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Background: The World Health Organization estimates that the global number of dengue infections range between
80-100 million per year, with some studies estimating approximately three times higher numbers. Furthermore, the
geographic range of dengue virus transmission is extending with the disease now occurring more frequently in areas
such as southern Europe. Ae. aegypti, one of the most prominent dengue vectors, is endemic to the far north-east of
Australia and the city of Cairns frequently experiences dengue outbreaks which sometimes lead to large epidemics.

Method: A spatially-explicit, individual-based mathematical model that accounts for the spread of dengue infection as
a result of human movement and mosquito dispersion is presented. The model closely couples the four key
sub-models necessary for representing the overall dynamics of the physical system, namely those describing
mosquito population dynamics, human movement, virus transmission and vector control. Important features are the
use of high quality outbreak data and mosquito trapping data for calibration and validation and a strategy to derive
local mosquito abundance based on vegetation coverage and census data.

Results: The model has been calibrated using detailed 2003 dengue outbreak data from Cairns, together with census
and mosquito trapping data, and is shown to realistically reproduce a further dengue outbreak. The simulation results
replicating the 2008/2009 Cairns epidemic support several hypotheses (formulated previously) aimed at explaining the
large-scale epidemic which occurred in 2008/2009; specifically, while warmer weather and increased human movement
had only a small effect on the spread of the virus, a shorter virus strain-specific extrinsic incubation time can explain

Conclusion: The proof-of-concept simulation model described in this study has potential as a tool for understanding
factors contributing to dengue spread as well as planning and optimizing dengue control, including reducing
the Ae. aegypti vector population and for estimating the effectiveness and cost-effectiveness of future vaccination
programmes. This model could also be applied to other vector borne viral diseases such as chikungunya, also
spread by Ae. aegypti and, by re-parameterisation of the vector sub-model, to dengue and chikungunya viruses

Keywords: Dengue virus, Individual-based simulation model, Ae. aegypti population dynamics, Spatially-explicit

Background

Dengue is a leading cause of morbidity in tropical environ-
ments around the world [1] with a small proportion of
infections resulting in possibly fatal dengue hemorrhagic
fever (DHF) [2]. While previous estimates of the global
dengue burden were in the range of 80—100 million human
infections per year, recent studies suggest a considerably
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higher number of infections (390 million per year) [3].
There are also clear indications that the global range of
dengue transmission is extending (e.g. in Southern Europe),
with higher case numbers occurring and Aedes mosquitoes
colonizing new habitats [4,5].

Dengue epidemics can be especially severe in urban
areas, where human population density is high [6]. The
vector mosquito Ae. aegypti have adapted to life in
densely populated areas, using standing water as breed-
ing sites with females feeding predominantly on humans,
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and are responsible for dengue transmission in urban
environments [7].

Controlling dengue outbreaks is resource intensive
and large outbreaks may overwhelm even well estab-
lished and efficient control mechanisms [7]. It is there-
fore important for the planning of adequate control
interventions that the dynamics, frequency and scale of
expected outbreaks can be predicted and simulated
using suitable computational models [8]. Furthermore,
such simulation models can be used to estimate the ef-
fectiveness of alternative mitigating intervention strat-
egies that are difficult to determine in the field [9].

Ae. aegypti is endemic to urban areas of northeast
Queensland, Australia. Dengue viruses are often intro-
duced to this region through viremic travellers from
dengue endemic regions. This frequently causes dengue
outbreaks of variable severity and the city of Cairns is
often the focus of these outbreaks [7,10].

Long-term dengue research and surveillance, including
mosquito trapping studies in Cairns, has resulted in the
collation of significant datasets describing dengue outbreaks
in this area [7,10-13]. These datasets were made available
to the authors from the Tropical Population Health Unit
(TPHU) of Queensland Health. These data have allowed
for the informed development of a detailed dengue simula-
tion model which may be used to estimate and evaluate the
characteristics and determinants of dengue outbreaks and
to test a range of interventions such as interior (within-
house) residual spraying (IRS), the larvicidal treatment or
destruction of Aedes breeding sites, potential dengue vac-
cination programmes and mosquito population manipula-
tion using Wolbachia infected mosquitoes [14].

The aim of the present study was to develop a proof-
of-concept, spatially-explicit simulation model of dengue
transmission that incorporates individual humans living
in the city of Cairns as well as individual mosquitoes,
and uses realistic, heterogeneous human and mosquito
population structures and movement patterns. A spatial
modelling approach is required since many of the factors
that are crucial for dengue spread are not homoge-
neously distributed (e.g., human population density and
mosquito abundance).

The model developed in the present study builds upon
previous studies which have modelled mosquito popula-
tion dynamics and/or dengue transmission. The model
presented here adopts many of the features of the previ-
ously developed CIMSIM/DENSIM and Skeeterbuster
models, which are highly developed, complex simulation
models that are focused on capturing mosquito popula-
tion dynamics with great detail using a complex system
of customizable mosquito breeding containers and wea-
ther data as input [15-25].

The motivation of the present study was i) to build a
spatial mosquito population dynamics sub-model which

Page 2 of 17

is weather mediated and results in physically realistic tem-
poral and spatial mosquito abundance patterns; i) to build
human population, dengue transmission and outbreak
management sub-models with internal feedback (that is,
dengue control has an effect on the mosquito population)
and couple this to the mosquito population sub-model
and iii) to calibrate and validate the model using detailed
data available for several dengue outbreaks in the city of
Cairns, Queensland.

The resulting model structure utilises new modelling
techniques to capture physical system properties such as
mosquito flight, rainfall dependence of the mosquito
population, human movement patterns and dengue con-
trol. Here, the model is demonstrated by reproducing
different outbreak scenarios recorded in Cairns. This is
one of very few spatial dengue transmission model that in-
clude all of the following features i) human movement
and mosquito flight, ii) geospatial estimation of mosquito
breeding site abundance in an urban area, iii) internal
feedback of individual-based mosquito control during a
dengue outbreak on the mosquito population dynamics
and iv) the use of detailed, spatial outbreak datasets to
calibrate and, separately, validate the model.

