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Abstract

Background: Several assays are used to measure type-specific serological responses to human papillomavirus
(HPV), including the bead-based glutathione S-transferase (GST)-L1 multiplex serology assay and virus-like particle
(VLP)-based ELISA. We evaluated the high-throughput GST-L1, which is increasingly used in epidemiologic research,
as a measure of cumulative HPV infection and future immune protection among HPV-unvaccinated women.

Methods: We tested enrollment sera from participants in the control arm of the Costa Rica Vaccine Trial (n = 488)
for HPV16 and HPV18 using GST-L1, VLP-ELISA, and two assays that measure neutralizing antibodies (cLIA and
SEAP-NA). With statistical adjustment for sampling, we compared GST-L1 serostatus to established HPV seropositivity
correlates and incident cervical HPV infection using odds ratios. We further compared GST-L1 to VLP-ELISA using
pair-wise agreement statistics and by defining alternate assay cutoffs.

Results: Odds of HPV16 GST-L1 seropositivity increased with enrollment age (OR = 1.20 per year, 95%CI 1.03-1.40)
and lifetime number of sexual partners (OR = 2.06 per partner, 95%CI 1.49-2.83), with similar results for HPV18.
GST-L1 seropositivity did not indicate protection from incident infection over 4 years of follow-up (HPV16 adjusted
OR = 1.72, 95%CI 0.95-3.13; HPV18 adjusted OR = 0.38, 95%CI 0.12-1.23). Seroprevalence by GST-L1 (HPV16 and
HPV18, respectively) was 5.0% and 5.2%, compared to 19.4% and 23.8% by VLP-ELISA, giving positive agreement of
39.2% and 20.8%. Lowering GST-L1 seropositivity cutoffs improved GST-L1/VLP-ELISA positive agreement to 68.6%
(HPV16) and 61.5% (HPV18).

Conclusions: Our data support GST-L1 as a marker of cumulative HPV infection, but not immune protection. At
lower seropositivity cutoffs, GST-L1 better approximates VLP-ELISA.

Background
Persistent infection with oncogenic types of human
papillomavirus (HPV) is a necessary cause of virtually all
cervical cancers [1] and some anogenital and oropharyn-
geal cancers. Together, HPV types 16 and 18 cause 70% of
cervical cancers and 90% of HPV-associated anogenital
and oropharyngeal cancers [2].

Measurement of HPV infection is complex. HPV DNA
testing using exfoliated cervical cells is the reference
standard for identifying current cervical infection, but
most infections revert to DNA negativity within 1–
2 years [3]. Thus, HPV DNA testing does not reflect past
infections that have cleared. Cell mediated, particularly
local mucosal, immune responses and generation of
serum neutralizing antibodies to the L1 major capsid
protein are often detected after infection [4]. These L1
antibodies better reflect both past and present HPV
infection (here termed “cumulative infection”), but L1
antibodies are detectable in only about half of women
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within 18 months of a positive HPV DNA test [5]. Nat-
urally acquired immunity is partially protective against
newly detected type-specific HPV infection, though pro-
tection by vaccination is much more complete [6-8].
Serological responses to HPV L1 commonly feature as

exposures and stratifying variables in epidemiological
studies, and are measures of immunogenicity that serve
as presumptive correlates of protection in vaccine trials
[9]. Several biologically and technically different assays
are used to measure type-specific humoral immune re-
sponses to HPV L1 capsids. The virus-like particle (VLP)-
based enzyme-linked immunosorbent assay (VLP-ELISA)
is an established marker of cumulative HPV infection
that detects neutralizing and non-neutralizing binding
antibodies [10,11]; the competitive Luminex-based im-
munoassay (cLIA) measures antibodies that compete
for binding by pseudovirion-neutralizing monoclonal
antibodies (V5 epitope for HPV16-L1; J4 for HPV18-L1)
[12]; and the secreted alkaline phosphatase L1/L2 pseudo-
virion neutralization assay (SEAP-NA) measures overall
neutralizing potential against HPV infection [13]. In 2001,
a glutathione S-transferase (GST)-L1 fusion protein-based
ELISA was developed [14], which was subsequently trans-
ferred to a fluorescent bead-based multiplex format [15].
The GST-L1 assay measures both neutralizing and non-
neutralizing antibodies to HPV L1 [16], most probably
assembled to pentamers [14].
The GST-L1 assay can detect antibodies to up to 100

