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Abstract

Background: The thrifty gene hypothesis posits that, in populations that experienced periods of feast and famine,
natural selection favoured individuals carrying thrifty alleles that promote the storage of fat and energy.
Polynesians likely experienced long periods of cold stress and starvation during their settlement of the Pacific and
today have high rates of obesity and type 2 diabetes (T2DM), possibly due to past positive selection for thrifty
alleles. Alternatively, T2DM risk alleles may simply have drifted to high frequency in Polynesians. To identify thrifty
alleles in Polynesians, we previously examined evidence of positive selection on T2DM-associated SNPs and
identified a T2DM risk allele at unusually high frequency in Polynesians. We suggested that the risk allele of the
Gly482Ser variant in the PPARGC1A gene was driven to high frequency in Polynesians by positive selection and
therefore possibly represented a thrifty allele in the Pacific.

Methods: Here we examine whether PPARGC1A is a thrifty gene in Pacific populations by testing for an association
between Gly482Ser genotypes and BMI in two Pacific populations (Maori and Tongans) and by evaluating the
frequency of the risk allele of the Gly482Ser variant in a sample of worldwide populations.

Results: We find that the Gly482Ser variant is associated with BMI in Tongans but not in Maori. In a sample of 58
populations worldwide, we also show that the 482Ser risk allele reaches its highest frequency in the Pacific.

Conclusion: The association between Gly482Ser genotypes and BMI in Tongans together with the worldwide
frequency distribution of the Gly482Ser risk allele suggests that PPARGC1A remains a candidate thrifty gene in
Pacific populations.

Background
The prevalence of type 2 diabetes mellitus (T2DM) in
Polynesians is among the highest in the world, reaching
40% among adults on some islands [1-3]. The thrifty
gene hypothesis [4] offers a possible explanation for the
high prevalence of T2DM in the Pacific. This hypothesis
suggests that populations whose ancestral environments
were characterized by periods of feast and famine
experienced positive selection for alleles that promote
the storage of fat and energy. Moreover, under modern
conditions, populations with such thrifty metabolisms

are expected to have high rates of T2DM and related
traits (e.g. obesity). The ancestors of present-day Polyne-
sians embarked on long open ocean voyages and are
believed to have been exposed to cold stress and starva-
tion during their settlement of the Pacific. Such condi-
tions may have driven thrifty alleles to high frequency in
Polynesians, thereby explaining the high prevalence of
T2DM and obesity in Polynesia today [5-7].
According to this hypothesis, T2DM risk alleles at unu-

sually high frequencies in Polynesians would represent
strong candidate thrifty alleles: they may have been dri-
ven to high frequency by positive selection, thereby
accounting for the high prevalence of T2DM in Polyne-
sia. Alternatively, T2DM risk alleles may have existed as
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neutral alleles in the ancestors of Polynesians, and then
increased in frequency in Polynesia via genetic drift, espe-
cially as a consequence of founder effects and bottleneck
events. It is well-established that the ancestors of Polyne-
sians migrated out of Taiwan through island southeast
Asia and coastal and island Melanesia [8,9], and that this
migration was accompanied by admixture with Melane-
sians and by severe reductions in genetic variation
[10-13]. Such decreases in population size could have ele-
vated the frequency of neutral T2DM risk alleles in Poly-
nesians by chance, which then only became detrimental
when Polynesians adopted a more Western diet.
Under either hypothesis, the frequency of causal T2DM

risk alleles in Polynesians should be elevated, relative to
their ancestral populations (East Asians and Melanesians).
We therefore previously undertook an evolutionary genet-
ics approach and genotyped 10 T2DM-associated single
nucleotide polymorphisms (SNPs) in samples of Poly-
nesian, Chinese, and New Guinean origin, without any
associated phenotype information [14]. We identified the
risk allele of the Gly482Ser SNP (rs8192678) in the
PPARGC1A gene as a potential thrifty allele as it had a
frequency of 0.717 in Polynesians but was absent in New
Guineans. Such a striking difference in frequency was
observed in less than 1% of ~90,000 SNPs genotyped in
the same samples. Thus, we proposed that the high fre-
quency of the PPARGC1A risk allele in Polynesians may
contribute to the high prevalence of T2DM and T2DM-
related phenotypes in Polynesians.
PPARGC1A plays a pivotal role in insulin signaling,

mitochondrial regulation and adaptive thermogenesis
[15-17] and is a reasonable thrifty gene candidate as it
integrates metabolic pathways that support mammalian
survival during prolonged starvation or hibernation
[18,19]. The T2DM risk allele at PPARGC1A changes a
glycine to serine at codon 482. The Gly482Ser SNP
appears to be functional as transfection assays have
demonstrated that it affects the protein’s efficiency as a
coactivator on the Tfam promoter [20] and 482Ser car-
riers were shown to have 60% less PPARGC1A expression
in skeletal muscle than noncarriers [21]. Associations
between Gly482Ser and T2DM-related phenotypes have
been reported in several populations [22-28], but the
absence of significant associations has also been reported
[29-33]. In the present study, we further test the thrifty
gene hypothesis in Pacific populations by examining the
relationship between Gly482Ser genotypes and body
mass index (BMI) in Maori and Tongans and by compar-
ing the frequency of the 482Ser risk allele in Pacific
populations to populations worldwide.

