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SNP-SNP interactions dominate the genetic
architecture of candidate genes associated with
left ventricular mass in african-americans of the
GENOA study
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Abstract

Background: Left ventricular mass (LVM) is a strong, independent predictor of heart disease incidence and
mortality. LVM is a complex, quantitative trait with genetic and environmental risk factors. This research
characterizes the genetic architecture of LVM in an African-American population by examining the main and
interactive effects of individual candidate gene single nucleotide polymorphisms (SNPs) and conventional risk
factors for increased LVM.

Methods: We used least-squares linear regression to investigate 1,878 SNPs from 234 candidate genes for SNP
main effects, SNP-risk factor interactions, or SNP-SNP interactions associated with LVM in 1,328 African-Americans
from the Genetic Epidemiology Network of Arteriopathy (GENOA) study. We reduced the probability of false
positive results by implementing three analytic criteria: 1) the false discovery rate, 2) cross-validation, and 3) testing
for internal replication of results.

Results: We identified 409 SNP-SNP interactions passing all three criteria, while no SNP main effects or SNP-risk
factor interactions passed all three. A multivariable model including four SNP-SNP interactions explained 11.3% of
the variation in LVM in the full GENOA sample and 5.6% of LVM variation in independent test sets.

Conclusions: The results of this research underscore that context dependent effects, specifically SNP-SNP
interactions, may dominate genetic contributions to variation in complex traits such as LVM.

Background
Heart disease, defined as myocardial infarction, hyper-
tensive and ischemic heart disease, and heart failure, is
the leading cause of mortality and morbidity in the
United Sates [1]. Increased left ventricular mass (LVM)
is a well-known, independent risk factor for heart dis-
ease incidence, mortality, and all-cause mortality [2-4].
LVM can be measured non-invasively via echocardiogra-
phy and risk factors associated with increases in LVM
include high blood pressure, high dietary salt intake,
increased age, male gender, diabetes, and increased body
mass index (BMI) [5-8]. African-Americans experience

higher mean values of LVM and have almost twice the
amount of left ventricular hypertrophy (clinical thresh-
old for high LVM) compared to a non-Hispanic white
population [5].
Family and twin studies have demonstrated that

genetic factors significantly contribute to the inter-indi-
vidual variation in LVM in numerous racial/ethnic
groups. Heritability estimates range between 0.2 - 0.6
depending on the population being studied and risk fac-
tors adjusted for [9-12]. In an African-American popula-
tion, the heritability of LVM, after adjustment for
known risk factors, was estimated to be 0.46 [11]. As a
follow-up to heritability studies, candidate gene associa-
tion studies have attempted to test for associations with
genetic variants in pathways involved in LVM. While
some of the candidate gene results are promising, they
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have been limited by the lack of replication and the fail-
ure to consider the full spectrum of genetic effects
involved in complex traits (ie. interactions). LVM is a
complex, quantitative trait and by definition is the result
of environmental factors, genetic factors, and interac-
tions between. However, to date, most genetic associa-
tion studies (candidate gene and genome wide) have
inappropriately simplified genetic architecture by focus-
ing on single SNP effects. Issues of failed replication are
not surprising given that true genetic effects may not
replicate in different study populations because they are
specific to a given population, in a given environment or
because the true architecture involves unaccounted
interactions [13-16]. In order to fully understand the
genetic architecture of complex traits such as LVM, sin-
gle candidate gene SNP associations must be considered
in the context of, and in conjunction with, environmen-
tal factors and other genetic variants.
The goal of this research was to explore the genetic

architecture of LVM by identifying robust, replicated
single SNP effects, SNP-environment interactions, and
SNP-SNP interactions associated with LVM after adjust-
ing for population stratification and relevant risk factors.
In achieving this goal, we implemented a multi-stage
approach that focuses on reducing the number of false-
positive results and shows replication of effects within
the study sample.

