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Abstract
Background: In the setting of highly active antiretroviral therapy (HAART), plasma levels of
human immunodeficiency type-1 (HIV-1) rapidly decay to below the limit of detection of standard
clinical assays. However, reactivation of remaining latently infected memory CD4+ T cells is a
source of continued virus production, forcing patients to remain on HAART despite clinically
undetectable viral loads. Unfortunately, the latent reservoir decays slowly, with a half-life of up to
44 months, making it the major known obstacle to the eradication of HIV-1 infection. However,
the mechanism underlying the long half-life of the latent reservoir is unknown. The most likely
potential mechanisms are low-level viral replication and the intrinsic stability of latently infected
cells.

Methods: Here we use a mathematical model of T cell dynamics in the setting of HIV-1 infection
to probe the decay characteristics of the latent reservoir upon initiation of HAART. We compare
the behavior of this model to patient derived data in order to gain insight into the role of low-level
viral replication in the setting of HAART.

Results: By comparing the behavior of our model to patient derived data, we find that the viral
dynamics observed in patients on HAART could be consistent with low-level viral replication but
that this replication would not significantly affect the decay rate of the latent reservoir. Rather than
low-level replication, the intrinsic stability of latently infected cells and the rate at which they are
reactivated primarily determine the observed reservoir decay rate according to the predictions of
our model.

Conclusion: The intrinsic stability of the latent reservoir has important implications for efforts to
eradicate HIV-1 infection and suggests that intensified HAART would not accelerate the decay of
the latent reservoir.

Background
The latent reservoir for HIV-1 in resting CD4+ T cells is
generated when productively infected CD4+ T lymphob-
lasts revert back to the resting state, becoming memory T

cells, instead of succumbing to viral cytopathic effects or
host cytolytic effector mechanisms [1-4]. The result is a
state of viral latency in resting memory CD4+ T cells, cells
that are extremely quiescent, with little to no transcription
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of HIV-1 genes [5-7]. Given that memory T cells form the
basis for lifelong immunity to recall antigens, it is not sur-
prising that the average half-life of the latent reservoir in
the setting of HAART can be as long as four years [8,9].
However, the basis for the remarkable stability of the
latent reservoir has remained controversial.

The two most reasonable mechanisms for maintenance of
the latent reservoir in the setting of HAART are 1) replen-
ishment by low-level viral replication [10-20] and 2) the
intrinsic stability of latently infected cells (i.e. memory T
cells) [8,9,21-23]. While some studies have suggested that
low-level viral replication confers stability by continu-
ously reseeding the latent reservoir despite HAART
[10,19,20], other studies have provided experimental evi-
dence at odds with a major role for viral replication in
maintaining the latent reservoir [24,25]. These studies
have shown that in many patients responding well to
HAART, there is no evolution of drug resistance, suggest-
ing a lack of viral replication [26]. We have previously
shown that the maximal rate at which new cells enter the
reservoir in the setting of HAART is extremely low [27].
These studies provide indirect evidence that intrinsic sta-
bility of memory T cells and not replenishment by ongo-
ing viral replication is the major reason for the stability of
the latent reservoir.

Mathematical models have proven useful for the analysis
of several aspects of HIV-1 infection including the dynam-
ics of viral replication [28-31], the effects of immune
responses [32-35], and the mechanism of CD4 depletion
[32,36-38]. We present here a mathematical analysis of
CD4+ T cell dynamics in the setting of HIV-1 infection in
order to explore the dynamics of the latent resting CD4+ T
cell reservoir. We extend elegant models of HIV-1 and
CD4+ T cell dynamics previously described by Alan Perel-
son and Martin Nowak [28,32] to explore how low-level
viral replication influences the observed decay of the
latent reservoir in patients on HAART. A recent study [39]
analyzed the persistence of the latent reservoir in the set-
ting of HAART with a model similar to ours. However, this
study [39] did not focus on the decay properties of latently
infected cells in relation to low-level viral replication.
Also, because the authors did not constrain the maximum
amount of viral replication compatible with available
experimental data from patients on HAART, this study
[39] was unable to answer the clinically significant ques-
tion of whether realistic levels of residual viral replication
in the setting HAART affect the experimentally observed
decay rate of the latent reservoir. In this study, we calcu-
late the well-known replication threshold below which
infection cannot be sustained [40] for our model, and dis-
cuss latent reservoir replenishment above and below this
threshold. Having explicitly illustrated the primary factors
involved in establishing and maintaining the latent reser-

voir, we offer the first explicit analysis of the relationship
between low-level viral replication and the decay rate of
the latent reservoir. Our results indicate that the impact of
viral replication on the decay rate of the latent reservoir
rapidly diminishes with increasing inhibition by HAART.
For levels of viral replication likely to occur in the setting
of HAART, our model predicts that the decay of the latent
reservoir is determined by intrinsic (e.g. death rate) as well
as extrinsic properties (e.g. activation rate) of latently
infected cells. We further apply our theoretical analysis to
patient-derived data and show that any flow of new cells
into the latent reservoir by viral replication is unlikely to
impact the observed, in vivo decay rate. Thus theoretical
predictions and experimental data both suggest that the
long half-life of the latent reservoir is likely attributable to
the intrinsic stability and reactivation rate of latently
infected T cells. As such, any possible shortening of the
half-life of latently infected CD4+ T cells would depend on
increasing the death rate or reactivation rate of these cells.
These results have important implications for eradication
of HIV-1 infection by conventional HAART and suggest
the necessity of developing strategies to target the latent
reservoir specifically by approaches either apart from or in
addition to HAART intensification.

