inflamma-
tion is a key regulator of placentation[52,54,63,64].
Although normal pregnancy is pro-inflammatory, pree-
clampsia is associated with an exaggerated state of sys-
temic inflammation, and aberrant production of
placental cytokines has been widely reported [65]. The
placental release of pro-inflammatory cytokines, or the
pre-existence of increased inflammation in the maternal
vasculature, could both contribute to the development
of preeclampsia. In addition to being pro-inflammatory,
many cytokines also regulate other processes that are
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important to the establishment and maintenance of
pregnancy. Placentation is tightly regulated by the oxy-
gen balance to ensure adequate remodeling of the
maternal spiral arteries and sufficient perfusion of the
placenta[66]. Hypoxia Inducible Factor 1o (HIF-1a) is a
transcription factor that mediates cellular responses to
hypoxia and its expression is altered in preeclampsia
[67-69]. HIF-1a is regulated through oxygen dependent
and independent mechanisms, and several of the cyto-
kines that are modulated by ERAP2 have been shown to
participate in the oxygen independent regulation
mechanisms[70].

Finally, ERAP2 regulates blood pressure through the
renin-angiotensin (RAS) pathway. Specifically, ERAP2
cleaves Angiotensin III and kallidin, both of which are
involved in regulating the dilation and constriction of
blood vessels[27]. Abnormalities in the processing of
these vasoactive substances could be a cause of maternal
high blood pressure, but they also might participate in
placental hypoxia, which is a key feature of preeclamp-
sia. Defects in the RAS system have been demonstrated
both in the maternal system and fetal tissue[71,72],
further emphasizing the potential for ERAP2 to be
involved in the pathophysiology of preeclampsia.

Compared to white women (defined as not African
American, Asian, Hispanic, or Native American),
Caughey et al. found higher rates of preeclampsia
among African American women and lower rates
among Hispanic women [2]. Additionally, maternal-
paternal ethnic discordance was reported to be asso-
ciated with an increased incidence[2]. This supports the
hypothesis that the genetic basis for preeclampsia is het-
erogeneic. Our results, in conjunction with the findings
of Johnson et al., provide a potential explanation for the
observed differences between ethnic groups[21]. Four
ethnic populations were examined between the two stu-
dies. Allelic variation between European groups, espe-
cially Mediterranean, central Europe, and Scandinavia
are well characterized and support that they are distinct
populations[45-51]. The Chilean population is represen-
tative of a Mediterranean ethnic background, specifically
from Spanish decent. ERAP2 appears to contribute to
the risk for preeclampsia in three of the ethnic groups,
with two different allelic variants being associated with
risk. Maternal variants increase the risk for preeclampsia
in an Australian/New Zealand cohort and a Norwegian
cohort[21]. Although preeclampsia is thought to be a
placental disorder, the maternal phenotype and, in parti-
cular, the susceptibility of the maternal system to dis-
ease plays an important role in this disorder[18].
Chronic hypertension, obesity, diabetes, and renal dis-
ease, all put a woman at increased risk of developing
this disorder. A fetal variant increases the risk for pree-
clampsia in the African American cohort. Importantly,
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the placenta is fetal tissue and our results strengthen
the argument that primary defects in the placenta play a
central role in the development of preeclampsia. More-
over, this finding is consistent with the observation of
altered ERAP2 expression in placentas from women who
developed preeclampsia.

A strength of our study is the inclusion of both mater-
nal and fetal genes, which gives us the ability to discri-
minate between maternal and fetal genetic effects. The
mother and fetus share fifty percent genetic identity so
failure to include both maternal and fetal genes in a
study creates the potential for a true association with
the unmeasured gene to manifest as an observed asso-
ciation with the measured gene based on the correlation
between maternal and fetal genotypes. There is also the
potential for both the maternal and fetal ERAP2 genes
to contribute to the risk for preeclampsia in a single
ethnic population. By measuring only the maternal
genes, an additional fetal association could be missed.
Thus, the question still remains whether both maternal
and fetal ERAP2 contribute to preeclampsia in different
ethnic populations where only maternal genes were
tested.

A second potential source of variation between ethni-
cities is the finding that two different SNPs in the
ERAP2 gene are associated with risk for preeclampsia.
Both of these SNPs are missense mutations that are pre-
dicted to alter the three-dimensional structure of the
protein and damage function. Additionally, rs2549782
resides within the highly conserved zinc-binding
domain. While both SNPs are expected reduce enzyme
function, they likely alter function to different degrees
and are not equivalent mutations. Moreover, the SNPs
reside in different domains of the protein and since
ERAP2 has multiple functions, the mutations could have
significantly different physiologic consequences.

Alternatively, the observed variation could be
explained by differences in linkage disequilibrium (LD)
structure between populations or failure to account for
larger haplotype structure. Although, the SNPs tested in
these studies are predicted to alter enzyme function,
they might not represent the causal variant in pree-
clampsia. These populations might share the same cau-
sal variant, but that variant could be in LD with
different SNPs in each population. Finally, two haplo-
types of ERAP2 have recently been described that lead
to changes in mRNA decay and ultimately Major Histo-
compatibility Complex (MHC) class I presentation on
cell surfaces[73]. The haplotypes are composed of
numerous SNPs, with rs2549782 representing one of the
four coding SNPs that are considered diagnostic[73].
The frequency of each haplotype was estimated to be
0.5 across multiple ethnic groups and similar patterns of
long-range LD were also observed; indicating a single
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ancestral division of functional significance[73]. Neither
our study, nor Johnson et al. included the depth of
sequencing necessary to characterize the reported
haplotypes.

Our findings did not support a genetic association
between ERAP2 and the risk for preeclampsia in either
the Chilean population or the maternal African American
population. However, it should be noted that the present
study had limited statistical power to detect very small
effects. In the Chilean population, our study was ade-
quately powered to detect Odds Ratios of at least 2.3 for
rs17408150 and 1.5-1.7 for rs2549782. In the African
American population, our study was adequately powered
to detect Odds Ratios of 1.6 - 1.9 for rs2549782. The
effect sizes for a single risk factor in a complex disorder
are expected to be relatively modest. Furthermore, we
only tested for associations between two SNPs in the
ERAP?2 gene so we are unable to rule out the possibility
that different variants of this gene are associated with
risk for preeclampsia in these populations. Future studies,
increasing the number of markers to saturate the mater-
nal and fetal ERAP2 genes, are needed to characterize the
haplotype structures of each group in order to distinguish
between maternal and fetal effects of this gene.

Conclusions

Our results show that fetal carriage of the minor allele
(Q) of rs2549782 in the ERAP2 gene increases the risk
for preeclampsia in African Americans. We found no
associations between the maternal rs2549782 SNP of the
ERAP?2 gene and risk for preeclampsia in either the Afri-
can American or Chilean populations or the rs17408150
SNP of the ERAP2 gene and risk for preeclampsia in the
Chilean population. The association of rs2549782 with
risk for preeclampsia is consistent with findings of a
previous study that found an association of maternal
ERAP?2 alleles in an Australian/New Zealand population
[21]. The results of our study, in combination with
those of Johnson et al.[21], describe replicated associa-
tions between ERAP2 and preeclampsia in three distinct
populations. These observations represent an important
step in understanding the pathophysiology of pree-
clampsia and how genetic variation might play a signifi-
cant role in ethnic differences.
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