Methods
Study population
The National Heart Lung and Blood Institute estab-
lished the Family Blood Pressure Program (FBPP) in
1996, joining established research networks investigating
hypertension and cardiac diseases. One of the four net-
works in FBPP is the Genetic Epidemiology Network of
Arteriopathy (GENOA), which recruited hypertensive
African-Americans and non-Hispanic white sibships for
linkage and association studies to investigate genetic
contributions to hypertension and hypertensive target
organ damage. Subjects for this particular GENOA sub-
study were African-Americans recruited from Jackson,
Mississippi. GENOA recruited sibships containing at
least two individuals with clinically diagnosed essential
hypertension before age 60. Hypertension was defined
by a previous clinical diagnosis of hypertension by a
physician with current anti-hypertensive treatment, or
an average systolic blood pressure (SBP) ≥140 mmHg or
diastolic blood pressure (DBP) ≥90 mmHg on the sec-
ond and third clinic visit [17]. After identifying each
hypertensive sibship, all members of the sibship were
invited to participate regardless of their hypertension
status. Exclusion criteria included secondary hyperten-
sion, alcoholism or drug abuse, pregnancy, Type I dia-
betes, or active malignancy. A total of 1,481 individuals

were enrolled in GENOA. Informed consent for this
study was obtained from all subjects and approval was
granted by the institutional review board at the Univer-
sity of Mississippi Medical Center.

Phenotype measurement
Data collection consisted of demographic information,
medical history, clinical characteristics, lifestyle factors,
and blood samples for genotyping and biomarker assays.
Study visits were conducted in the morning after an
overnight fast of at least eight hours. Blood pressure was
measured with random zero sphygmomanometers and
cuffs appropriate for arm size. Three readings were
taken in the right arm after the participant rested in the
sitting position for at least five minutes; the last two
readings were averaged for the analysis. Height was
measured by stadiometer, weight by electronic balance,
and BMI was obtained by the standard calculation of
weight (kg) divided by height squared (m2). Diabetes
was considered present if the subject was being treated
with insulin or oral agents or had a fasting glucose level
≥126 mg/dL. Smoking status was defined as self-
described smoker within the past year. Use of anti-
hypertensive medication was based on self-report during
the clinical exam.
The outcome of interest, LVM, was derived using

phased-array echocardiographs with M-mode, two-
dimensional and pulsed, continuous wave, and colorflow
Doppler capabilities. Standardized methods, along with
training and certification, were used by field-center tech-
nicians to achieve high-quality recordings. Readings
were performed at the New York Presbyterian Hospital-
Weill Cornell Medical Center and verified by a single
highly experienced investigator. The parasternal acoustic
window was used to record at least 10 consecutive beats
of two-dimensional and M-mode recordings of the left
ventricular internal diameter (LVID) and wall thick-
nesses at, or just below, the tips of the anterior mitral
leaflet in long- and short-axis views. Correct orientation
of planes for imaging and Doppler recordings was veri-
fied using standardized protocols. Measurements were
made using a computerized review station equipped
with digitizing tablet and monitor screen overlay for
calibration and performance of each measurement.
LVID and interventricular septal and posterior wall
thicknesses were measured using the two-dimensional
view at end-diastole and end-systole according to the
recommendations of the American Society of Echocar-
diography in up to three cardiac cycles [18]. Calcula-
tions of LVM were made using a necropsy-validated
formula [19]. LVM has excellent reliability when mea-
sured through echocardiography; the correlation
between repeated measures of LVM was 0.93 between
paired echocardiograms in hypertensive adults [20].
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LVM was measured on a total 1,440 African-American
participants of GENOA.

SNP selection and genotyping
One thousand nine hundred and fifty six SNPs from 268
genes known or hypothesized to be involved in blood
pressure regulation, lipoprotein metabolism, inflamma-
tion, oxidative stress, vascular wall biology, obesity and
diabetes were identified from the genetic association lit-
erature and positional candidate gene studies [21] to be
genotyped in the entire GENOA population. SNPs were
chosen based on a number of different criteria including
the published literature, non-synonymous SNPs with a
minor allele frequency (MAF) > 0.02, and tagSNPs iden-
tified using public databases such as dbSNP [22] and
the SeattleSNPs database [23].
DNA was isolated using the PureGene DNA Isolation

Kit from Gentra Systems (Minneapolis MN). Genotyp-
ing, based on polymerase chain reaction amplification
techniques, was conducted at the University of Texas-
Health Sciences Center at Houston using the TaqMan
assay and ABI Prism® Sequence Detection System
(Applied Biosystems, Foster City CA). Primers and
probes are available from the authors upon request.
Quality control measures for genotyping assays included
robotic liquid handling, separate pre- and post-PCR
areas, standard protocols and quality control analyses
including 5% duplicates, positive and negative controls,
computerized sample tracking, and data validity checks.
After these quality control procedures and removal of
monomorphic SNPs, 1,878 SNPs from 234 genes were
available for analysis in the African-American cohort of
GENOA.(see Additional file 1) Primers and probes are
available from authors upon request. Furthermore, FBPP
data (including GENOA) is freely available to research-
ers upon request http://public.nhlbi.nih.gov/GeneticsGe-
nomics/home/fbpp.aspx.