Methods
Mathematical model of T cell dynamics
To explore the possibility that low-level viral replication
reseeds the latent reservoir and thereby slows the decay of
the reservoir in the setting of HAART, we used a slightly
modified version of previously described mathematical
models of T cell dynamics in HIV-1 infection [28,32]. By
virtue of its foundation in previously described models
[28,32], our model makes the same assumptions as these
models: constant model parameters (e.g. viral infectivity)
as well as a well-stirred, homogeneous virus and cell pop-
ulations. Our modifications to these models make rela-
tively few additional assumptions about the physiology of
CD4+ T cell dynamics, as described below. Our model
(Figure 1) considers uninfected (activated) target cells
(U), productively infected (activated) cells (P) and
latently infected cells (L). We consider infected cells as
those that contain a stably integrated HIV-1 genome.
Uninfected cells are introduced into the system according
to a zero order rate constant, λ, which represents produc-
tion of target cells (e.g. by activation of resting CD4+ T
cells as well as thymic or homeostatic production). Unin-
fected cells are infected by virions to become productively
infected cells at a rate proportional to a constant, β, which
represents the virus infectivity and is a reflection of viral
replication. Because free virions have a very high turnover
rate and are made by productively infected cells (infected
activated CD4+ T cells), their dynamics closely resemble
those of productively infected cells. Therefore free virions
are not explicitly represented but rather are represented by
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productively infected cells. Thus the rate of infection is
represented as a non-linear term (βUP) proportional to
both the target (uninfected) cells and the productively
infected cells [32]. Only productively infected cells replen-
ish the latent reservoir [41]. We model the reversion of
productively infected cells to latency at a rate proportional
to αR, while latently infected cells may reactivate at a rate
proportional to αQ.

Productively infected and latently infected cells each have
intrinsic death rates represented by dP, and dL, respec-
tively. Uninfected activated CD4+ T cells can be lost by
conversion into resting T cells or by cell death. However,
since resting T cells cannot be productively infected by
HIV, they are irrelevant for our model, and thus we sub-
sume any kind of loss of activated T cells under the rate
constant dU. The model is then defined by a system of
three ordinary differential equations:

We do not incorporate other permissive cell types (e.g.
macrophages) since they comprise a small fraction of all

infected cells [31] and would not significantly change the
overall qualitative as well as quantitative findings.

Parameter values were chosen based on previously pub-
lished reports, where possible. Most productively infected
cells have been shown to have extremely short half-lives
[30,31], while latently infected cells have remarkable sta-
bility [8,9]. These characteristics are reflected in the death

rates of productively infected cells, δP, and latently

infected cells, δL. The rate at which target cells (uninfected

activated CD4+ T cells) turn over, δU, represents a balance

between death, proliferation and reversion to resting. In
the case of no infection (i.e. in an HIV- individual), the

steady-state number of target cells,  is λ/δU or λ = δUU.

Therefore δU also represents fraction of target cells that are

replaced daily. Previously published studies estimate that
at most 2% of target cells are replaced daily in an unin-

fected individual, therefore we set δU = 0.02 day-1 (based

on direct measurements in [42,43]). Furthermore, we find

that for δU = 0.02 day-1, our model reproduces the clini-

cally observed, smooth rebound [29,44,45] of the viral
load (reflected here by the number of productively
infected cells) after interruption of HAART with little to
no oscillation (data not shown). Because activated cells
both proliferate rapidly and die rapidly, it is possible that
the net death rate (death rate less proliferation rate) could
be very small and on the order of 0.001 day-1. However,

we do not expect that δU could be much larger than our

chosen value of 0.02 day-1. A larger value for δU would be

contradictory to our expectation that δU <<δP, which fol-

lows from the highly cytopathic nature of HIV. Regardless,

while we choose δU to best fit experimentally observed

data, we nonetheless test values of δU as low as 0.001 day-

1 and as large as 1.0 day-1 and find our results to be robust
through this entire range.

Infection of an activated CD4+ T cell by HIV leads to sig-
nificant dysregulation of cellular processes as the virus
subverts the host cellular machinery. This dysfunction
may also lead to decreased conversion to the resting state,
which is reflected by the substantially lower (by several
orders of magnitude) number of latently infected cells
compared to productively infected cells [3]. We therefore
chose a rate for conversion of productively infected cells
to latency, αR, to reflect this experimentally observed bal-
ance. For the numerical calculations and simulations per-
formed in this report, we used the following parameter
choices (unless specified otherwise): δP = 0.5 day-1, δL =

dU
dt

U UPU= − −λ δ β , (1)

dP
dt

UP P LP R Q= − + +β δ α α( ) , (2)

dL
dt

P LR L Q= − +α δ α( ) . (3)

U

General schematic of model reflecting uninfected cells (U), productively infected cells (P) and latently infected cells (L)Figure 1
General schematic of model reflecting uninfected cells (U), 
productively infected cells (P) and latently infected cells (L). λ 
represents target T cell production. β reflects virus infectiv-
ity. αR is the rate of reversion for productively infected cells 
to latency. αQ is the activation rate of latently infected cells. 
Uninfected, productively infected and latently infected cells 
each have intrinsic death rates represented by δU, δP and δL, 
respectively.
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0.0001 day-1, αQ = 0.0005 day-1, αR = αQ/100, and δU =
0.02 day-1 with λ constrained to 2 × 109 cells/day by the
choice of δU and the steady-state value of uninfected cells
in the setting of no infection, which is approximately 1011

cells (Table 1). However, we tested a wide range of param-
eter values in order to check the validity of our results
(data not shown).

All simulations and calculations were performed with
MATLAB version 7.2.0.232. Patient Data. Patients' viral
load records were obtained with informed consent.