different antigens simultaneously, has been scaled up for
large studies, requires a small specimen volume, and offers
a low cost alternative to other assays [15]. Increasingly, the
GST-L1 is being used in epidemiology to measure sero-
positivity to various HPV types and proteins, including L1
of HPV16 and HPV18. These studies largely focus on
cancer etiology [17-20] and HPV natural history [21-24].
It is believed that the GST-L1 assay measures cumulative
HPV infection and not immune protection, as it does not
distinguish between neutralizing and non-neutralizing
antibodies. Only an early ELISA-based version of the
GST-L1 has been directly compared to the VLP-ELISA
[14], while the multiplex GST-L1 has been compared to a
VLP multiplex immunoassay [25]. Published data allow-
ing comparison of GST-L1 with neutralization assays
and cLIA are few [25-27].
In this study, in the context of naturally acquired HPV

infection and immunity, we evaluated whether the GST-
L1 assay measures cumulative HPV16/18 infection and/or
future immune protection, and directly compared GST-L1
to VLP-ELISA, cLIA, and SEAP-NA.

Methods
Study population
Our study population was sampled from the control
(HPV-unvaccinated) arm of the Costa Rica Vaccine Trial

(CVT), which has been described in detail [28]. The
control arm comprised 3,736 women aged 18–25 in
Guanacaste, Costa Rica who were followed annually for
4 years, providing a serum sample at each visit. For sexu-
ally experienced women, exfoliated cervical cells were also
collected during a pelvic exam and used to test for HPV
DNA infection at each visit. The CVT protocol was
approved by the institutional review boards of the U.S.
National Cancer Institute and the Costa Rican INCIENSA,
and all participants signed IRB-approved informed con-
sent forms.
All women in the CVT control arm were tested at

enrollment for HPV16/18 DNA infection at the cervix
and for HPV16/18 serum antibodies using VLP-ELISA.
Using these results, we sampled 500 women from the
CVT control arm using a two-stage stratified random
sampling scheme (Figure 1). Stage 1 selected for the
HPV16 analysis, which required HPV16 DNA negativ-
ity at enrollment, and Stage 2 augmented the sample
for the HPV18 analysis, which required HPV18 DNA
negativity at enrollment. In Stage 1, we selected 388 of
the 2,814 women who were HPV16 DNA negative at
enrollment as previously described [29]. Briefly, sam-
pling was stratified by enrollment HPV16 VLP-ELISA
serology result (i.e., seropositive or seronegative) and
HPV16 incident infection status over 4 years of follow-
up, and was designed to ensure sufficient representa-
tion from women with positive serology and incident
infections. In Stage 2, sampling was stratified by the
equivalent variables for HPV18, and with a similar
strategy we further sampled 112 women from the 2,582
women who were HPV18 DNA negative at enrollment
and not selected in Stage 1.
We performed the GST-L1, VLP-ELISA, and cLIA for