Population substructure
The presence of population substructure is a concern
for genetic epidemiological studies because the distribu-
tion of admixture proportions within a study sample can
be a source of confounding, resulting in spurious SNP-
disease associations [24-26]. Based on seventy-six micro-
satellite markers that were measured in both the
GENOA cohort and also in the Human Genome Diver-
sity Project (HGDP) [27], we used Structure to test for
substructure in the GENOA African-American sample
[28]. The populations that served as “parents” to the
African-American cohort of GENOA in Structure analy-
sis were the HGDP African Yoruba and Mandenka
populations and the Caucasian GENOA population
from Rochester, MN. After testing three possible under-
lying clusters in our data (K = 1, 2, or 3), Structure

indicated that K = 2 clusters had the highest posterior
probability. This indicates that given our data and the
ancestral populations assumed there were no distinct
underlying subgroups in our dataset, only admixture
between African and European ancestors.
The underlying admixture within the African-Ameri-

can GENOA sample can be accounted for through prin-
cipal component analysis (PCA) [29]. There were 453
microsatellite markers previously genotyped in GENOA
for genome wide linkage analysis; these microsatellite
markers were used to run PCA using R. Prior research
has shown that association tests are not sensitive to the
number of principle components included as long as a
sufficient number of components are included in the
model [30]. The first 20 principal components described
approximately 20% of the underlying genetic variation
and were used to adjust LVM using least-squares linear
regression.

Statistical analysis
Data analyses were conducted using the statistical lan-
guage R (version 2.6) [31]. LVM was transformed using
the natural logarithm in order to best approximate the
distributional assumptions of linear regression. Allele
and genotype frequencies were calculated using standard
gene counting methods. Hardy-Weinberg equilibrium
(HWE) was assessed using a chi-square test or Fisher’s
exact test if a genotype class had less than five indivi-
duals [32]. LVM was adjusted for risk factors including
age, sex, SBP, height, weight, and admixture using least-
squares linear regression. The residuals from the adjust-
ment model were normally distributed, centered around
zero, and used as the dependent variable for association
tests. Tests for single SNP effects and SNP-SNP interac-
tions utilized these residuals. For tests of SNP-covariate
interactions, the respective variable was left out of the
adjustment model and instead included in the model for
interaction. For example when SNP-SBP interactions
were tested, the LVM residuals were obtained by adjust-
ing for age, sex, height, weight and admixture. Of the
1,440 African-Americans in GENOA with LVM mea-
sures, the final sample size for association analyses is
1,326 due to a limited number of individuals missing
risk factor adjustment data, microsatellite data for PCA,
or SNP data.
We used a multi-stage approach in order to identify

both main and interactive genetic effects associated with
adjusted logLVM. The first stage was dedicated to con-
ducting association analyses for SNP effects, SNP-covari-
ate interactions, and SNP-SNP interactions. The second
stage focused on reducing the possibility of false-positive
association results and replication of results within our
GENOA sample. Finally, we conducted multivariable
SNP modeling with associations passing the second
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stage of analysis. This analysis approach has been pre-
viously described by Kardia et al [33] and Smith et al
[34].

Stage I: Association analyses
In the first stage of analysis, we tested each of the 1,878
SNPs for association with adjusted logLVM using least-
squares linear regression methods in the full sample
[32,35]. The SNPs were modeled with two degrees of free-
dom, therefore assuming no underlying genetic model,
and statistical significance for the main effect of each SNP
was determined based on a likelihood ratio statistic.
Based on the 1,878 SNPs and 15 chosen covariates, all