The developed model is a proof-of-concept demonstration
that the inherently complex phenomena observed in actual
dengue outbreaks can be captured by a spatial simulation
model that incorporates interlinked and interacting sub-
models for each of the phenomena that determine the out-
come of dengue epidemics. These are: mosquito population
dynamics and movement; human population movement;
transmission of dengue virus between mosquitos and
humans; and vector control measures.

While the following methods section illustrates the
overall approach to building, calibrating and validating
the model, a detailed description of the various model
components may be found in Additional file 1.

Methods

Modelling strategy

The approach adopted utilised as much field data as pos-
sible to inform model development, calibration and, sub-
sequently, validation. The model consists of the following
4 linked sub-model components representing: ;) mosquito
population dynamics and movement, ii)) human popula-
tion movement, iii) dengue virus transmission and iv)
dengue control. Each of these component parts are de-
scribed in the detailed Additional file 1. In this section we
focus on key approaches adopted for the design, calibra-
tion and implementation of each part of the model.

Figure 1 shows a schematic of the different sets of data
that inform each of the component submodels of the
complete dengue transmission model.

Detailed outbreak data from Cairns was available for two
dengue outbreaks (2003 and 2008/2009), hence one of the
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Figure 1 Data informing the dengue simulation model. A variety of data sources were used to build the dengue simulation model consisting
of 4 key components i) a human population sub-model, i) a mosquito population sub-model, iii) a dengue virus transmission sub- model and iv)
a dengue control sub-model. It should be noted that a mosquito population dynamics sub-model similar to that previously described by Otero
et al. [23,25] was used, with modifications as described in the Additional file 1.

Cairns-specific data sets used to
construct model (pink)

Cairns observational data used to
calibrate model parameters (yellow)

datasets (2003) was used to calibrate the model and the
other dataset (2008/2009) to validate the overall model, in-
cluding parameter choices arising from the calibration pro-
cedure. The following schematic (Figure 2) shows the
overall model and the strategy used for model calibration
and validation.

Figure 2 indicates how four types of input data were
used, and these data differed between the 2003 and the
2008/2009 outbreaks: i) weather data, ii) dengue strain
specific extrinsic incubation period data, iii) index case
location data and iv) data describing the dengue control
operations undertaken in the two outbreaks.

Model description

The overall methods applied in this study are presented
in the following. A detailed desciption of all model com-
ponents is given in Additional file 1.

A discrete event simulation approach was adopted with
both space and time being represented discretely [26]. All
processes occuring in the basic spatial unit of the model
(called a cell) are shown in Figure 3. Each model cell is a
30 x 30 m square and is thus smaller than the maximum
known adult mosquito flight distance (usually limited to
200 m around the location of adult mosquito emergence,
so permitting localised vector infection to be represented
following introduction of an infectious case into that cell
location [13]. This cell size corresponds to an area contain-
ing (on average) 1 to 3 households in a Cairns setting.

Human population model

The human population part of the model is based on pre-
vious models designed by Milne and colleagues but with
important differences e.g., in human movement behaviour
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Figure 2 Schematic outline of strategy applied to calibrate and validate the dengue simulation model. Detailed data from a 2003 dengue
outbreak in Cairns were used to calibrate the model by adjustment of uncertain parameters. Detailed data from a 2008/2009 epidemic were used
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as detailed below and in the Additional file 1 (pages S2-S7)
[27-30].

The model of Cairns consists of approximately 52,000
cells (Additional file 1: Figures S2 and S4) and 56,000
human individuals. To assign a human population to
the cells, two sets of data were used: i) the most recent
population census from the Australian Bureau of Statistics
(accessible at www.abs.gov.au, illustrated in Additional
file 1: Figures S2 and S3) and ii) a geo-referenced digital
cadastral dataset from Cairns provided by the Department
of Natural Resources and Mines of the Queensland
Government (accessible at www.qld.gov.au, illustrated in
Additional file 1: Figures S2 - S4).

While the census data provided information on human
population age distribution (illustrated in Additional file 1:
Figure S1 for all of Cairns), household sizes and the number
of people per area at a high spatial resolution (Additional
file 1: Figure S2 Panels A and B), the cadastral dataset spe-
cified residential, commercial, industrial, educational and
parkland associated properties (Additional file 1: Figure S2
Panels C and D). This made it possible to allocate house-
holds of appropriate sizes and with appropriate age distri-
butions to each residential property. Thus, each human is
assigned a home cell. Apart from their home cells, and
depending on their age, humans may also frequent other
cells. Properties classified as commercial and industrial
in the cadastral dataset served as workplaces and shop-
ping centres that are frequented by the human population.

Data on schools (student numbers, class sizes) were
sourced from the Queensland school register (accessible
at www.education.qld.gov.au) for schools in the modelled
area. Appropriate virtual classes of school children, in-
cluding their teachers were built and associated with the
educational establishments listed in the cadastral dataset.
In addition, parkland areas are also frequented by humans
for recreational purposes. A single cell in the model can
contain more than one property and also properties of
different types (e.g. Additional file 1: Figure S4 Panel B).
We assume no further boundaries between all humans
allocated to a single cell (e.g., mosquito access to humans
allocated to two separate households which are located in
the same cell will be the same).

In the model, time progresses in a step-wise (discrete)
manner and in intervals of 6 hours, i.e. infection states
and locations of humans and mosquitoes may change
every 6 hours. Each 6 hour period corresponds with a
specific part of the day: i) morning (3 am to 9 am), i)
daytime (9 am to 3 pm), iii) evening (3 pm to 9 pm) and
iv) night (9 pm to 3 am). Humans are assumed to move
between cells during the daytime and evening periods,
and are assumed to be in their home cells during morn-
ing and night periods.

It has been shown that human movement is an import-
ant factor facilitating the spread of dengue [31]. Detailed
information on human movement is very sparse; we used
the findings of a large survey of interpersonal human
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contact to derive an approximate model of daily movement
of individuals, which apportions each person’s time be-
tween different locations [32]. This model incorporates
two types of human movement.