Results
A threshold of viral replication is necessary for existence of 
the latent reservoir

Analysis of our model (equations 1–3 in Methods) leads to
several predictions about the nature of HIV-1 infection
and its impact on CD4+ T cell dynamics. The model has
two steady-state solutions: the trivial steady-state reflects
conditions under which infection does not successfully
occur and the system remains at the uninfected steady-

state . The non-trivial steady-state val-

ues of all three state variables  are given by the fol-

lowing equations:

where A = δLδP + δPαQ + δLαR and B = δL + αQ. These solu-
tions indicate that the steady-state number of latently
infected cells depends on β, the infectivity, as does the
steady state number of productively infected cells. Inspec-
tion of equation 6 immediately reveals that the non-trivial
steady-state solutions (equations 4–6) are not biological
(P, L ≤ 0) for β ≤ βcrit, where

Because δP >> δL, αQ >> αR, we can approximate A ≈ δP(δL
+ αQ) = δPB and therefore

A successful infection is not established (the trivial steady-
state occurs) for β ≤ βcrit. A critical threshold dependence
of the steady-state for infected cells on the infectivity was
previously described for models of HIV viral and T cell
dynamics [40]. Our model demonstrates a similar prop-
erty and so from the condition that L > 0, it follows that β
> βcrit for a successful infection. Stability analysis shows
that the non-trivial steady-state is stable (and trivial
steady-state is unstable) when β > βcrit, and that the con-
verse is true when β ≤ βcrit.

Based on equation 8, it is apparent that βcrit is almost

entirely determined by δU, δP and λ. However, the trivial

steady-state solution enforces that the number of target

cells in the HIV-individual is λ/δU. Because the quantity λ/

δU is roughly constant across all uninfected individuals,

the primary factor influencing βcrit is δP, the death rate of

( , )U P L
U

= = =λ
δ 0

( , , )U P L

U
A

B
=

β
, (4)

P
LB

R

=
α

, (5)

L R B UA

PB L RB
= −

+

α λ β δ
β δ δ α

( )

( )
,

2 (6)

β δ
λcrit
UA
B

= . (7)

β δ δ
λcrit

U P≈ (8)

Table 1: Parameter values used for simultations and calculations

Parameter Definition Valuesa References

δP Net death rate of productively infected 
cells

0.50 (0.5–0.693) day-1 [32,65,66]

δL
b Net death rate of latently infected cells 0.0001 (0.001–0.0001) day-1 [32]

δU Net death rate of target cells 0.02 (1.0–0.001) day-1 [32,67]
αQ Activation rate of latently infected cells 0.0005 (0.001–0.0001) day-1 [36]

αR
c Rate of reversion of productively infected 

cells to latency [3,32,68,69]

λ Production rate of target cells 2 × 109 cells/day
Approximated from the steady-state condition that  = 
1 × 1011 in the case of no infection. Also consistent with 

[70]
Ratio of latently infected cells to target 

cells 10-4 (10-4–10-6) [2,4]

aRanges tested in parentheses
bEstimated based on resting cell death rate
cEstimated based on the ratio of latently infected cells to productively infected cells

αQ
100

U

L
U
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productively infected cells. We find a stable, physiologi-

cally non-trivial steady state for β > βcrit that reflects the

need for β to be large enough (to generate enough produc-
tively infected cells) to overcome the large death rate of
productively infected cells. Likewise, the maintenance of
latently infected cells requires at least a minimum of pro-
ductively infected cells sufficient for regular transitions to
latency despite rapid cell death. For rate constants consist-
ent with previously published studies (Table 1), the pre-

dicted steady-state levels of both  and  change

minimally when small perturbations are made to βUntreated.

However, both  and  rapidly drop to zero as β
approaches βcrit. If β ≤ βcrit, then the level of ongoing viral

replication is unable to maintain infection and the infec-
tion subsequently decays.

In order to understand how the size of the latent reservoir
relates to viral replication, we now examine the analytic

relationship between infectivity and the ratio , as

obtained by dividing equation 6 by equation 4. From

 we solve for the viral infectivity

in an untreated patient at steady-state. Therefore viral rep-
lication cannot replenish the latent reservoir if β is
reduced from βUntreated to βcrit where

Thus even in the setting of ongoing viral replication and
HAART, there should be no net entry of new cells into the
latent reservoir if HAART has attenuated the viral replica-
tion such that β ≤ βcrit (where βcrit represents the minimum
amount of viral replication necessary to maintain a latent
reservoir). Below, we will argue that the experimental data
constrain β to below βcrit in the setting of HAART.

Low-level viral replication does not significantly affect the 
decay rate of the latent reservoir

By preventing new entry into the latent reservoir, HAART
induces the latent reservoir to decay at a rate that depends
on the degree of inhibition of viral replication. With our
model, T cell dynamics in the setting of HAART can be

simulated by decreasing the infectivity, β, from βUntreated to

rβUntreated, where residual viral replication is represented by

r = βHAART/βUntreated, which reflects the fraction of βUntreated

to which viral infectivity is reduced in the setting of
HAART. If we assume that U changes slowly relative to P
and L (in the setting of HAART, the number of uninfected

cells changes very little) [28], we can substitute  for U in
equations 1 and 2 – obtaining a system of 2 linear, ordi-
nary differential equations (for P and L). This system is
characterized by two eigenvalues, where

is the asymptotic (least negative) eigenvalue and reflects
the decay rate of the latent reservoir. The maximum value
of Λ, Λr = 0, is the fastest decay rate of the latent reservoir
and occurs when r = 0, reflecting a complete inhibition of
viral replication. By expanding equation 11 to zeroeth
order in αR for r = 0, the maximum reservoir decay rate
may be approximated as Λr = 0 ≈ B = δL + αQ. The decay rate
of the latent reservoir is therefore determined primarily by
the activation rate of the latently infected cells (αQ) as well
as the net death rate of latently infected cells (δL), which
reflects the difference between the death rate and prolifer-
ation rate of latently infected cells. Thus the faster latently
infected cells die, the faster they decay (larger δL). Con-
versely, the faster latently infected cells divide (e.g. home-
ostatic proliferation), the slower they decay (smaller δL).
In principle, however, because resting CD4+ T cells both
divide and die very slowly, it is likely that αQ > δL. There-
fore, the reactivation rate of latently infected cells makes
the dominant contribution to Λ, the decay rate of latently
infected CD4+ T cells.