possible SNP-covariate interactions were assessed for
association with adjusted logLVM using least-squares
linear regression. The covariates considered in the inter-
actions included age, sex, SBP, DBP, height, weight,
diabetes status (0/1), hypertension status (0/1), use of
anti-hypertensive medication (0/1), duration of hyper-
tension, smoking status (0/1), myocardial infarction (0/
1), total cholesterol, low density lipoprotein cholesterol
(LDL), and triglycerides. Age, sex, SBP, height, and
weight were left out of the adjustment model in order
to include this main effect in the respective test for
interaction. We determined significance of the SNP-cov-
ariate interaction with a likelihood ratio test statistic
comparing a full model (including interaction terms and
main effects of the variables in the interaction term) to
a reduced model that contains the main effects of the
covariate and SNP being tested.
All possible pairwise SNP-SNP interactions were

tested with SNPs coded as two dummy variables to
allow testing for all possible statistical epistatic effects
[36]. The statistical significance of the SNP-SNP interac-
tion was based on a likelihood ratio test comparing the
full model including all interaction terms to a reduced
model with only the main effects of each SNP (up to
four degrees of freedom depending on presence of all
genotypic combinations) [36].

Stage II: Reduction of false positive associations
The second stage of analysis was focused on reducing
the possibility of false-positive association results and
replication of results within our GENOA sample. We
did this by implementing three analytic approaches:
1) False Discovery Rate (FDR) [37], 2) four-fold cross-
validiation (CV) [38], and 3) internal replication of
results between two subsets of the data. Only associa-
tions passing the pre-determined thresholds for all three
approaches were considered positive associations.
The first step for reducing the probability of false

positive results was to calculate the FDR q-value for all
association tests [37]. FDR is a method that controls for
the proportion of “rejected hypotheses” that are rejected

falsely. For the single SNP associations, the vector of
model p-values was used to calculate the q-value, while
for the SNP-covariate and SNP-SNP interactions, the
vectors of partial F test p-values were used to calculate
the q-value. An FDR q-value threshold <0.30 was used
to determine significance.
The second approach for minimizing false positive

results was to use four-fold CV, a method that reduces
false positive results by eliminating associations that lack
predictive ability in independent test samples. We per-
formed CV by dividing the full sample into four equally
sized groups. Three of the four groups were combined
into a training dataset, and the modeling strategy out-
lined above was carried out to estimate model coeffi-
cients. These coefficients were then applied to the
fourth group, the testing dataset, to make predictions
about the value of the outcome variable of each indivi-
dual in the independent test sample. This process was
repeated for each of the four testing sets. Because ran-
dom variations in the sampling of the four mutually
exclusive test groups can potentially impact the esti-
mates of CV R2, this procedure was repeated ten times
and the CV R2 values were averaged [38]. Single SNP
associations were considered cross-validated if the aver-
age percent variation predicted in independent test sam-
ples (CV R2) was greater than 0.5% and interactions
were considered cross-validated if the difference in aver-
age percent variation predicted in independent test sam-
ples between the full model containing the interaction
terms and the reduced model containing only main
effect terms was greater than 0.5%. This threshold of
0.5% was chosen because permutation tests on the mod-
els investigated in this paper, we found that the prob-
ability of observing a CV R2 × 100 greater than 0.5% by
chance alone was less than 5% (results not shown). That
is, Pr(CV R2 × 100 > 0.5%) <0.05 under the null hypoth-
esis of no association.
The third and final step to reduce false positive results

was to demonstrate replication of effects within our
GENOA sample. Considering the entire sample of Afri-
can-Americans and randomly sampling one sibling from
each sibship, without replacement, the first replication
subset sample was created. From the remaining people,
we randomly sampled a second sibling from each sibship
to establish the second sample. Association analyses were
then conducted in both of the subset samples. If a SNP,
SNP-covariate, or SNP-SNP association replicated across
these two samples (a = 0.10), passed FDR and CV criteria
in the full sample, it was tested for homogeneity of direc-
tion and magnitude of effect across the two samples.

Multivariable SNP modeling
Based on the association tests that passed all three of
the above criteria (FDR q-value < 0.30, replication in
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replication datasets with a = 0.10, and CV R2 > 0.005),
we built a multivariable linear regression model using
forward selection in the full sample of GENOA African-
Americans. Residuals from the age, sex, SBP, height,
weight, and admixture adjusted logLVM were used as
the dependent variable for this multivariable model. The
increase in percent variation of adjusted LVM explained
was then calculated, as was the increased predictive abil-
ity of the model based on the full model CV R2 with the
addition of each term. Because the full sample of indivi-
duals contains siblings, the associations that were
included in the final multivariable model were also
tested using a linear mixed effects model to account for
the familial correlation and ensure that the results were
not dependent upon the underlying familial correlation
in the data.