HPV16 and HPV18 using enrollment serum samples
from the total (N = 500) sample, and the more laborious
and costly SEAP-NA for HPV16 on the Stage 1 sample
only (N = 388). We assessed assay reproducibility as
measured by the intraclass correlation coefficient (ICC)
and coefficient of variation among seropositives (CV)
for GST-L1, cLIA, and SEAP-NA using 25 blind dupli-
cate specimens included in each batch. We excluded
twelve women with failed assays, giving a final sample
of 488 women.
We tested cervical samples collected annually from

each woman for 4 years for HPV16/18 DNA, and used
the results to determine HPV16/18 incident infection
status. Detection of HPV16 DNA at any visit for a
woman who was HPV16 DNA negative at enrollment
constituted an incident infection, and the analogous
HPV18 variable was similarly constructed. Though we
refer to newly detected infections as incident, we cannot
distinguish between a true incident infection, a reacti-
vated latent infection, and a missed prevalent infection.
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GST-L1 multiplex serology
Antibodies to L1 proteins of HPV16 and HPV18 were de-
tected simultaneously by the GST-L1 multiplex assay as
previously described [15,30]. Diluted sera were incubated
with sets of glutathione casein-coated, fluorescence-
labeled, spectrally distinct polystyrene beads, which were
loaded with GST-L1-tag fusion proteins. Bound antibodies
were detected with anti-human IgG secondary antibody
and streptavidin-R-phycoerythrin. Antibody levels for each
serum sample are thus expressed as median fluorescence
intensity (MFI) of at least 100 beads per color (i.e., anti-
gen) per serum, calculated by subtracting the background
fluorescence as determined by a negative control (i.e., no
serum) from the raw MFI, then subtracting the MFI of
GST-L1-tag (i.e., the fusion protein domains without viral
antigen) from the MFI of the specific antigen. Seroposi-
tivity cutoffs were determined as previously described
[31,32], giving 400 MFI for HPV16 and HPV18.

VLP-ELISA
The VLP-ELISA was performed at GSK Biologicals as
previously described [10]. Briefly, serial dilutions of
serum samples and standards were added to ELISA mi-
crotiter plates coated with HPV VLPs. A peroxidase-
conjugated anti-human polyclonal antibody was added,
followed by enzyme substrate and chromogen. Reactions

were stopped, and optical density (OD) at 620 nm (back-
ground) was subtracted from OD at 450 nm. Antibody
levels in ELISA units (EU)/mL were calculated by inter-
polating OD values from the standard curve, averaging the
calculated concentrations from all dilutions that fell within
the working range of the reference curve. Seropositivity
cutoffs were calculated as 3 standard deviations above
the geometric mean titers taken from two groups of
known HPV-negative individuals [10,33], giving 8 EU/mL
for HPV16 and 7 EU/mL for HPV18.

cLIA
The multiplex cLIA was performed and cutoffs were de-
termined at PPD Vaccines and Biologicals as previously
described [12,33]. Laboratory suggested seropositivity cut-
offs were 20 and 24 mMU/mL for HPV16 and HPV18,
respectively.

SEAP-NA
The HPV16 SEAP-NA was performed in duplicate as pre-
viously described at the HPV Immunology Laboratory,
SAIC-Frederick, Inc. [13,34]. The seropositivity cutoff was
set as 3 standard deviations over HPV DNA and seronega-
tives, giving 25.1 (titer).

Figure 1 Two-stage stratified random sampling scheme detailing selection of 500 women from the control (HPV-unvaccinated) arm of
the Costa Rica Vaccine Trial (CVT). Legend: Stage 1 selected 388 women who were HPV16 DNA-negative at the cervix at enrollment, with
sampling stratified by HPV16 serostatus at enrollment and HPV16 incident infection status over 4 years of follow-up. Stage 2 augmented the sample
using analogous variables for HPV18, selecting 112 women who were HPV18 DNA-negative at enrollment. Twelve women for whom an assay failed
were then excluded for analysis. The combined (Stage 1 + Stage 2) sample was weighted to represent all women in the CVT control arm who were
HPV16 DNA-negative, HPV18 DNA-negative, or both at enrollment. *For Sampling Stage 2, the women selected in Stage 1 were not eligible to be
selected again. Thus, 369 women were removed from the pool of eligible women in Stage 2; this group includes all women selected in Stage 1
who were not HPV18 DNA positive at enrollment (N = 388 selected in Stage 1 – 19 HPV18 DNA-positives = 369).
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HPV DNA testing
Detection of HPV DNA at the cervix and genotyping
was conducted at DDL Diagnostic Laboratory as previ-
ously described [35,36]. Briefly, SPF10 primer sets were
used to PCR-amplify extracted DNA, then to identify the
HPV genotype of SPF10-DEIA-positive samples by reverse
hybridization on a line probe assay (LiPA; SPF10-DEIA/
HPVLiPA25, version 1; Labo Bio-Medical Products),
which detects 25 HPV genotypes. The sensitivity of
HPV detection for HPV16 and HPV18 was improved
via PCR with type-specific primer sets for specimens
testing SPF10-DEIA positive but LiPA25 HPV16 and/or
HPV18 negative.