Further, we observe that Λ increases as A(1 - r)/(αR + B)

until it approximately reaches its maximum (Λr = 0) when

r = r* ≈ (δP - δL - αR - αQ)/δP, at which point the reservoir

decay rate is virtually independent of β (Figure 2). This

relationship between Λ and 1 - r, a consequence of the
nonlinear structure of the model, reflects the threshold of
viral replication. Once viral replication has been reduced
to a level so low that the virus population cannot sustain
itself anymore, the replenishment of the latent CD4+ T cell
reservoir through ongoing replication becomes negligible
and has virtually no effect on the reservoir decay rate. This

relationship between Λ and 1 - r also holds for other
parameter combinations and the predicted reservoir decay

rates closely match simulation results. (Note that for β >

P L

P L

L U/

L U/

β δ δ α α δ α λUntreated P L R R U RA
L
U

B B= + +
⎡

⎣
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βcrit, Λ describes the decay of the reservoir towards the new

steady state, not towards zero.) In deriving an expression
for the decay rate, we assume that the model parameters
remain constant from when HAART is started. However,
we also consider the consequences of linearizing around

the post-HAART value of . At long time scales, the sys-
tem might approach the post-HAART steady-state; there-

fore we must consider this possibility. For the case of β ≤
βcrit, we find that linearization around the post-HAART

value of  does not significantly change our previous cal-
culations – the reservoir continues to decay at a constant

rate determined by equation 11 except that r = βHAART/βcrit,

which does not significantly change the numerical value

of Λ. For the case of β > βcrit, linearization around the post-

HAART value of  leads to Λ ≈ 0 (because r → 1 in equa-
tion 11), suggesting a very slow (almost infinitely slow)
decay of the latent reservoir near the post-HAART steady-

state. These calculations predict that for the case of β >

βcrit, the reservoir decay rate (as defined by the asymptotic

eigenvalue of the equations defining our model) slows

down as the post-HAART steady-state is achieved. Consist-
ent with results that we have described in a previous study
(regimes 1–3 of reference [27]), the decay of the resting
CD4+ T cell reservoir cannot be accurately described as an
exponential decay near the post-HAART steady-state in
the setting of viral replication sufficient for continual

replenishment of the reservoir (β > βcrit).

Comparison with previous models of latent reservoir 
persistence
The decay of the latent reservoir was previously modeled
by Muller et al. [46], who made the simplification that
HAART eliminates the flow of cells into latent reservoir
from the productively infected cell compartment. This
simplification reduced the dynamics of the latent reser-
voir in the setting of HAART to a strict exponential decay
dependent on only the death rate and reactivation rate of
latently infected cells, and allowed Muller et al. to study
how the reservoir decays when the cells of the latent reser-
voir have a distribution of reactivation rates rather than
one constant reactivation rate. While quite insightful, the
study by Muller et al. does not address the effect of viral
replication on the decay of the latent reservoir by virtue of
their simplifying assumption that viral replication does
replenish the latent reservoir.

The persistence of low-level viremia and the latent HIV-1
reservoir in the setting of HAART was also addressed by
Kim and Perelson [39], who use a simplified variation of
a previous model of viral dynamics [30,31]. Kim and Per-
elson perform a thorough analysis of their model's param-
eter space to understand how various model parameters
contribute to persistence of low-level viremia and a latent
reservoir. Considering the effects of viral replication, Kim
and Perelson find different regimes of behavior for their
model (with respect to latently infected cells and viral
load) that depend upon the degree of HAART efficacy
(εHAART) relative to a critical drug efficacy (εcrit) (where
Kim and Perelson's efficacy, ε, corresponds to 1 - r in our
model so that a larger efficacy indicates greater inhibition
of viral replication). Kim and Perelson find that only
when εHAART > εcrit do both the latent reservoir and viral
load decay towards zero. This finding is robust for all
physiologic ranges of their model parameter values.

While offering insight into the persistence of low-level
viremia and the latent reservoir, the analysis presented in
Kim and Perelson does not directly address two key clini-
cal issues: (1) whether εHAART > εcrit in the typical HAART-
treated patient and (2) how the decay rate of the latent res-
ervoir is affected by further increasing the efficacy of
HAART (e.g. by intensification of the HAART regimen)
when εHAART is already greater than εcrit. Because it has
been previously suggested that intensification of HAART

U

U

U

Dependence of the latent reservoir decay rate, Λ, on the degree of residual viral replication, r, plotted as Λ vs. 1 - r, for parameter values: λ = 2 × 109 cells/day, αR = αQ/100, δU = 0.02 day-1, δL = 0.0001 day-1, and  = 1 × 10-4Figure 2
Dependence of the latent reservoir decay rate, Λ, on the 
degree of residual viral replication, r, plotted as Λ vs. 1 - r, for 
parameter values: λ = 2 × 109 cells/day, αR = αQ/100, δU = 