Results
To examine the genetic architecture of LVM in African-
American individuals, we used data from the GENOA
study for association analysis. In general, this is an older
(mean age 63) hypertensive cohort (79% hypertensive)
with an average BMI of 31 and 29% diabetic (Table 1).
The average LVM is 160.8 grams.

Stage I and II results
1,878 SNPs were tested for association with adjusted
logLVM. Of these, 221 had a p-value < 0.10 in the full
sample, the minimum p-value was 9.24 × 10-4 (SNP:

rs12460421, FDR q-value = 0.738, CV R2 = 0.0033).
None of these single SNP associations had an FDR
q-value < 0.30 and only one had a CV R2 > 0.005 (SNP:
rs2182833). Table 2 summarizes the number of results
passing each of the three pre-determined multiple test-
ing criteria for the SNP main effects, the SNP-covariate
interactions, and the SNP-SNP interactions.

There were a total of 28,075 SNP-covariate interactions
tested. Ten of those had an FDR q-value < 0.30
(p-values ranging from 1.95 × 10-6 to 9.59 × 10-5), 303
replicated across sample subsets, and 112 had a CV
R2 > 0.005. However, none of the SNP-covariate interac-
tions passed all three criteria.
Based on the 1,878 SNPs, all possible SNP-SNP inter-

actions were tested for a total of 1,740,614 associations.
409 of these associations passed all three criteria with
an FDR q-value < 0.30, replicating in both subsets of the
data, and had a CV R2 > 0.005. The interaction with the
lowest partial F-test p-value in the full sample was
rs17876148*rs12971616 (p-value = 4.35 × 10-8, FDR q-
value = 0.0139, CV R2 = 0.0219).

Multivariable modeling results
A multivariable model was built to determine if a signifi-
cant proportion of the variation in LVM could be
explained by the joint effect of these SNPs and their inter-
actions. To avoid over-parameterizing the model, only
four SNP-SNP interactions were chosen for the final

Table 1 Descriptive statistics for the full African-American cohort of GENOA and two internal replication subset
samples

Full Sample Subset 1 Subset 2

Variable N Mean ± St. Dev. N Mean ± St. Dev. N Mean ± St. Dev.

Age, years. 1328 62.7 ± 9.5 491 62.99 ± 9.63 496 63.09 ± 9.62

BMI, kg/m2 1326 31.5 ± 6.6 488 31.67 ± 7.01 494 31.5 ± 6.88

SBP, mmHg 1328 138.3 ± 21.1 491 139.3 ± 21.49 496 138.5 ± 20.77

DBP, mmHg 1328 79.6 ± 10.8 491 80.28 ± 10.76 496 79.92 ± 11.35

Height, cm 1326 168.4 ± 8.8 488 169.4 ± 9.15 494 169.2 ± 9.08

Weight, kg 1326 89.3 ± 19 488 90.66 ± 19.83 494 90.01 ± 19.5

Duration of hypertension, years 1046 16.5 ± 12.8 404 16.79 ± 13.24 396 16.17 ± 12.49

LV Mass, g 1328 160.8 ± 47.1 477 167.4 ± 51.66 477 163.5 ± 46.42

Sex, male 1328 393 (29.6%) 491 187 (38.1%) 496 175 (35.3%)

Smoker 1328 188 (14.2%) 491 78 (15.9%) 496 79 (15.9%)

Diabetic 1328 387 (29.1%) 491 150 (30.5%) 496 144 (29.0%)

LV Hypertrophy 1328 210 (15.8%) 491 90 (18.3%) .496 81 (16.3%)

Hypertensive 1328 1,046 (78.8%) 491 400 (81.5%) 496 391 (78.8%)

Use anti-hypertensive medication 1328 930 (70.0%) 491 357 (72.7%) 496 344 (69.4%)

BMI = body mass index, SBP = systolic blood pressure, DBP = diastolic blood pressure, LV = left ventricular.

Smoker: Self-reported smoker within the past year.

Diabetic: current treatment with insulin or oral agents OR a fasting glucose ≥126 mg/dL.

LV Hypertrophy: sex-specific thresholds; LVMI ≥51 g/m2.7 for males, LVMI ≥49 g/m2.7 for females.