Statistical methods
We developed a method to calculate sampling weights,
which has been described in detail by Li et al. (under revi-
sion). Briefly, we first calculated standard inverse probabil-
ity weights (IPWs) for women selected in both stages by
dividing the eligible population in each cell by the num-
ber of individuals selected (Figure 1). We then applied
two adjustments to make the sample correctly represent
the population of women who were both HPV16 and
HPV18 DNA negative at enrollment (denoted by P16/18).
First, we increased the weights for the 369 women selected
in Stage 1 who were part of P16/18, as they were not eligible
for selection in Stage 2. Second, we decreased the weights
for women selected in either stage who were part of P16/18,
as their IPWs were calculated to represent the same popu-
lation. In other words, without this adjustment, the popu-
lation P16/18 is represented twice. Our final weights allow
the sample of 488 women to represent the 3,058 women
in the CVT control arm who were HPV16 DNA negative,
HPV18 DNA negative, or both at enrollment. We used
these weights in all analyses with the exception of HPV16
SEAP-NA analyses, which included only the Stage 1 sam-
ple and therefore required standard IPWs.
We performed each analysis separately for HPV16 and

HPV18. Type-specific DNA negativity at enrollment was
required for inclusion in the analysis for each HPV type,
resulting in inclusion of 467 women in the HPV16 analysis
(weighted N = 2,786) and 477 women in the HPV18 ana-
lysis (weighted N = 2,979). We first examined distributions
of GST-L1 antibody reactivity (minimum, maximum,
geometric mean, and quartiles) among all subjects, among
GST-L1 seropositives, and among women with and with-
out an incident type-specific infection over follow-up.
To assess the utility of GST-L1 as a marker of cumula-

tive HPV infection, we calculated odds ratios for GST-L1
seropositivity based on two established correlates of HPV
seropositivity, age at enrollment (an HPV seropositivity
correlate among younger women) and lifetime number
of sexual partners at enrollment (hereafter referred to
as “number of partners”) [37,38]. To depict these

relationships, we plotted seroprevalence by age and
number of partners for a) GST-L1 at the laboratory cut-
off, b) VLP-ELISA at the laboratory cutoff, c) GST-L1 at
alternate cutoffs that maximized agreement with VLP-
ELISA as described below, d) cLIA at the laboratory
cutoff, and e) SEAP-NA at the laboratory cutoff.
To address whether GST-L1 indicates immune pro-

tection from future HPV infection, we calculated odds
ratios for incident cervical HPV infection based on GST-L1
seropositivity at the laboratory cutoff and quintiles of
GST-L1 antibody reactivity, with adjustment for num-
ber of partners.
We examined agreement between GST-L1 and VLP-

ELISA, cLIA, and SEAP-NA using percent agreement,
positive agreement [39], and kappa statistics. For pair-
wise agreement statistics, we used both laboratory
suggested and “alternate” seropositivity cutoffs, which
were calculated to assess the degree to which pair-wise
discordance between GST-L1 and VLP-ELISA is due to
non-calibration of seropositivity cutoffs. Using VLP-
ELISA as the alloy standard, we defined alternate GST-L1
and VLP-ELISA seropositivity cutoffs to maximize positive
agreement and separately Youden index (sensitivity +
specificity-1). Specifically, we calculated the statistic of
interest (e.g. positive agreement) based on each possible
cutoff for the assay in question, and identified the cutoff
that gave the highest value of the statistic. We present
data using alternate GST-L1 cutoffs only, as these gave
better results.
We conducted analyses in R version 2.15.1 (generation

of weights and calculation of odds ratios) and Stata 11
(College Station, TX, all others). Statistical significance
was assessed at α = 0.05.