0.02 day-1, δL = 0.0001 day-1, and  = 1 × 10-4. We con-
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can increase the decay rate of the latent reservoir [20], we
repeated Kim and Perelson's analysis in order to deter-
mine whether increasing εHAART despite the fact that εHAART
> εcrit would predict an increase in the decay rate of the
latent reservoir [20]. We find that the decay dynamics of
the latent reservoir remain approximately the same
regardless of εHAART, as long as εHAART > εcrit. This finding is
consistent with their steady-state analysis, which found
that the eigenvalue describing the long-term decay charac-
teristics of the latent reservoir is independent of ε (i.e. it is
unaffected by ongoing viral replication). This eigenvalue,
solved for by Kim and Perelson, is consistent with the sim-
plification of reservoir dynamics made by Muller et al.
[46] as well as equal to our derived approximation of -Λr

= 0 (≈ -B = -(δL + αQ)) and is therefore dependent on only
the net death and reactivation rate of latently infected
cells. Kim and Perelson's larger model (defined by equa-
tions 1–7 of [39]) also demonstrates a threshold effect for
the decay of the latent reservoir, whereby increasing
HAART efficacy beyond a certain point does not accelerate
the decay rate of the latent reservoir. Whether the average
HAART-treated patient has reached this point of viral inhi-
bition remains to be addressed.

Maximal levels of viral replication consistent with patient 
data do not affect the decay rate of the latent reservoir
In the previous sections we have shown that a threshold
of viral replication is necessary for existence of the latent
reservoir and that the decay rate of the reservoir is rapidly
maximized with decreasing replication. To constrain viral
replication in patients on HAART, we compare the behav-
ior of the model with data from patients on HAART. If
HAART reduces β (equal to βuntreated) by a factor r = βHAART/
βuntreated <βcrit/βuntreated, our model predicts that the number
of productively infected cells (and by extension, viral
load) decays to zero. We find that when r is sufficiently
less than βcrit/βuntreated (in our system r d 0.95 βcrit/βuntreated),
the behavior of the decay of productively infected cells can
be described as undergoing a rapid and approximately
exponential decay, reflecting the elimination of produc-
tively infected cells produced by new infections. This ini-
tial rapid decay is followed by a slower, also
approximately exponential decay, reflecting reactivation
of the decaying latently infected cell pool (Figure 3A),
towards zero. This result is consistent with clinically
observed decay of viral load in HIV+ patients as they start
HAART with the exception that our model does not pre-
dict a second phase decay. The latter is absent because we
include only CD4+ T cell compartments in our model.
This decay behavior of the productively infected cell pool
demonstrated by our model occurs regardless of the
parameter choices tested, as long as r <βcrit/βuntreated. If
HAART reduces β such that r t βcrit/βuntreated (indicating a
suboptimal HAART regimen that cannot fully suppress
the infection), then we must consider two cases. In our

model, we find two regimes of behavior for the decay of
productively infected cells that depend on the value of δU
(the rate at which target cells are removed from the sys-
tem).

The dependence of the system's qualitative behavior on δU
is robust to choice of other model parameters. With the
other model parameter values that we use, if δU d 0.1035
day-1 then suboptimal HAART causes the productively
infected population to rapidly decay but subsequently
rebound, undergoing a dampened oscillation (see Appen-
dix) towards a final steady-state that is greater than zero if
r > βcrit/βuntreated or a zero steady-state if r = βcrit/βuntreated
(Figure 3B). In contrast, if δU t 0.1035 day-1 then in the
setting of a suboptimal HAART regime productively
infected cells undergo a smooth but slow sub-exponential
decay (see Appendix) toward a greater-than-zero final
steady state if r > βcrit/βuntreated or a zero steady-state if r =
βcrit/βuntreated (Figure 3C).

Previous longitudinal studies of viral load in HIV+ patients
starting HAART have observed a characteristic decay of the
viral load [4,18,30,31] consistent with the patients we
have observed (Figure 3D). In these patients, who are typ-
ical of patients responding well to HAART, the viral load
is observed to make a rapid, approximately exponential
decay, which reflects decay of productively infected cells.
In these patients, who are typical of patients responding
well to HAART, the viral load is observed to make a rapid,
approximately exponential decay, which reflects decay of
productively infected cells. The viral load decays to below
the limit of detection, reaching a quasi-steady-state that
has recently been observed experimentally [47] and is
consistent with a much slower phase of decay (half-life of
>67 weeks). These observed dynamics of low-level
viremia most likely represents reactivation from the decay
of long-lived reservoirs for HIV-1 (e.g. resting CD4+ T
cells). Clinically, the viral load of a patient who responds
well to HAART (i.e. a successful and optimal HAART regi-
men) never makes a sustained rebound after the initial,
rapid drop. In our simulations (Figure 3A), we observe
this characteristic decay of productively infected cells only
for values of β up to β ≈ βcrit. Our model therefore conserv-
atively constrains βHAART d βcrit based on the available
experimental data, but in fact βHAART may be as low as
zero.