The first type is directional and always occurs between
two specific cells for a given individual. These cells are i)
the individual's home cell and i) the individual’s work
or school cell. On any given weekday of the modelled
period, individuals will go from their home cells (morning)
to their work or school cells (daytime) and back to their
home cells (evening or night), following the approach
adopted in Milne et al. [27].

The second type of human movement used in the
present study is semi-random and is incorporated in the
model to account for the less predictable movement
which humans may undertake within the modelled area
e.g., to visit friends, go shopping, or visit recreation
areas. This semi-random movement can occur on week-
day evenings and during the day and evening during
weekends. Based on data from a population survey
by Mossong et al. it was estimated that the frequency
of random human visits of this type to other cells is
approximately 4-5 times per week per individual [32].

A schematic representation of the human movement
components of the present model is shown in Additional
file 1: Figure S5.

Human movement in urban areas has been shown to
be semi-random and to be ranked by distance i.e., the
frequency of short trips is higher than the frequency of
trips to destinations that are further away [9]. In the
model, this distance-dependent behaviour is modelled
with a gamma distribution of the semi-random move-
ment distances (Additional file 1: Figure S6) [27].

Mosquito population dynamics model

The mosquito population dynamics model used in the
present study is based on previously developed models by
others [17,23,25,33]. The core mosquito population dy-
namics model (only female adult mosquitoes) is shown in
Additional file 1: Figure S7. It includes egg (E), larvae (L),
pupae (P) and two adult mosquito populations (Al and
A2) as determined by the length of the first (A1) versus
the lengths of the remaining (A2) gonotrophic cycles, with
the first gonotrophic cycle being significantly longer than
the remaining ones [16].
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The mosquito population sub-model is similar to that
described in previous studies but it also differs from these
in a number of ways, such as details in the implementation
of larvae density dependent parameters and mosquito
flight [17,23,24,33]. Specific details of the mosquito popula-
tion dynamics model are given in the Additional file 1
(pages S8-S23 with Figures S7 to §23).

Weather sub-model and mosquito habitat heterogeneity
The present model used a novel approach to model
weather driven mosquito population dynamics that dif-
fers significantly from those used in previous studies
[17,23,24,33]. The weather sub-model uses temperature,
rainfall and evaporation data from Cairns (available from
the Australian Bureau of Meteorology www.bom.gov.au)
as input and these weather data drive the mosquito
population dynamics model component.

Temperature dependent parameters of the mosquito
population dynamics model (Additional file 1: Figure S7)
are determined similarly to the previous studies refer-
enced above (described in detail in the Additional file 1
e.g., Table S1 and Figure S21). The effect of temperature
on the mosquito population is assumed to be a global ef-
fect, which occurs to the same extent in all model cells.
As in the previous studies, we assume that mosquito lar-
vae develop in a density dependent manner, that is, their
growth rate declines to a minimum as their density in-
creases towards a maximum value (for further informa-
tion see Additional file 1 pages S13 to S14 and Figures
§12, S13, Table S2 and Equations S6 and S7).

To permit spatial heterogeneity within the mosquito
population we assume that certain cells are better suited
to support mosquito development than others. We de-
fine the minimum and maximum capacity of a model
cell to sustain mosquito larvae (L, and L,,,.). The
minimum capacity of a cell to sustain mosquito larvae is
maintained throughout the year, irrespective of rainfall
and accounts for artificially watered containers present
in the cell and for those containers that are shielded
from evaporation. Following rainfall (in the model this is
the time when the amount of rain exceeds the amount
of evaporation), a cell’s capacity to sustain mosquito lar-
vae increases until it eventually reaches a maximum
value (L,,..). We assume that L,,,, marks the point at
which containers overflow and a cell is saturated with
water, so that its capacity to sustain mosquito larvae
does not increase further. We allow for a fraction of the
immature mosquito stages to be washed out from over-
flowing containers (Additional file 1: Figure S11 and
Equation S5). The capacity of a cell to sustain mosquito
larvae thus fluctuates between the L,,;, and L,,,, values
with rainfall and evaporation and cells can hold more or
less mosquito larvae depending on rainfall, which in
tropical Cairns varies between wet summers and dry
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winters. For detailed explanations of the weather sub-
model refer to the Additional file 1 pages S9 to S15).

In contrast to previous dengue simulation models that
use complicated container characteristics which need to
be determined by field studies [15,16,18,33], the approach
adopted here is aimed at the use of geographic informa-
tion system (GIS) data to estimate spatial distribution of
mosquito habitats. While this may be less accurate than
manual classification of each container in the modelled
area, it has the benefit of allowing for transfer model to
other geographic locations more readily.

It is assumed that two cell-specific geographical features
are positively correlated with a cell’s capacity to sustain
mosquito larvae, namely i) the degree of vegetation cover
in a cell and ii) the number of dwellings per cell. This as-
sumption is based on previous work [34,35] and the posi-
tive association found between mosquito trapping data
from Cairns and these two characteristics in the present
study. We assume that the number of dwellings per cell is
more important than vegetation, since it provides i)
humans, who are the source for Ae. aegypti blood feeding
and i7) human-made breeding habitats such as rainwater
tanks, underground sumps, flower pots etc. [36]. Previous
studies have shown significant correlations between vegeta-
tion cover and the abundance of Ae. aegypti breeding sites
in urban settings [35], in the model the presence of vegeta-
tion cover adds an additional benefit to a cell’s capacity to
sustain mosquito larvae, as it may prevent increased solar
exposure and enable lower local rates of evaporation. Vege-
tation features may also provide additional breeding sites
such as fallen palm tree fronds which may collect water.

We introduce a breeding site abundance index (B),
which is directly proportional to the cell’s maximum
capacity to sustain mosquito larvae (L,,,,~B) and use a
relationship between B, the number of dwellings (D) and
vegetation cover (V) in the form of Equation 1.