Results
Assay reproducibility
For GST-L1, ICCs based on our data were 99.3% for
HPV16 and 96.9% for HPV18, and internal laboratory data
gave CVs of 13.4% for HPV16 and 13.7% for HPV18. For
VLP-ELISA, extensive testing was performed for the CVT
and overall reproducibility data were calculated; the VLP-
ELISA has a mean CV of 12.3% in the CVT [10]. For
cLIA, ICCs based on our data were 93.1% and 92.2%, and
CVs were 10.3% and 10.0%. For HPV16 SEAP-NA, the
ICC and CV based on our data were 95.4% and 12.9%,
respectively.

HPV16
For HPV16, GST-L1 antibody reactivity ranged from 0
to 5979 MFI; ranges among subgroups defined by sero-
positivity and incident infection status are shown in
Table 1. Overall seroprevalence was 5.0% by GST-L1 at
the laboratory cutoff, 19.4% by VLP-ELISA, 5.8% by
cLIA, and 13.8% by SEAP-NA. Stratified by lifetime
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number of sexual partners at enrollment, seroprevalence
by GST-L1 ranged from 0.5% among self-reported virgins
to 17.2% among women with 3 partners (Figure 2A), and
odds of seropositivity increased significantly with number
of partners (OR 2.06 per partner, 95% CI 1.49-2.83). Simi-
larly, GST-L1 seroprevalence ranged from 2.6% among
18-year-olds to 9.8% among 24-year-olds (Figure 2B),
and odds of seropositivity increased significantly with

age (OR 1.20 per year, 95% CI 1.03-1.40). Within cat-
egories of number of partners and age, GST-L1 sero-
prevalence at the 400 MFI (laboratory suggested) cutoff
was very similar to cLIA but lower than VLP-ELISA and
SEAP-NA (Figure 2A-B).
Seropositivity by GST-L1 at enrollment did not indi-

cate lower risk of incident HPV16 infection over follow-
up with adjustment for number of partners (adjusted

Table 1 Sampling-adjusted data describing antibody levels measured by the GST-L1 assay among HPV-unvaccinated
women in the Costa Rica Vaccine Trial

HPV type Min (MFI) Max (MFI) Geometric mean (MFI) Q1* (MFI) Q2*, median (MFI) Q3* (MFI)

HPV 16

All women (N = 2,786) 0 5979 19 5 30 67

Seropositive women (N = 140) 415 5979 902 570 777 1329

HPV16 infection (N = 211) 0 1709 28 8 40 104

No HPV16 infection (N = 2575) 0 5979 18 5 30 66

HPV18

All women (N = 2,979) 0 2849 17 3 26 57

Seropositive women (N = 155) 416 2849 677 528 528 930

HPV18 infection (N = 196) 0 2696 17 9 24 33

No HPV18 infection (N = 2783) 0 2849 17 3 26 57

*Q1, Q2, and Q3 refer to the first, second, and third quartiles, respectively, of the sampling-adjusted distribution of antibody levels.
“Infection” refers to incident infection over 4 years of follow-up. Analyses are based on 467 women for HPV16 and 477 women for HPV18; displayed sample sizes
are sampling-adjusted.