For almost all values of r that we tested, the decay of
latently infected cells, L, towards a new steady-state (that
depends on the value of r) or eradication was the same
(Figure 3E). For the case where r > βcrit/βuntreated, the decay
of the reservoir can be described as approximately expo-
nential only initially. However, at some point when the
reservoir size approaches the non-zero post-HAART
steady-state, the reservoir decay becomes sub-exponential
Page 7 of 14
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Decay of (A) productively infected cells (total number of cells) for different degrees of viral infectivity under optimal suppres-sion (βHAART <βcrit) of replication by HAART (r = 0 and 0.95 βcrit/βuntreated) for different values of δU (= 0.02 day-1 and 0.10 day-1)Figure 3
Decay of (A) productively infected cells (total number of cells) for different degrees of viral infectivity under optimal suppres-
sion (βHAART <βcrit) of replication by HAART (r = 0 and 0.95 βcrit/βuntreated) for different values of δU (= 0.02 day-1 and 0.10 day-1). 
Decay of productively infected cells for different degrees of viral infectivity under sub-optimal suppression (βHAART > βcrit) by 
HAART for (B) δU = 0.02 day-1 where βcrit/βuntreated ≈ 0.769 and (C) δU = 0.20 day-1 where βcrit/βuntreated ≈ 0.970 (D) Clinically 
observed decay of viral load after initiation of HAART for 2 HIV+ patients with no history of drug resistance: pt. 135 (blue) and 
pt. 140 (red). Pt. 135's viral load has remained undetectable for an additional 5 years with only 1 blip and pt. 140's viral load has 
remained undetectable for 1 additional year (data not shown). Open faced markers represent undetectable viral load measure-
ments at the limit of detection for the assay used. (E) Decay of latently infected cells (total number of cells) for different 
degrees of viral infectivity, where βcrit/βuntreated ≈ 0.769. All simulations were performed with model parameter values listed in 
Table 1 unless otherwise specified.
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and can no longer be described with the asymptotic eigen-
value. This is apparent by the curves in Figure 3E for r >
βcrit/βuntreated, which initially decay along the exponential
decay curves where r ≤ βcrit/βuntreated but subsequently sep-
arate as sub-exponential decays towards the non-zero
post-HAART steady-state.

Based on the constraint that 

predicted by our model, r may range between 0.1428 to

0.9940 for values of δU ranging from 0.001 day-1 to 1.0

day-1. For these values of r, we calculate that the decay of
the latent reservoir observed in patients who are success-
fully treated with HAART is essentially at its maximum

value Λr = 0 (which occurs when there is no viral replica-

tion) and is therefore independent of any ongoing, low-
level viral replication.

For these calculations, we used parameter values consist-
ent with previously reported values (Table 1) and a 44
month half-life for the latent reservoir [8,9]. Previous
studies have estimated the fraction of resting CD4+ T cells
that consists of latently infected cells to be on the order of
1 in 104 [2-4]. Although U represents target cells (i.e. acti-

vated CD4+ T cells) in our model, we estimate  = 10-

4 because the number of activated CD4+ T cells (e.g.
CD69+, CD25+ and/or HLA-DR+) is on the same order of
magnitude as the number of resting CD4+ T cells in
patients on HAART [48,49]. Alternative parameter choices
also consistent with previously reported values, but for
which the latent reservoir decays with a half-life not equal
to 44 months (e.g. 6 months, 12 months) or alternative

values of  (e.g. 10-5–10-6) show that Λ is nonetheless

very close to Λr = 0.

Implications for eradication of the latent reservoir
For values of β that are consistent with clinically observed
viral load decay characteristics in the setting of HAART,
the reservoir decay rate remains essentially constant at Λr

= 0 Because Λr = 0 ≈ B = αQ + δL, the major determinants of
the reservoir decay rate are the activation rate and the
intrinsic death rate of latently infected cells. We used our
model to compare the potential for increasing the decay
rate of the latent reservoir by enhanced inhibition of viral
infectivity, which would occur in the setting of intensified
HAART, to enhanced reactivation of latently infected cells,
a therapeutic option that is currently being developed [50-
52]. Figure 4A describes the case of viral inhibition by
HAART. For non-suppressive reductions in the infectivity
(r > βcrit/β), the decay dynamics of the latent reservoir
diverge from an exponential decay and asymptotically

move toward a non-zero steady-state number of latently
infected cells. However, for a suppressive reduction in
infectivity (r <βcrit/β), the latent reservoir decays exponen-
tially with a rate constant equal to B = αQ + δL towards zero
latently infected cells (Figure 4A). Our model therefore
predicts that any drug or drug combination reducing HIV
infectivity by a factor r <βcrit/β will cause the latent reser-
voir to decay with the same dynamics. We do not know
the value of r for current HAART regimens, although our
analysis suggests that r <βcrit/β. Nonetheless, we must con-
sider the possibility that r > 0, in which case intensified
HAART may further reduce r without hastening the decay

r HAART
Untreated

crit
Untreated

= β
β

β
βd

L U/

L U/

Decay of the latent reservoir as a function of time for (A) dif-ferent degrees of HAART suppression of viral infectivity, r = 0 (black), 0.769 (βcrit/βuntreated) (blue), 0.80 (green), 0.90 (red); and (B) different activation rates, αQ = 0.0005 day-1 (black), 0.001 day-1 (blue), 0.0025 day-1 (green) and 0.005 day-1 (red)Figure 4
Decay of the latent reservoir as a function of time for (A) dif-
ferent degrees of HAART suppression of viral infectivity, r = 
0 (black), 0.769 (βcrit/βuntreated) (blue), 0.80 (green), 0.90 (red); 

and (B) different activation rates, αQ = 0.0005 day-1 (black), 
0.001 day-1 (blue), 0.0025 day-1 (green) and 0.005 day-1 (red). 
Parameter values, unless otherwise specified, are: λ = 2 × 109 

cells/day, β = 0, αQ = 0.0005 day-1, αR = αQ/100, δU = 0.02 

day-1, δP = 0.50 day-1, δL = 0.0001 day-1 and  = 1 × 10-4.
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of the latent reservoir. It is also possible that standard
HAART regimens reduce infectivity such that r = 0 (i.e.
βHAART = 0), in which case intensification of standard
HAART regimens would have no conceivable benefit.