B=D+DV + By (1)

A minimum breeding site index B,,;, is present inde-
pendently from the coverage with dwellings and vegeta-
tion. Additional file 1: Figure S15 shows the distribution
of the breeding site abundance indices (B) based on
Equation 1 (Equation S8). B is normalized to between 0
and 1 as it is only a relative value that stands for the
suitability of a cell for mosquito reproduction. We be-
lieve, that the general distribution of expected mosquito
breeding sites is realistically represented by the resulting
pattern (Additional file 1: Figure S15). For example, in-
dustrial areas have low breeding site indices (blue).
Houses with significant amounts of surrounding vegeta-
tion, as in Parramatta Park (a suburb with a history of
dengue outbreaks), have high breeding site indices (red).
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As the process of assigning a mosquito breeding site
abundance index to each cell does not rely on fitting-to-
data, validation of this methodology was conducted using
available trapping data from Cairns for the years 2006—
2013, kindly provided by Scott Ritchie (James Cook
University) and Peter Cook (Monash University). We relied
only on the data collected using commercially available BG
traps since these are considered to be reliable [37]. Note
that the available trapping data were limited to a small pro-
portion of the modelled area (see Additional file 1: Figure
S18 for trap locations). For further information on the val-
idation process using mosquito trapping data refer to the
Additional file 1 (Pages S15-S18, Figures S15-S18).

Calibration of the mosquito population dynamics model
The mosquito population dynamics model was calibrated
using an observed mosquito density pattern as shown in
Figure 4 (Additional file 1: Figure S20) using the weather
data present in the same figure as an input.

The mosquito trapping data consisted of mean number
of female Ae. aegypti captured by Biogents Sentinel traps
(Figure 4; Additional file 1: Figure S20) from 09/10/2006
and 16/08/2008 [38]. During this time, no major dengue
outbreaks were recorded in the modelled area, hence no
significant mosquito control activities impacted on the
mosquito population. A detailed description of the calibra-
tion process is given in the Additional file 1.

Only the unknown or uncertain model parameters
listed on page S22 of the Additional file 1 were used to
calibrate the mosquito population dynamics model
to the relative mosquito abundance across the entire
modelling area as depicted in Figure 5 (Additional file 1:
Figure S22). A random-walk Monte Carlo approach
was used to identify the set of unknown or uncertain pa-
rameters that resulted in the best fit to the mosquito
trapping data.

The mosquito trapping data provides a measure of
relative mosquito abundance, therefore, in Figure 5
(Additional file 1: Figure S22) mosquito trapping data
and the calibrated mosquito abundance curve are pre-
sented without a scale, since the absolute number of
mosquitoes is unknown.

Variation of L,,,,, which is the maximum cell capacity
to sustain mosquito larvae, will not change the relative
shape of the calibrated curve presented in Figure 5
(Additional file 1: Figure S22). However L,,,, can be
used to scale the absolute mosquito population based on
the assumption that all modelled cells should follow a
similar mosquito density pattern, though some are more
suitable to sustain mosquito reproduction than others.
Furthermore, it is assumed that absolute mosquito density
should reflect an average female mosquito number of 8—24
Ae.aegypti per property, as estimated from mosquito trap-
ping and computer simulation studies in Cairns [39,40].
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Figure 4 Reproduction of the 2008/2009 epidemic. Panel A
pictures the weekly case numbers while panel B pictures cumulative
case numbers. Black dots denote the observed weekly outbreak
data, black solid lines denote the best stochastic realisation, dotted
lines, dark grey and light grey areas denote the median, interquartile
range and 95% confidence interval of 57 stochastic realisations,
respectively. The black vertical lines indicate the onset of control
interventions (day 27 after the index case). Some (3/60) stochastic
realizations did not result in further transmission (index case being
the only case) and these were excluded from the analysis. The
median total number of predicted cases was 692 (172-1029), while

the observed number of actual cases in the modelled area was 696.

Since the modelled area contains approximately 28,000
properties, L,,,, was chosen to obtain an average mosquito
number of around 2.24 x 10° to 6.72 x 10° mosquitoes in
the modelled area (about 8-24 mosquitoes per dwelling).
A resulting graph showing absolute mosquito abundance is
shown in Additional file 1: Figure S23.

The calibrated version of the mosquito population
sub-model allows for the calculation of temperature and
rainfall dependent mosquito profiles for any year for
which weather data are available. In years where there
are large dengue outbreaks, the associated vector control
programme will impact on the mosquito population
beyond what may be calibrated with the pure mosquito
population dynamics model presented here. Hence,
only the coupled mosquito population dynamics, dengue
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transmission and dengue control model can be used to es-
timate mosquito population curves in years with signifi-
cant dengue outbreaks.

Dengue transmission

We use a standard SEIR transmission model as done in
other studies, including those modelling dengue transmis-
sion [16,25-29]. There are two components to the trans-
mission model i) the human one and ii) the mosquito one.
The dengue transmission sub-model is described in detail
in the Additional file 1 (pages S24-S26).

At any given time individual humans will be in one of
four states, namely S susceptible, E exposed/infected, 1
infectious and R recovered/immune. The model allows
for the possibility that individuals become infectious but
the disease is not diagnosed or progresses asymptomati-
cally (we do not further discriminate between the causes
of non-detection; it may be due to misdiagnosis or the
absence of symptoms). This results in individuals being
in one of two infectious states, Is symptomatic or I
asymptomatic. A schematic representation of the hu-
man population model is presented in Additional file 1:
Figure S24 (and simplified in Figure 3).

Both Al and A2 stage mosquitoes (Additional file 1:
Figure S7) bite and transmit dengue virus. The infection
process in the mosquitoes does not include a recovered/
immune state as it is assumed that mosquitoes remain
infected until they die. A schematic representation of
virus progression in the mosquito is shown in Additional
file 1: Figure S25 (and simplified in Figure 3).

Note that none of the transitions between human or
mosquito states described above are simple first order
kinetics. Probabilities of infection from humans to mos-
quitoes Py, and from mosquitoes to humans Py,

will depend on the number of humans and mosquitoes
co-located in a cell, resulting in these transitions being
stochastic processes based on sampling from binomial
distributions. Intrinsic incubation times and human re-
covery rates are gamma distributed which makes early
progression less likely [41]. The extrinsic incubation pe-
riods in mosquitoes (Additional file 1: Figure S26) are
sampled from temperature dependent log-normal distri-
butions based on studies by Chan et al. [42].