Figure 2 Sampling-adjusted seroprevalence measured by different assays, stratified by lifetime number of sexual partners and age at
enrollment. Legend: Seroprevalence vs. number of partners (Panels A and C) and age (Panels B and D) is shown for HPV16 (Panels A-B) and
HPV18 (Panels C-D). Lines represent seroprevalence by GST-L1 at the laboratory suggested seropositivity cutoff (solid line), GST-L1 at alternate
cutoffs (dashed line), VLP-ELISA (solid line with diamond markers), cLIA (dashed line with triangle markers), and SEAP-NA (solid line with circle
markers, HPV16 only). Alternate GST-L1 cutoffs were calculated to maximize agreement with VLP-ELISA (see Statistical Methods). Odds of GST-L1
seropositivity at the laboratory cutoff increased with each year of age for HPV16 (OR 1.20, 95% CI 1.03-1.40) and HPV18 (OR 1.20, 95% CI 1.04-1.38).
Similarly, odds increased with each sexual partner for HPV16 (OR 2.06, 95% CI 1.49-2.83) and HPV18 (OR 1.59, 95% CI 1.18-2.15). For HPV18, one
observation with a large weight was excluded for figure only.
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OR 1.72, 95% CI 0.95-3.13, Table 2). Similarly, higher
quintiles of GST-L1 antibody reactivity did not indicate
immune protection (data not shown).
At the laboratory suggested cutoffs, overall agreement

between GST-L1 and VLP-ELISA was 85.1%, and posi-
tive agreement was 39.2% (Table 3). Discordance was
largely due to a substantial proportion (14.6%) of women
who were seropositive by VLP-ELISA but seronegative
by GST-L1 (Table 3 and Figure 3A). To assess how
much GST-L1/VLP-ELISA pair-wise discordance was re-
lated to differences in seropositivity cutoffs, we exam-
ined alternate cutoffs to maximize positive agreement
and, separately, Youden index. Lowering the GST-L1
cutoff from 400 to 72 MFI maximized both of these
and reduced the overall percentage of discordant sam-
ples, increasing overall agreement to 88.7% and posi-
tive agreement to 68.6% (Table 3 and Figure 3A). At
this cutoff, overall seroprevalence by GST-L1 increased
to 16.6%, and estimates of seroprevalence stratified by
age and number of partners were more similar to those
by VLP-ELISA and SEAP-NA (Figure 2A-B). The propor-
tion of samples negative by GST-L1 but positive by VLP-
ELISA decreased, while inevitably the proportion of
samples positive by GST-L1 but negative by VLP-ELISA
increased (Table 3 and Figure 3A).
Positive agreement was relatively low between GST-L1

and cLIA (42.1%, Table 3) and between GST-L1 and
SEAP-NA (33.1%). At the 72 MFI cutoff for GST-L1,
which maximized agreement with ELISA, positive agree-
ment with cLIA was slightly lower (39.1%) and with
SEAP-NA was marginally higher (41.3%).

HPV18
For HPV18, GST-L1 antibody reactivity ranged from 0
to 2849 MFI; ranges among subgroups are shown in
Table 1. Overall seroprevalence was 5.2% by GST-L1,
23.8% by VLP-ELISA, and 3.7% by cLIA. Stratified GST-
L1 seroprevalence estimates ranged from 0.2% among
self-reported virgins to 7.2% among women with 3 part-
ners (Figure 2C), and odds of seropositivity increased

with number of partners (OR 1.59 per partner, 95% CI
1.18-2.15). By age, seroprevalence was lowest among
20-year-olds (1.4%, Figure 2D) and highest among 22-
year-olds (9.5%), and odds of seropositivity increased
with age (OR 1.20 per year, 95% CI 1.04-1.38). Within
categories of number of partners and age, GST-L1 sero-
prevalence at the 400 MFI cutoff was similar to cLIA but
lower than VLP-ELISA (Figure 2C-D).
Enrollment seropositivity by GST-L1 was not signifi-

cantly associated with lower risk of incident infection (ad-
justed OR 0.38, 95% CI 0.12-1.23). Examining quintiles of
GST-L1 antibody reactivity did not alter (data not shown).
At the laboratory suggested cutoffs, overall agreement