Hypertensive: previous clinical diagnosis by physician with current anti-hypertensive treatment, OR an average SBP ≥140 mmHG or DBP ≥90 mmHG on the
second and third clinic visits.
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multivariable model. The model building process
began with the interaction with the most significant likeli-
hood ratio test statistic p-value in the full sample
(rs35314437*rs7552841) (first row of Table 3). A forward
selection process was implemented with the remaining top
nine SNP-SNP interaction models. At each decision point,
the SNP-SNP interaction resulting in the lowest likelihood
ratio test statistic p-value for including main and interac-
tion SNP effects was added to the model. Table 3 shows
the detailed association results for the ten most significant
SNP-SNP interaction models considered in the forward
selection process. Ultimately the following four interac-
tions, and their main effects, were included in the
final multivariable model in the order listed:
rs35314437*rs7552841, rs257376*rs5267, rs17876148*
rs12971616, and rs6745660*rs12460421 (bold rows in
Table 3). Combined, these interactions explained 11.3% of
the variation in logLVM after adjustment for age, sex,
SBP, height, weight, and admixture. Table 4 outlines the

variation in LVM explained by the addition of the main
and interactive effects of each SNP-SNP interaction. The
predictive ability of the model increases steadily with the
addition of each interaction term as indicated by the
increase in CV R2. CV R2 was 5.56% when the full model
included all four SNP-SNP interactions. Detailed mathe-
matical description of the final model which includes main
and interactive effects is included as an additional file.(see
Additional file 2) Finally, these inferences are robust to
family structure. When each of the four SNP-SNP interac-
tions were tested using linear mixed effects models to
account for familial correlation, the p-values from the least
squares linear regression and linear mixed effects models
had a Pearson correlation coefficient >0.99.

Discussion
LVM is a complex, quantitative trait highly predictive of
incident heart disease. While many studies have investi-
gated candidate gene associations with LVM, to our

Table 2 Summary of the number of associations passing each of the three multiple testing criteria

SNP Main Effects SNP-Covariate Interactions SNP-SNP Interactions

Total # of Tests 1878 28075 1740614

P-value < 0.10* 221 3217 192202

FDR q-value < 0.30 0 10 3083

Cross-Validation R2 > 0.005 1 112 5007

Replication (P < 0.10 both groups) 14 303 17593

FDR + CV + Replication 0 0 409

This table outlines the number of associations (single SNP, SNP-covariate interactions, and SNP-SNP interactions) passing each level of multiple testing criteria
(False Discovery Rate (FDR), 4-fold cross validation (CV) repeated and averaged 10 times, and internal replication in two subsets of the full dataset). The
intersection of associations passing all three criteria reveals little overlap.

*P-values for SNP main effects are from a 2 degree of freedom likelihood ratio test statistic. The SNP-covariate and SNP-SNP interactions p-values were
determined from a likelihood ratio test comparing a full model (including all interactions and main effects) to a reduced model only containing main effects of
covariates and/or SNPs.

Table 3 Detailed results for the ten most significant SNP-SNP interaction models

SNP 1 SNP 2 DF* for
Interaction
Test

Interaction
P-value in
full sample

Model P-value
in full sample

Interaction
q-value in
full sample

CV* R2 in
full
sample

Interaction
P-value
(Sample 1)

Interaction
P-value
(Sample 2)