Methods
Written informed consent was obtained from all partici-
pants in the present study. For the Tongans, ethics

approval was obtained from the Research Ethics Com-
mittee of the Faculty of Medicine at the University of
Tokyo and the Graduate School of Comprehensive
Human Sciences at University of Tsukuba. For the
Maori, ethics approval was obtained from the Multire-
gional Ethics Committee of New Zealand as part of the
Rakaipaaka Health and Ancestry Study (Ethics applica-
tion MEC022005) and ethical clearance was granted by
the tribal organisation (Te Iwi o Rakaipaaka Inc.).
Genotype data from the Gly482Ser SNP from Cook

Islanders, Western Samoans, Nuie Islanders and New
Guineans (non-CEPH panel samples) was obtained from
Myles et al. [14]. Atypical and related individuals from
the Human Genome Diversity Panel of the Centre
D’Etude du Polymorphisme Humain (CEPH-HGDP)
were removed, which resulted in 952 individuals from
53 populations [34,35]. Genotyping of the Gly482Ser
SNP (dbSNP ID rs8192678) in the CEPH-HGDP and
the Tikopian samples was done according to the proce-
dure described in Myles et al. [14]. The Tongan samples
were genotyped with a TaqMan assay.
New Zealand DNA samples were collected from indi-

genous Maori individuals residing in the North Island as
part of a community health survey. Individuals were
unrelated by first degree, had two Maori parents by self-
report, and belonged to one segment of the wider Maori
population. DNA was extracted from blood using Qiagen
kits and the Gly482Ser SNP was genotyped using the
Sequenom platform. Evidence of association between
body mass index, age, sex, population, and genotype were
analysed using ANOVA and multiple regression in R.

Results
The association analysis was performed in two Pacific
populations for which BMI measures were available:
Tongans and Maori. Details of the cohorts and the
results of the association analysis between Gly482Ser
genotypes and BMI are presented in Table 1. The mean
BMI values in the Tongan (34.0 kg/m2) and the Maori
(32.1 kg/m2) samples fall within the range of “Obesity
class I” according to the World Health Organization
[36] and are similar to BMI values observed in other
Pacific populations [37-39]. We find that BMI is signifi-
cantly higher in Tongans than in the Maori (two-sided
t-test, P = 0.033). The frequency of the 482Ser risk allele
is higher in Maori (0.833) than in Tongans (0.592).
It is unclear from previous studies through what mode

of inheritance (e.g. dominance, co-dominance or reces-
sive) the Gly482Ser most likely acts. We therefore pre-
sent results from all three possible modes of inheritance
in Table 1. Age and sex were included as covariates
when assessing associations within each population. We
compared the results from a multiple linear regression
model with age, sex and population as factors and BMI
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as the dependent variable to a model including only age
and sex using an F test and found that the two models
differed significantly (P = 0.0183). Thus, in assessing the
relationship between the Gly482Ser genotypes and BMI
using multiple regression, we performed the association
within each population separately. When the analysis
was performed on all of the samples together, popula-
tion was included as a covariate.
Gly482Ser genotypes showed no effect on age and sex

adjusted BMI in the Maori, regardless of the mode of
inheritance assumed (Table 1). In the Tongans, however,
the 482Ser risk allele was significantly associated with
age and sex adjusted BMI under both a co-dominance
model (effect estimate = 1.397 kg/m2, P = 0.037) and a
dominance model (effect estimate = 2.341 kg/m2, P =
0.014), while no significant effect was observed in Ton-
gans under a recessive model (P = 0.46). When the two
populations were combined, Gly482Ser genotypes
showed no effect on age and sex adjusted BMI under
any of the three modes of inheritance (Table 1). We
present the effect estimates and their standard errors for
a co-dominance model in Figure 1.
The allele frequencies of the 482Ser risk allele across

58 worldwide populations, including the Tongans and
Maori from the present study, are presented in Figure 2.
The geographic locations, sample sizes, genotype fre-
quencies, allele frequencies and the P values from
Hardy-Weinberg equilibrium tests for these 58 popula-
tions are presented in Additional File 1, Table S1. The
Gly482Ser SNP was in Hardy-Weinberg equilibrium in
all populations tested. The frequency of the 482Ser risk
allele varies widely worldwide: it is completely absent in
most of Africa and in New Guinea but reaches a fre-
quency of 0.85 in Western Samoan and Niue Islanders
(Figure 2). Throughout Europe, East Asia and the Amer-
icas, the risk allele is generally found at either low or
intermediate frequencies. The highest frequencies of the
risk allele are observed in Polynesians.