Control measures

The model implements conventional means of vector
control that are used in Cairns to eliminate dengue
spread during outbreaks. These include i) within-house
residual spraying (IRS) and larvicide treatment around
case properties and the properties immediately adjacent
and ii) the use of lethal ovitraps to kill egg-laying adults
in extended areas around case properties. The control
model is represented schematically in Figure 6 (Additional
file 1: Figure S27).

It is assumed, that, following report of a case (i.e. that
an infected, symptomatic case has occurred in a cell)
IRS and ovitrap distribution would commence with an
average lag time of 7 days [10].

IRS and larvicide treatment in the immediate vicinity of
a case is known to be highly effective, killing an estimated
90% of all adult and immature mosquito stages present in
the case cell and the 8 surrounding cells per day [43]. In
the model it is assumed that the effect remains active for
6 weeks and affects all mosquitoes entering the cell during
that time.

Lethal ovitraps have also been shown to be effective in
controlling Ae. aegypti. [44]. Their deployment is faster
than the more labour intensive IRS and larvicide treatment
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IRS

Lethal Ovitraps

Figure 6 For any reported/symptomatic dengue case, two control mechanisms are invoked. In-house residual spraying and larvicide
treatment are used within the case cell (black dot) and adjacent cells (dark grey). Lethal ovitraps are placed in the wider radius around the case cell.

[45]. It is assumed that ovitraps are deployed at a certain
rate per day in the cells within a 200 m radius of a case
(depending on the amount of resources committed to fight
a dengue outbreak, this rate may be high or low). Ovitraps
kill approximately 20-30% of adult mosquitoes per cell per
day [44]. The overall effect of lethal ovitraps is reduced due
to the emergence of new mosquitoes, as we assume that le-
thal ovitraps only target the adult stage.

It is assumed that there are limitations on coverage and
number of IRS premises treated and ovitraps deployed
each day, depending on the size and number of available
dengue response teams (i.e. human resources). If the re-
quired number of cells to be treated exceeds the max-
imum number treatable per day, the remaining cells that
are left untreated are carried over to the next day.

The parameters were chosen to be consistent with the
current dengue response plan of Queensland Health [45].
However, one of the capabilities of the model is to allow an
analysis of alternative control strategies. Table 1 outlines all
parameters used in the control part of the model.

An example of the effect of vector control on the mos-
quito population in the model is illustrated in Figure 7
(Additional file 1: Figure S28).

Further information on the dengue control sub-model
may be found in the Additional file 1.

Model calibration using dengue outbreak data

The dengue transmission and control components of the
model were calibrated by fitting to a well-documented
DENV 2 dengue virus outbreak in Cairns in 2003 [10].
This calibration was performed by running repeated
simulations and gradually adjusting parameters until a

close match between simulated and actual outbreak data
was achieved. This process occurred as follows: firstly,
uncertain dengue specific parameters (e.g. human to
mosquito and mosquito to human transmission prob-
abilities) were used to calibrate the model to the unmiti-
gated initial phase of the outbreak, where dengue spread
was not affected by subsequent control. Secondly, the
model was calibrated using the entire 2003 outbreak
data by adjusting other uncertain parameters related to
the control measures, such as the lag between infection
of a case and control measures targeting the location
of that case. Figure 8 shows the resulting calibrated out-
break curves.

Table 1 Parameters used in the vector control part of the
model

IRS + Larviciding

Effect radius 45 m QH Dengue Management Plan

Efficacy 90% per QH Dengue Management Plan,
day [43]

Duration 6 weeks [12]

Maximum cells treatable 15 [37]

per day

Lethal Ovitraps

Effect radius 205 m QH Dengue Management Plan

Efficacy 20% per [44]
day

Duration 4 weeks [44]

Maximum cells treatable 150 [37]

per day
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Figure 7 Example of the effect of control on mosquito density during a simulated 2003-like dengue outbreak. The sequence of images
(A-D) shows a simulated outbreak (based on the 2003 outbreak) on day 1 (Panel A), day 60 (Panel B), day 120 (Panel C) and day 180 (Panel D) The red
markers indicated dengue case locations. The grey layer indicates local mosquito density in each model cell (white = 0 mosquitoes, light grey = 1-10
mosquitoes, dark grey = 10-50 mosquitoes, black = 50+ mosquitoes per cell). Since the outbreak occurred during a time when the seasonal mosquito
density was still rising, the background mosquito density is lower in Panel A than in the other panels. A video of the entire sequence is supplied as
Additional file 2. It can be seen how vector control significantly affects the mosquito numbers over the course of the outbreak.

Sensitivity analyses

Sensitivity analyses for the main model parameters are
presented in Table 2. It is shown that, as can be ex-
pected, the model is highly sensitive to the mosquito bit-
ing rate. It can also be seen from the sensitivity analyses
that both human and mosquito movement are important
factors that drive the spread of infection.

Results

Model validation

Following calibration of the model using the 2003 dengue
outbreak data, the model was applied to a subsequent, lar-
ger epidemic which occurred in Cairns in 2008/2009 (see
Figure 4). The 2008/2009 epidemic caused nearly 700
cases in the modelled area, twice as many as the 2003 out-
break. Ritchie et al. [7] discuss several factors that are
thought to have contributed to the explosive expansion of
the epidemic in late 2008 and its rapid collapse in April
2009. These contributing factors are: i) climatic factors
(an unusually warm period in November 2008), ii) dengue

virus related factors, specifically the shorter extrinsic incu-
bation period of the DENV3 strain that caused the 2008/
09 epidemic, compared to the 2003 DENV2 outbreak [7],
iif) human factors, specifically the increased human move-
ment over the Christmas period and iv) the declaration of
the outbreak to be an epidemic, invoking a significant ex-
pansion of control measures in January 2009 [7].