Unlike the case of decreasing infectivity, we find that
increasing reactivation of latently infected cells will greatly
increase the decay of the reservoir (Figure 4B). This result
suggests that while the full potential of HAART on the res-
ervoir decay rate has been achieved, enhanced reactiva-
tion of latently infected cell may offer another approach
to accelerating the decay rate of the latent reservoir.

Discussion
Despite rapid decay of free virus and of most productively
infected cells after the initiation of HAART, the latent res-
ervoir for HIV-1 in resting CD4+ T cells remains as an
inducible source of viremia that can potentially lead to
rebound in plasma virus levels upon discontinuation of
HAART. The latent reservoir is extremely stable, with a
half-life of 44 months [8,9,53]. Because the latent reser-
voir represents a major barrier to eradication, many stud-
ies have focused on developing methods to purge the
reservoir [50-52]. Successful eradication of the latent res-
ervoir, however, depends on understanding the mecha-
nism underlying its remarkable stability.

The two factors believed to be most important in deter-
mining the decay rate of the latent reservoir are 1) the
degree of replenishment of the reservoir by ongoing viral
replication that continues despite HAART and 2) the
intrinsic stability of resting memory T cells, the cells that
harbor latent HIV-1. How each factor contributes to stabi-
lizing the reservoir has important implications in devel-
opment of methods to eradicate the reservoir. Evidence
for replenishment of the reservoir in the setting of HAART
comes from clinical studies showing accelerated reservoir
decay for patients on an intensified HAART regimen over
that observed in patients on standard HAART regimen
[10,19,20]. The results of these studies suggest that stand-
ard HAART does not stop all replication, raising the possi-
bility that ongoing replication could play a role in
maintaining the latent reservoir. However, there are sev-
eral lines of evidence that argue against ongoing viral rep-
lication in patients responding well to HAART. First, a
meta-analysis of a large number of clinical trials of antiret-
roviral drugs has shown that the most successful HAART
regimens are those that include two drugs with an
extremely low genetic barrier to resistance (efavirenz and
lamivudine or emtricitabine) (John A. Bartlett, 12th Con-
ference on Retroviruses and Opportunistic Infections, 2005).
Second, patients who demonstrate consistent suppression
of viremia on HAART do not develop drug-resistant virus
[9,25,26,54]. Third, direct examination of the residual
viremia has shown a static evolutionary pattern, with no

evidence of evolution even during blips [24,26]. Fourth,
in many patients on HAART, most of the residual viremia
is comprised of a small number of viral clones that are
released into the plasma for long periods of time without
evolution, suggesting a mechanism of persistence other
than viral replication [55]. Using patients who demon-
strate these predominant plasma clones, we have quanti-
tatively constrained the rate at which new cells are
introduced in the latent reservoir [27]. This study con-
firmed the minimal contribution of new entrants into the
latent reservoirs of these patients. The lack of evidence for
replication-driven replenishment of the latent reservoir
suggests that intrinsic stability of the reservoir is the most
significant factor in determining the observed reservoir
decay rate [8,9,21-23].

There is no direct evidence, however, against the ability of
low-level replication in the setting of HAART to stabilize
the latent reservoir. In this study, we extend a previously
described mathematical model of HIV dynamics by incor-
porating latently infected cells in order to understand the
effect of low-level viral replication on the decay of the
latent reservoir. Previously, more complicated models of
T cell dynamics in the setting of HIV infection have been
published [33,56]. However, these models often incorpo-
rate physiologic processes that have not yet been well
characterized in the experimental literature. Because the
kinetics of these processes have not been quantified exper-
imentally, it is difficult to infer much information from
these models. By contrast, we use a more concise model of
T cell dynamics that incorporates widely accepted physio-
logic relationships between different T cell populations.
While all aspects of T cell dynamics are not yet known, the
kinetics of the T cell activation processes included in our
model represent the best characterized in the experimen-
tal literature. Based on the previous track record of similar
models and the preponderance of data supporting the
structure as well as results of our model, we believe that
our model provides insight into the effects of low-level
viral replication in the setting of HAART.

Like previous models, in our model a threshold of viral
replication must be surpassed to overcome the cytopathic
effects of HIV-1 infection [40]. Our model predicts two
regimes for how ongoing viral replication impacts the
decay rate of the latent reservoir. In the first regime, high
levels of ongoing viral replication slow the decay rate of
the latent reservoir; in this regime, attenuation of viral rep-
lication would hasten the decay of the latent reservoir. In
the second regime, lower levels of viral replication do not
significantly affect the decay rate of the latent reservoir.
The low frequency at which a productively infected cell
transitions to latency requires that many productively
infected cells be present before one latently infected cell is
produced. In this regime, the reduced number of produc-
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tively infected cells is insufficient to consistently replenish
the latent reservoir and therefore further attenuation of
viral replication would not increase the decay rate of the
latent reservoir. Based on previously reported model
parameter values, we numerically explored the bounda-
ries of these regimes by calculating the predicted reservoir
decay rate for various levels of viral replication in the set-
ting of HAART. We found that the impact of viral replica-
tion on the reservoir decay rate is rapidly minimized with
decreasing viral replication. It has been hypothesized that
there exist other cellular reservoirs for HIV-1, most likely
in the form of monocytes and tissue macrophages
[57,58], that are possibly maintained in the setting of
HAART by ongoing viral replication. While these reser-
voirs may potentially be purged faster with intensification
of HAART, our study shows that the decay rate of the rest-
ing CD4+ T cell reservoir cannot be increased in this man-
ner.