Discussion
Disease risk alleles with large frequency differences
between populations may account for large differences
in the prevalence of diseases between populations [40].
In some cases, large risk allele frequency differences
between populations may be the result of local positive
selection [41,42], as predicted by the thrifty gene
hypothesis [4]. We previously identified the T2DM risk
allele of the Gly482Ser variant in the PPARGC1A gene
as a potential thrifty allele because of its unusually high
frequency in Polynesians [14]. In the present study, we
further test the thrifty gene hypothesis in Polynesians by
evaluating the association between the 482Ser risk allele
and a T2DM-related phenotype, BMI, in Tongans and
Maori. We find that the 482Ser risk allele is associated
with age and sex adjusted BMI in Tongans assuming
a dominance (P = 0.014) or a co-dominance model
(P = 0.037), but not a recessive model of inheritance

Table 1 Summary statistics of cohorts and results of association between Gly482Ser genotypes and BMI

Co-dominant Dominant Recessive

Population sample
size

male female mean
age*

mean_BMI*
(kg/m2)

risk allele
frequency

effect
estimate
(kg/m2)#

P effect estimate
(kg/m2)#

P effect estimate
(kg/m2)#

P

Maori 110 32 78 48.1 ±
17.7

32.1 ± 7.6 0.833 0.024 ±
1.41

0.99 0.146 ± 1.60 0.93 -0.907 ± 4.52 0.84

Tongans 184 63 121 46.3 ±
14.0

34.0 ± 6.3 0.592 1.397 ±
0.66

0.037 2.341 ± 0.95 0.014 0.940 ± 1.26 0.46

All 294 95 199 47.0 ±
15.5

33.3 ± 6.9 0.686 0.351 ±
0.60

0.56 0.735 ± 0.81 0.366 -0.248 ± 1.29 0.85

* Standard deviation is shown.
# Standard error is shown.

The linear regression model used to produce effect estimates included age and sex as covariates. In the analysis including all populations, “population” was also
included as a covariate. Results for all three modes of inheritance (co-dominant, dominant and recessive) are shown. Statistically significant P values (P < 0.05)
are shown in bold.
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Figure 1 Estimated effects of Gly482Ser SNP on BMI. The solid
circles represent the estimate and the whiskers represent the
standard errors around each estimate. Estimates were obtained from
a linear regression model assuming codominance of the risk allele
with age and sex as covariates. In the analysis involving both
populations, “population” was also included as a covariate.
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(P = 0.46). In the Maori, however, we found no signifi-
cant associations between Gly482Ser genotypes and age
and sex adjusted BMI (Table 1 and Figure 1). When
considering the populations together and including
population as a covariate, we also find no evidence of
association (P = 0.56). Despite having a lower BMI, we
find that the Maori have a higher PPARGC1A risk allele
frequency than the Tongans. Although this observation
does not support a causal relationship between the
PPARGC1A risk allele and BMI, it can be explained by
several confounding factors including sampling biases
and environmental differences between populations.
Previous association studies between Gly482Ser and

T2DM-related phenotypes have produced conflicting
results, with some studies detecting significant effects
[22-28] and others failing to detect effects [29-33].
These conflicting results and the differences in effect
between populations observed in the present study may
be the result of genetic by environment interactions or
population-specific epistatic effects. It is worth noting
that genome-wide association (GWA) studies have failed
to detect associations between SNPs in or near
PPARGC1A and T2DM [43-48] or BMI [49]. To date,

however, these GWA studies have been restricted to
populations relatively distantly related to Pacific popula-
tions. Moreover, in the present study, the lack of an
association in Maori could be the result of reduced sta-
tistical power compared to Tongans due to the smaller
sample size (N = 110) and the high risk allele frequency
(0.833) in Maori. Our results provide some support for
the involvement of the PPARGC1A Gly482Ser SNP in
body weight or the pathophysiology of obesity related
phenotypes in Pacific populations, but large-scale GWA
studies in Pacific populations are desired to test this
association more robustly.
If the 482Ser risk allele was driven to high frequency

in Polynesians by positive selection, we expect its fre-
quency to be relatively high in Polynesians compared to
other populations. We previously showed that the
482Ser risk allele is found at unusually high frequency
in a sample of Polynesians compared to a sample of
highland New Guineans [14]. Here we extend the geno-
typing of this SNP to a worldwide sample and find that
the highest frequencies of the 482Ser risk allele world-
wide are indeed observed in Polynesian populations
(Figure 2). One striking feature of the worldwide risk