Using the simulation model it was demonstrated that all
of these factors may have acted together to cause the larger
scale of outbreak which occurred in 2008/2009 compared
to previous dengue outbreaks in Cairns, though some of
these factors may have played a more significant role than
others. Applying the 2008/2009 temperature profile re-
sulted in an average predicted extrinsic incubation period
that was approximately 1 day (0.75 days) shorter than that
in 2003. Furthermore, the rainfall pattern in 2008/2009 did
not result in a greater predicted mosquito population than
in 2003, which is in agreement with mosquito trapping
data [7]. As a result, climatic factors alone did not increase
the simulated case numbers significantly.
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Figure 8 Model Calibration using data collected during the
2003 DENV2 outbreak. Panel A pictures the weekly case numbers.
Panel B represents the cumulative number of cases. Some (7/60)
stochastic realizations did not result in further transmission (index
case being the only case). These were excluded in the present
analysis. Black circles denote the observed outbreak data; black solid
lines denote the best stochastic realisation; dotted lines, dark grey
and light grey areas denote the median, interquartile range and 95%
confidence interval of the remaining 53/60 stochastic realisations,
respectively. The black vertical lines show the onset of control
interventions (day 43 after the index case). The median total number
of predicted cases was 420 (17-804), while the observed number of
cases was 386.

In contrast, simulation experiments demonstrated that
the shorter extrinsic incubation period of the specific
DENV3 strain that caused the 2008/2009 epidemic (as
discussed in [7]) allowed a transmission cycle to be com-
pleted in approximately 10 days compared to 17 days in
2003, causing a considerable rise in case numbers and
an epidemic that could not be controlled using the initial
(2003-based) control measures. The modelled outbreak
with significantly increased control measures activated
indicated that it was the expansion of control interven-
tions starting in January 2009, following declaration of
the outbreak as an epidemic, which caused the decline
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in weekly case numbers and eventually a rapid collapse
of the outbreak. Experiments using the model with the
control measures set at the lower 2003-like level resulted
in a much longer outbreak which relied on seasonal
weather changes before the outbreak was contained,
confirming the need for the increased response mea-
sures. Increased human movement over the Christmas
period (in the model, the month of December) only
slightly altered the overall case numbers (by an average
of about 50 cases in total).

Table 3 shows the conditions in 2008/2009 that re-
sulted in the best reproduction of the epidemic using
the simulation model. The shorter EIP had by far the
most significant effect Simulated weekly cases and cu-
mulative cases for the 2008/2009 epidemic are shown in
Figure 4.

Successful application of the model in reproducing
the 2008/2009 epidemic can be seen as a validation of
the overall model as well as the settings used for the
key model parameters, which were uncertain prior to
calibration with the earlier 2003 outbreak data. Time
lapse representations of the 2003 and 2008/2009-like
outbreaks are presented in the Additional file 2 and
Additional file 3, respectively.

Following its development and testing, the model was
used to investigate how changes to control measures
affect 2003-like and 2008/2009-like outbreaks, providing
guidance for the management of future outbreaks.

Effect of variation of activation of control measures

A study by Vasquez-Prokopec et al. [46] investigated the
consequences of delayed onset of vector control mea-
sures for the same 2003 and 2008/2009 outbreaks, using
a simpler non-spatial model and found a dramatic in-
crease in total case numbers as a result of delays in the
initiation of control measures [46]. Similar scenarios
were investigated using the simulation model presented
here, where two alternative control scenarios were com-
pared with the original 2003 and the 2008/2009 out-
breaks. These scenarios were characterised by either a
2 week earlier onset of (otherwise unchanged) control
measures or a 2 week delayed onset of the control mea-
sures. Figure 9 shows the predicted scale of the outbreak
when initiation of control measures is varied +/-2 weeks
from the actual starting time.

The results are in agreement with the previous study
by Vasquez-Prokopec et al. [46], showing that variation
of the start date of vector control had a major impact of
the overall scale of the simulated outbreaks. In simula-
tions of 2003-like outbreaks, initiating vector control
2 weeks earlier than that which occurred in the actual
outbreak reduced the median number of cases by ~50%.
Starting control 2 weeks later than the original start date
approximately doubled the predicted median number of
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Table 2 Sensitivity of the model to A: Main model parameters and B: Alternate settings
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A

2003

2008/2009

+50%
1261 (717-1719)
362 (172-527)

Parameter variation

Biting rate (
Asymptomatic fraction (
Mosquito to human transmission probability 461 (138-746)
Human to mosquito transmission probability 564 (291-828)

B

-50%

48 (10-117)
516 (165-818)
217 (18-349)
355 (160-538)

+50%

2471 (1984-2930)
743 (370-938)
794 (4-1183)

880 (501-1355)

-50%

14 (2-61)
698 (100-1086)
194 (3-390)
439 (25-779)

Alternate Setting

No mosquito mobility
No human mobility
No state of emergency

Index cell with low mosquito density

34 (6-152)
104 (28-184)
N/A
12 (1-26)

99 (3-421)
19 (6-58)
1479 (440-2202)
4 (1-30)

The values in the table appearing in bold are medians of 60 simulations, with 95% confidence intervals given in parentheses. For comparison the predicted case
number without any parameter variation for 2003 and 2008/2009 were 420 (71 - 682) and 692 (174 - 1029) respectively (see e.g. Figure 9 A and D in the

main manuscript).

cases. In all scenarios the control measures were able to
reduce weekly case numbers by a similar amount and
within a similar time-frame as that observed in the ori-
ginal outbreaks (approximately 150 and 200 days re-
spectively for 2003 and 2008/2009).

In the simulations of a 2008/2009-like epidemic, a
2 week earlier onset of vector control reduced the me-
dian case number to 32 (from 692), a reduction of nearly
20 fold. This large difference is due to the very early on-
set of control (day 13 after index case was diagnosed),
resulting in onward transmission having failed to spread
beyond a 200 m radius of the index case. The location of
the index case was an area where control measures were
actively applied, eradicating almost all mosquitoes within
a couple of days (compare e.g., Figure 7 or Additional
file 2 and Additional file 3). As with the 2003 simulations,
lengthening the unmitigated phase of the 2008/2009-like
epidemic approximately doubled case numbers but did
not prolong the overall duration of the outbreak, which
corresponds with previously published estimates by
Vasquez-Prokopec et al. [46].