Based on our calculations of r* (the reduction in β neces-
sary before the decay of the latent reservoir becomes inde-
pendent of ongoing replication; Figure 2) and our model
predictions for the dynamics of viral load (reflected by
productively infected cells), we would intuitively expect
standard HAART to reduce viral replication into the
regime where residual replication would have an insignif-
icant effect on the reservoir decay rate. To test this theory,
we compared previously reported patient data to the
behavior of our model for different levels of HAART effi-
cacy. Our analysis found that the behavior of the model
can quite clearly reproduce experimental findings
observed in the setting of suppressive HAART. In this
regime of low-level viral replication, our model predicts
that viral replication does not significantly affect the decay
rate of the latent reservoir.

If a small amount of viral replication is insufficient to
affect the decay rate of the latent reservoir, then it may be
asked why complete suppression should be the goal of
HAART. Despite our analysis suggesting that low-level
viral replication does not affect the decay rate of the latent
reservoir, ongoing viral replication in the setting of
intense selective pressure by HAART may lead to selection
of drug resistant viruses, which could potentially return
the infection back or close to the original steady-state
achieved by wild-type virus in the absence of drugs. Thus
achieving suppression of replication, while not necessar-
ily accelerating reservoir decay, is critical to preventing the
evolution of drug resistance [59]. While a lack of clinically
observed drug resistance in patients on HAART has been
thought to reflect a lack of viral replication, a lack of viral
evolution may also be observed if a viable drug-resistant
mutant requires too many mutations to occur in a reason-
able amount of time. The rare and unlucky HIV+ patient
may archive an HIV mutant that is one mutation away

from becoming completely drug resistant, which may
occur from possible low-level viral replication. However,
there is a highly significant correlation between patient
non-adherence and development of multi-drug resist-
ance, and patient non-adherence remains by far the most
likely cause for the emergence of multi-drug resistance.
Furthermore, because patient adherence is self-reported,
non-adherence remains the most likely cause of multi-
drug resistance even in reportedly adherent patients.
Therefore, prevention of multi-drug resistance is not a val-
idated rationale for intensified HAART [60]. However,
future work will be helpful in understanding whether low-
level viral replication in the setting of HAART may lead to
multi-drug resistance.

Conclusion
Our results have several implications. Standard antiretro-
viral medications have some toxicities and side effects,
which may motivate patient non-adherence leading to the
subsequent development of drug resistance. Intensifica-
tion of HAART may also lead to intensification of drug
toxicities and adverse effects. Therefore implementation
of an intensified HAART regimen can only be justified if
the benefit would outweigh the cost in patient morbidity.
If there is essentially no risk of drug resistance in compli-
ant patients on standard HAART regimens, then intensi-
fied HAART would have little to no benefit towards
maintaining suppression of viremia. If the decay rate of
the latent reservoir in patients on standard HAART regi-
mens has reached a maximum, then an intensified
HAART regimen would have no benefit toward eradica-
tion of the latent reservoir – suggesting that other
approaches would be necessary for eradication of the res-
ervoir. In contrast, HAART simplification (reduction in
the number of drugs) has been recently discussed as an
option for reducing the burden of treatment on patients
who have already achieved sustained virologic suppres-
sion [61]. Based on our findings, we expect that a simpli-
fied HAART regimen would maintain the decay rate of the
latent reservoir as long as long virologic rebound is not
observed. Yet whether such a simplified HAART regimen
would provide effective protection against resistance
mutations is a different question, which is beyond the
scope of our analysis. Our results suggest that the intrinsic
dynamic properties of the reservoir are the primary factors
that determine the decay rate of the latent reservoir. In
particular, we find that the activation rate and intrinsic
death rate of the latently infected cells primarily deter-
mine the decay rate of the latent reservoir and may serve
as alternative targets to be exploited for accelerating the
decay of the reservoir [62-64].

Eradication of the HIV infection is and will remain an
extremely difficult undertaking. The complex dynamic
relationship between viral replication, the latent reservoir,
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and the evolution of drug resistance, as well as manage-
ment of these issues in the context of minimizing patient
morbidity poses a daunting task for health care providers.
Insight into these dynamic relationships will provide a
greater understanding of the underlying principles guid-
ing patient care and will hopefully lead to new approaches
for achieving the ultimate goal of HIV eradication.
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Appendix
We assume that the number of latently infected cells does
not change significantly over the time scale of oscillations
that occur immediately after initiation of HAART. There-
fore we set dL/dt = 0 and our model defined by equations
1–3 reduces to

We linearize equations A1 and A2 around the pre-HAART

steady-state values  and  to obtain:

Based on the pre-HAART steady-state values  and 
described in equations 4 and 5 and the approximation

that A/B ≈ δP (described in the main text), we can simplify

equation A3 to

We determined the two eigenvalues of this system, which
reflect the kinetic properties of the dynamics of U and P:

If U and P change without oscillations, then the eigenval-
ues of this system defined by equation A5 must have no
imaginary parts. This restricts

and therefore

Based on numerical values of our model parameters, we

determine that for approximately δU ≤ 0.1035, there will

be no oscillations in the dynamics of U and P. The domi-

nant factor that determines the lower bound on δU in

equation A7 is , which is several orders of

magnitude larger than the other components of δU. Exam-

ination of this expression reveals that the lower bound on

δU depends approximately linearly on δP. The other major

factor capable of producing large variation in the lower

bound on δU is the quantity , which is variable from

person to person and is also viral strain dependent. Over
time it is also likely that the activation rate of latently

infected cells decreases. Taking the limit as αQ goes to

zero, we find that the lower bound on δU is not signifi-

cantly affected – decreasing by slightly more than a factor
of two, from 0.1035 to 0.0437.
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