rs35314437 rs7552841 2 1.78 × 10-7 3.88 × 10-8 0.0142 0.0165 0.0202 4.21 × 10-6

rs257376 rs5267 3 1.33 × 10-6 9.11 × 10-8 0.0218 0.0031 0.0965 0.0442

rs2229169 rs6664855 4 2.45 × 10-7 1.19 × 10-7 0.0142 0.0094 0.0004 0.0028

rs10482839 rs7552841 3 2.13 × 10-6 2.78 × 10-7 0.0256 0.0143 0.0276 3.96 × 10-5

rs17876148 rs12971616 4 4.35 × 10-8 3.14 × 10-7 0.0139 0.0151 1.85 × 10-7 0.0389

rs936211 rs521898 2 1.17 × 10-6 1.07 × 10-6 0.0211 0.0115 0.0663 0.0023

rs6745660 rs12460421 4 0.0002 1.09 × 10-6 0.2247 0.0158 0.0856 0.0054

rs945032 rs12028945 4 6.45 × 10-6 1.11 × 10-6 0.0385 0.0103 0.0028 0.0011

rs17876144 rs12971616 4 7.29 × 10-8 1.14 × 10-6 0.0139 0.012 2.73 × 10-6 0.0341

rs35314437 rs4846052 1 1.73 × 10-7 1.15 × 10-6 0.0142 0.0177 0.0021 4.14 × 10-5

Table 3 outlines the detailed association and multiple testing results for the top ten SNP-SNP interactions passing all three multiple testing criteria. “Interaction
p-values” are from an up to 4 degree of freedom likelihood ratio test (depending on number of genotype classes represented in GENOA sample), “model p-
value” column is from the likelihood ratio for the model including main effects and interactions compared to a null model (up to 8 degrees of freedom), q-value
was assessed from the “interaction p-value”, CV R2 is the difference in CV R2 when the interaction terms are included in the CV process compared to only main
effects of SNPs, and the final two columns are the interaction p-values for the internal replication subset samples. These ten models were used in the
multivariable model building process with the bold rows indicating interactions included in final model.

*DF = degrees of freedom, CV = cross-validation.
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knowledge, no one has investigated the spectrum of can-
didate gene effects for association with LVM including
SNP main effects, SNP-covariate interactions, and SNP-
SNP interactions. Our motivating hypothesis was that
variations within positional and functional candidate
genes for hypertension and heart disease are associated
with LVM via interactive effects, in addition to single
SNP effects. In examining this hypothesis, we demon-
strated SNP-SNP interactions dominate the genetic
architecture of LVM in the African-American cohort of
GENOA.
One notable aspect of these results is the overwhelm-

ing presence of statistically significant epistasis in the
absence of marginal SNP effects. There has been debate
in the literature about the best way to test for interac-
tions while minimizing computational burden and the
possibility of false positives [39,40]. One strategy is to
condition tests for SNP-SNP interactions on at least
weakly significant marginal SNP effects (ex. p-value <
0.10) [39]. While this method will reduce the number of
tests conducted, not all SNP-SNP interactions are
expected to demonstrate marginal effects [40]. Many
previous studies have identified epistasis in the absence
of main effects. One example was found in dyslipidemia;
individually, none of the three SNPs within the USF1
gene tested for association with various lipid measures
showed any significance [41]. However, significant inter-
actions between SNPs in USF1 and SNPs in HSL and
APOC3 were identified as significantly associated with
triglycerides and apoE levels [41]. Additional examples
of epistasis in the absence of main effects in heart dis-
ease traits are found in atrial fibrillation [42] and coron-
ary artery disease [43]. An additional case against
conditioning searches for interaction based on initially
significant main effects is the possible bias from the
“winners curse”, a type of ascertainment bias that
describes the first positive report of a genetic variant
overestimating the true effect size. Follow-up searches
for interaction based on this overestimated effect tend

to be underpowered [44,45]. Likewise, our results do not
support conditioning searches for interaction on main
effects. Of the eight SNPs included in the multivariable
model, the range of main effect SNP p-values was 9.24
× 10-4 (rs12460421) to 0.415 (rs12971616) (Table 5).
Conditioning searches for interaction on main effects
would have precluded investigation of two of the four
robust interactions included in the final multivariable
model. This conclusion is directly parallel with a recent
study demonstrating the feasibility and justification of
genome wide interaction searches without conditioning
on main effects [46].
A concern for the occurrence of type I errors in the

face of so many hypothesis tests is substantial and
valid. Genetic association studies in the literature have
suffered from a great lack of replicability. This lack of
replication can be attributed to various reasons. Some
might be due to population specific effects resulting
from differing allelic and environmental distributions
in various geographical regions, false positive reports,
or overestimated initial effects (the “winners curse”).
Recognizing that replication in an independent cohort
might not be possible because of various sources of
heterogeneity; we sought to find genetic associations
that replicated within our study sample and were
robust across numerous multiple testing adjustment
methods. The relative low level of agreement between
results filtered through FDR, internal replication, and
CV supports the conservative nature of our strategy
for determining which results are robust and signifi-
cant. Furthermore, a similar analysis approach applied
to two different phenotypes, ankle brachial index [33]
and leukoaraiosis [34], identified different patterns of
genetic architecture, with less emphasis on SNP-SNP
interactions. Therefore, we feel this analysis approach
is useful for the reduction of type I errors and may
provide a tool for identifying unique patterns of
genetic architecture, which are likely to vary based on
the phenotype of study.