Effect of increased interventions

The model was further applied to investigate the effect
which expanded IRS spraying and ovitrap placement
would have on 2003-like and a 2008-like outbreaks,
where the date of intervention initiation remains un-
changed. These experiments were performed as an illus-
tration of the capability of the model to replicate the
effect of altered control strategies. The radius of IRS ap-
plication around the case property was extended to
100 m and the radius of lethal ovitrap placement was ex-
tended to 300 m. Furthermore, the capacity for IRS and
lethal ovitrap placement was increased from 15 per day
to 30 per day and from 150 per day to 300 per day,

respectively. The results of the experiments are pre-
sented in Figure 10.

Figure 10 illustrates that expanded control measures
substantially reduce the scale of the simulated outbreaks,
but that they do not reduce overall case numbers as ef-
fectively as shortening the delay in the onset of control,
as described above. Such increased control measures
caused a ~30% reduction in predicted case numbers in
the 2003-like scenario and a ~60% reduction in the
2008/2009-like scenario.

Sensitivity analysis

Sensitivity analyses of the model parameters such as biting
rate, fraction of asymptomatic infections, mosquito to hu-
man transmission probability and human to mosquito
transmission probability were conducted. The values of
the relevant model parameters have been adjusted, and
the simulation model rerun, to determine the sensitivity of
the model to particular parameter settings. While particu-
lar parameters were adjusted, no model recalibration took

Table 3 Differences between the 2003 and 2008/09
outbreak scenarios accounted for in the present study

2003 2008
Index case cell location Paramatta Park Cairns North
Onset of Control day 43 day 27
Mosquito population  based on 2003 weather based on 2008 weather
Extrinsic incubation 4-15 days 2-6 days

period

Human movement 3-4 times per week 6-7 times per week for

Dec. 2008

Interventions constant after day 43 increased after day 60

(epidemic)
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(See figure on previous page.)

Figure 9 Variation of the initiation time of vector control measures. Panels A and D show simulations that reproduce the original 2003

and 2008/2009 outbreaks. Panels B,CE and F show simulated 2003 and 2008/2009 like outbreaks where the onset of control was varied by

+/—2 weeks from the original start day. In both cases, variation of the control start day had a significant effect on the outbreak curve and final
case numbers, confirming previous studies, such as [46]. In the plots, black dots are observed outbreak data, solid black lines are best stochastic
realisations, dotted lines are the medians of 60 simulations, dark gray shaded areas are interquartile ranges, light gray shaded areas are 95%
confidence ranges. Note that the predicted cases shown in Panels A-F are the median case numbers of 60 stochastic realizations. Often there is a
considerable spread, e.g. in Panel E the median (middle dotted line, which lies almost on the x-axis) predicted number of cases is 32 but in rare
cases, case numbers can exceed 800.

place. The outcomes, for the 2003 and 2008/2009 out-
breaks, are presented in Table 2.

simplified mosquito movement (it may be that mosquitoes
do not fly randomly but are directed by various factors
such as availability of humans, wind direction etc.), iv)

Discussion simplified effect and dynamics of vector control (lag time

The model has been customised for the Cairns setting,
however we believe that the underlying modelling
methods will be applicable to other settings. In the fu-

between a case and local control may vary on a case-
by-case basis, properties may only be partially treated
etc.), v) abstraction of mosquito breeding sites (we do not

ture, an aim will be to explore how the modelling ap-
proach presented here can be applied to other urban
dengue transmission settings such as areas with endemic

model every individual container that may serve as a

dengue, areas with different population structures, and 10 A 2003-1ike Outbreak

to larger cities. With appropriate re-parameterisation, Predicted Cases: 288 (120-511)
. . Original Cases: 386

the model may also be applicable to other Ae. aegypti 80

(and Ae. albopictus) vectored viruses such as chikun-
gunya [47]. The transfer of the model structure to other
geographic locations will depend upon on the availability
of data, which was extensive in the case of Cairns
(a table of required data sources is given in Additional
file 1: Table S4). Furthermore, a transfer of the model to
a location endemic for dengue may also require changes 20
to the model structure by introducing measures for herd
immunity or properties of multiple circulating dengue

60

40

Cases per week

0 g
strains [34]. 0 50 100 150
This study highlights a direction of vector-borne infec- days after index case [d]
tious disease modelling away from compartmentalised 100 - ; ‘
lati based iallv-h hes t B 2008/2009-like Outbreak
population-based, spatially-homogenous approaches to- Predicted Cases: 265 (31.509)
wards individual-based, spatially-explicit techniques, a 80| Jrisinal Cases: 696

move also evident in modelling studies focused on other
vector-borne diseases such as malaria [48,49].

A key goal in developing the model has been to capture
the most important features of mosquito population dy-
namics, relevant human behaviour, dengue transmission
and control without making the model overly and un-
necessarily complex. It has been recognized that a chal-
lenge with developing complex models such as that
presented here is to avoid the temptation to make them
unnecessarily overcomplicated, as discussed by Basu et al. 0 ) 50 100 150 200
[50]. The model presented here simplifies certain aspects
of the physical world being modelled, usually due to limi-
tations of data availability. These limitations include: i)
lack of detailed mosquito trapping data prevented the de-
velopment of a more detailed mosquito density layer, ii)
simplified human movement (e.g., the use of semi-random
movement is only a rough approximation of reality), iii)

Cases per week

days after index case [d]

Figure 10 Effect of expanded vector control on the scale of a
2003-like outbreak (Panel A) and a 2008/2009-like outbreak
(Panel B). Black dots are the observed data, solid black lines are the
best stochastic realisations, black dotted lines the median case
numbers, dark grey areas are interquartile ranges, light grey areas
are 95% confidence intervals.
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breeding site as with the CIMSIM/DENSIM models) [38].
The model is less detailed in the way it accounts for the
presence of mosquito breeding sites compared to the
CIMSIM/DENSIM approach, yet in the light of recent
findings that some of the detail incorporated into the
CIMSIM mosquito population dynamics model may be
superfluous this approach seems justified [18]. The valid-
ation of the model using high-quality data from a different
outbreak to that used to calibrate uncertain model param-
eters suggests that the level of abstraction adopted is ap-
propriate, and results in a modelling framework which
will be capable of use to examine the effectiveness of new
intervention strategies as well as helping to explain phe-
nomena contributing to the conditions necessary for den-
gue to become endemic in Cairns-like settings.