TON

MRI

COK

WSNNGC BGV
NGM

Figure 2 Worldwide frequency distribution of the 482Ser risk allele. The frequency of the 482Ser risk allele in each population is indicated
in black. Frequencies are shown for the 53 populations from the CEPH Human Genome Diversity Panel and 6 additional populations. The raw
genotype and allele frequency data for these populations can be found in Additional File 1, Table S1. The populations most relevant to the
present study are abbreviated as follows: NGM, New Guinea samples from Myles et al. (2007); NGC, New Guinea samples from the CEPH-HGDP;
BGV, Bougainville; TON, Tonga; WSN, Western Samoa and Niue; COK, Cook Islands; MRI, Maori.
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allele frequency distribution is the almost complete
absence of the risk allele in Africa: we observe only
three Gly482Ser heterozygotes out of 106 African indivi-
duals resulting in an allele frequency of only 0.01 in
Africa (Figure 2 and Additional File 1, Table S1). Out-
side of Africa, the risk allele is generally found at inter-
mediate frequencies: 0.36 in Europe; 0.33 in the Middle
East; 0.27 in Central and South Asia; 0.39 in East Asia;
and 0.25 in the Americas. The exception to this pattern
is in Oceania where only a single heterozygote from
Bougainville was observed among 53 Melanesians while
the risk allele is found at a frequency of 0.69 among
Polynesians (Figure 2 and Additional File 1, Table S1).
The highest frequency of the risk allele worldwide is
0.85 and is found in Western Samoan and Niue Islan-
ders. Such a striking difference in frequency between
Melanesians and Polynesians is consistent with our pre-
vious observations [14] and suggests that local positive
selection may be responsible for the increase in fre-
quency of the risk allele in Polynesians. Alternatively,
the non-risk allele may have gone to fixation due to
selection in Melanesians. To determine whether the
observed pattern is in fact due to positive selection, or
whether it is the result of demographic effects such as a
population bottleneck [11], will require more formal
tests of selection at this locus.
It is worth noting that the search for thrifty alleles in

Polynesians has not been restricted to the PPARGC1A
gene. For example, it was recently shown that the
Q223R (rs1137101) variant in the leptin receptor gene
(LEPR) is associated with BMI and obesity in Pacific
Islanders and thus represents a candidate thrifty locus
[50]. However, the frequency of the 223Q risk allele in
Polynesians (0.10) is relatively low: 40 of 54 worldwide
populations have higher frequencies of the risk allele
than Polynesians [51]. This observation suggests that the
223Q risk allele in LEPR did not rise in frequency in the
Pacific due to selection and is thus unlikely to account
for the unusually high prevalence of T2DM and obesity-
related phenotypes in Polynesians.
The FTO gene was also evaluated as a candidate

thrifty gene in Polynesians. Recent GWA studies con-
ducted in populations of European origin have identified
several SNPs associated with BMI in the FTO gene
[52-54]. In Pacific populations, however, no association
was detected between FTO risk alleles and BMI [55]. In
addition, the FTO risk alleles are not at unusually high
frequency in the Pacific [55]. These observations suggest
that FTO is also unlikely to be a thrifty gene in Pacific
populations.

Conclusions
The thrifty gene hypothesis is an oft-cited but often
untested hypothesis that provides an evolutionary

explanation for contemporary patterns of disease preva-
lence across human populations. Our finding that
Gly482Ser genotypes in the PPARGC1A gene are asso-
ciated with BMI in a Pacific population together with
the observation that the frequencies of the 482Ser
risk allele are highest in Polynesians, suggest that
PPARGC1A remains a strong candidate thrifty gene in
the Pacific. Moreover, PPARGC1A was originally identi-
fied as a possible candidate thrifty gene in Polynesians
by purely genetic methods, without any associated phe-
notypic data [14]; the fact that Gly482Ser is associated
with BMI in Tongans supports the utility of such
approaches for identifying potential candidate genes.

Additional material

Additional file 1: Table S1: Summary of the Gly482Ser genotype
data used in the present study. The geographic origin, genotype
frequencies, allele frequencies and the P values from a test of Hardy-
Weinberg equilibrium are presented for each of the populations
genotyped for the Gly482Ser SNP in the present study.
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