Table 4 Outline of model improvement with addition of each SNP-SNP interaction included in final multivariable
model

Model Interaction Terms in Model Total # of Terms in
Model

R2 Adjusted
R2

LR* p-value for Additional
Terms

Full Model CV*
R2

1 (rs35314437 * rs7552841) 5 0.034 0.03 n/a 0.0165

2 Model 1 + (rs257376 * rs5267) 12 0.073 0.064 2.094 × 10-8 (df = 7) 0.0332

3 Model 2 + (rs17876148 *
rs12971616)

20 0.108 0.093 2.208 × 10-7 (df = 8) 0.046

4 Model 3 + (rs6745660 *
rs12460421)

28 0.133 0.113 3.631 × 10-5 (df = 8) 0.0556

A multivariable model including a total of four SNP-SNP interactions was built in the African-American cohort of GENOA using forward selection. With the
addition of each SNP-SNP interaction, along with each SNP’s respective main effect, the variability in adjusted logLVM increased (assessed by adjusted R2) as did
the predictive ability of the model in cross-validation test sets (assessed by full model CV R2). The final multivariable model explained 11.3% of the observed
inter-individual variation in adjusted logLVM in GENOA and increased the predictive ability of the model by 5.6%.

* LR = likelihood ratio, CV = cross-validation.
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A natural question arising from our study results is
how these SNPs interact biologically? As these SNPs
were selected from “candidate genes”, biological plausi-
bility can be argued for any individual SNP. Table 5 out-
lines positional and functional information for each
SNP. Inferences of protein-protein interactions are more
difficult to make from this research because statistical
tests for SNP-SNP interactions will not necessarily mir-
ror tests for biological interactions [36]. We searched
the Michigan Molecular Interactions database [47] and
PubMed [48] for any previously reported protein inter-
actions between the four pairwise gene interactions in
the multivariable model. No protein interactions were
identified in those databases for the gene combinations
reported in Table 5. This is not surprising as making
the connection between statistical epistasis and biologi-
cal epistasis is difficult and arguably not permissible
[36,49]. Furthermore, since association testing relies on
the concept of linkage disequilibrium, it is always possi-
ble at least one of the “causal” SNPs is in a different
gene than the reported gene, and therefore we would
not expect to see the biological interaction between
reported genes. Despite these caveats, the strength and
concordance of the associations detected in both tradi-
tional hypothesis testing methods (ie. FDR and internal
replication) and prediction testing methods (ie. CV)
gives us confidences in the effects these SNP-SNP inter-
actions have on LVM. Of particular potential biological
relevance is the MPO SNP (rs35314437) that was identi-
fied in the first interaction term included in our multi-
variable model. Work done by Vasilyev et al found that
MPO-generated oxidants have a profound, adverse effect
on left ventricular remodeling and function [50].
Further, Ng et al concluded that MPO biomarkers
increased the specificity of n-terminal pro-B-type
natriuretic peptide as a screening tool for identifying

undiagnosed left ventricular systolic dysfunction [51].
An interesting future direction for research would be to
further pursue how the effects of MPO on left ventricu-
lar structure and function may be modified by other
genes such as PCSK9.

Conclusions
There is much yet to be understood about LVM and
why it is so highly predictive of heart disease and all-
cause mortality, independent of other cardiovascular risk
factors [4]. The results of this research underscore the
biological complexity underlying LVM and that context
dependent effects, specifically SNP-SNP interactions,
may dominate the genetic architecture of LVM. In this
study we focused on main and interactive genetic effects
of SNPs within candidate genes. Given the complexity
of LVM and replication issues inherent for heteroge-
neous traits, we demonstrate a conservative approach
for identifying robust associations within a given popula-
tion. Future examinations into the genetic architecture
of LVM should include replication efforts of the interac-
tions reported in independent populations, with detailed
consideration of sources of heterogeneity such as differ-
ing allele frequencies and population characteristics.

Additional material

Additional file 1: Contains a list of all SNPs (and their respective
gene) investigated.

Additional file 2: Contains the R output for the multivariable model
including 4 SNP-SNP interactions.
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