This study describes the development of a complex,
spatially-explicit and individual-based dengue transmis-
sion model, and makes use of spatio-temporal dengue
outbreak data in a novel way to demonstrate that such a
model is capable of simulating dengue outbreaks of the
type that occur in Cairns, along with the intervention
measures used to control them. The study clearly shows
the need for high quality outbreak field data to inform
and parameterize the model. If such data are available,
as was the case in the present study, such a simulation
model can be adequately calibrated.

This study presents a dengue modelling framework
and highlights how key features of the physical system
may be represented in a simulation model. While this
modelling methodology has been validated by showing
that the system as a whole reproduces the outbreak dy-
namics of a single dengue epidemic, the availability of
new field data will permit further model validation and
future model refinement, aiming at making the system
more physically realistic. New field data collection will
permit further validation of the system as a whole, and
for the separate validation of each sub-model that makes
up the overall modelling environment.

Limitations of this study include the fact that the
model assumes a population centre that experiences epi-
sodic dengue outbreaks, and not populations where den-
gue is endemic. As such, it is assumed that the human
population has no immunity to dengue, and that only
one dengue strain is present during the outbreak. How-
ever the methods used to incorporate the necessary
sub-models within the Cairns dengue model will also be
applicable to the construction of models where dengue
is endemic. Another limitation of the study was that
Ae. aegypti trapping data was only available for a lim-
ited part of the Cairns urban area; availability of com-
prehensive mosquito trapping data would allow for
further refinement of the spatially-heterogeneous vector
habitat sub-models. Based on the Ae. aegypti trapping
data, it was assumed rainfall was the main driver of the
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availability of larval habitats, and thus adult population
densities. In other geographical locations (for example,
where rainfall is uniform throughout the year) other
factors may determine the availability of larval habitats
and Ae. aegypti population dynamics. While detailed
data on human movement is sparse and our use of a
daily cycle of moving to work or school captures regu-
lar patterns of human movement within a community,
our simple semi-random model of other types of (longer
range) human movement could be refined if new reliable
experimental data becomes available. Finally, we note that
each sub-model which contributes to the overall model is
based on the best available data and on expert-informed
assumptions where experimental data is not available. Fur-
ther analyses could be conducted to explore the sensitivity
of the model to alternative plausible assumptions about,
for example, human movement patterns, or factors deter-
mining the spatial heterogeneity of larval habitats.

Conclusion

This study was aimed at developing an individual-based,
spatially-explicit model for dengue transmission in an
urban environment. This research was facilitated by prior
development of mosquito population dynamics models by
others [15-25,38,51,52] and research studies describing
and quantifying Ae. aegypti entomology and dengue out-
breaks, virus properties and the impact of vector control
in Cairns [7,10,12,13,36,39,40,44,52-55]. Specific goals of
the study were to produce a simulation modelling frame-
work that could (a) make use of rich dengue outbreak data
sets for calibration and validation; (b) would be capable of
investigating hypotheses explaining the size of the 2008/
2009 Cairns outbreak; and (c) would incorporate phenom-
ena essential to the prediction of future dengue outbreaks
and analysis of dengue control measures, viz. weather-
dependent vector population dynamics, spatially heteroge-
neous vector habitat, spatially targeted vector control, and
human host movement.

In order to achieve these goals, the resulting model con-
tains a number of key features. These include: i) human
and mosquito movement and realistic population struc-
tures, ii) weather-dependent (temperature and rainfall)
spatially heterogeneous mosquito population dynamics,
iii) geographically and demographically- dependent mos-
quito abundance, iv) spatially- explicit vector control, v)
model calibration using outbreak data and vi) model valid-
ation against further outbreak data. The resulting simula-
tion model is complex, consisting of several interacting
sub-models. However, this complexity is necessary, and is
required in order to represent the inherently complex
physical phenomena which contribute to dengue trans-
mission and the scale and timing of dengue epidemics.

The simulation results replicating the 2008/2009 Cairns
epidemic presented in this study support several hypotheses
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(formulated previously) aimed at explaining the large-scale
epidemic which occurred in 2008/2009 [7]. Specifically,
while warmer weather and increased human movement
had only a small effect on the spread of the virus, a shorter
virus strain-specific extrinsic incubation time can explain
the observed explosive outbreak of 2008/2009 [7]. In agree-
ment with previous studies, the simulation results pre-
sented here highlight the importance of rapid diagnosis of
potential index cases and prompt initiation of vector con-
trol, as presented above in Figure 9 [46].

This study, in combination with several previous dengue
modelling studies, highlights the importance of spatial and
individual-based modelling approaches in order to ac-
count for local differences in mosquito and human density
and differences in human movement behaviour depending
on age and other factors [18,31,56]. This study confirms
some previously known spatial phenomena, such as hu-
man movement and mosquito movement, which facilitate
dengue spread (see sensitivity analyses in Table 2, where
such movement has been excluded, dramatically reducing
simulated case numbers) [31,56].

The availability of this model will allow further investi-
gation of the effect of different intervention strategies
which target various stages of the transmission cycle,
such as the effect of potential dengue vaccines, and may
also assist with predicting the effect of the release of
Wolbachia infected mosquitoes on the native mosquito
population, as is currently occurring in Cairns [57].

Additional files

Additional file 1: Detailed description of all model components.

Additional file 2: Animation of simulated 2003 Dengue outbreak,
showing mosquito density in grey and human Dengue cases in red.

Additional file 3: Animation of simulated 2008/9 Dengue outbreak,
showing mosquito density in grey and human Dengue cases in red.
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