between GST-L1 and VLP-ELISA was 77.1%, and positive
agreement was 20.8% (Table 3). About one-fifth of
women were seropositive by VLP-ELISA but seronegative
by GST-L1 (Table 3 and Figure 3B). Lowering the GST-
L1 cutoff from 400 to 65 MFI maximized both positive
agreement and Youden index; positive agreement nearly
tripled to reach 61.5% and overall agreement increased
marginally to 83.1% (Table 3 and Figure 3B). At this cut-
off, overall seroprevalence by GST-L1 was 20.2%, and
stratified estimates of seroprevalence were similar to
those by VLP-ELISA (Figure 2C-D). As expected, the
proportion of samples positive by GST-L1 but negative
by VLP-ELISA increased at the lower cutoff (Table 3
and Figure 3B).
Positive agreement between GST-L1 and cLIA was low

(32.1%, Table 3) and slightly lower at the 65 MFI cutoff
that maximized agreement with ELISA (28.2%).

Discussion
GST-L1 multiplex serology measures antibodies to many
HPV types at high-throughput and low cost, and is in-
creasingly being used in HPV seroepidemiology. Our re-
sults support the GST-L1 assay as a marker of cumulative
HPV16/18 infection, but not of future immune protection.
Direct comparison between the bead-based GST-L1 and
VLP-ELISA suggested only modest correlation between
these two tests designed to measure cumulative HPV in-
fection, but much of the observed lack of agreement was
explained by differences between the seropositivity cutoffs
for each assay.
Seroprevalence of HPV is known to increase with

lifetime number of sexual partners and with age among
young women [37,38]. We noted increasing odds of
GST-L1 seropositivity with each, supporting GST-L1
as a marker of cumulative HPV infection. This is con-
sistent with documented associations between GST-L1
seropositivity and ever/never sexual activity, age at sexual
debut, and lifetime number of sexual partners [22,31,40].
VLP-ELISA is an established HPV exposure marker [11],
and we observed moderate concordance between GST-L1
and VLP-ELISA. A previous study compared GST-L1 to a

Table 2 Sampling-adjusted odds of incident infection
based on GST-L1 seropositivity

HPV type
Incident type-specific

HPV infection aOR* (95% CI)
No, N (%) Yes, N (%)

HPV16
GST-L1 – 2,455 (92.8) 191 (7.2) Reference

GST-L1 + 120 (85.7) 20 (14.3) 1.72 (0.95-3.13)

HPV18
GST-L1 – 2,633 (93.2) 191 (6.8) Reference

GST-L1 + 151 (97.1) 5 (2.9) 0.38 (0.12-1.23)

*Odds ratio adjusted for lifetime number of sexual partners at enrollment, in
categories of 0, 1, 2, 3, and ≥4.
Analyses are based on 467 women for HPV16 and 477 women for HPV18;
displayed sample sizes are sampling-adjusted.
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VLP multiplex immunoassay, which is biologically similar
but technically different from our VLP-ELISA. The au-
thors found percent agreement of 66% and 62% between
the assays for HPV16 and HPV18, respectively [25], lower
than our figures of 85% and 77%.
In contrast, we found that GST-L1 serology is not a

good measure of immune protection from future HPV
infection; this result differs from findings for other assays.
Our group previously found that HPV16 cLIA seropositiv-
ity is associated with a lower risk of incident infection,
while for VLP-ELISA and SEAP-NA, the highest seroposi-
tive tertile of antibody levels indicates protection [7,41].
Further, positive agreement between GST-L1 and both
cLIA and SEAP-NA, which measure neutralizing anti-
bodies that are believed to confer immune protection, was
poor. This occurred despite similar seroprevalence esti-
mates by GST-L1 and cLIA. Though one previous study
found no difference in type-specific GST-L1 seropositivity
between women with and without an incident HPV DNA
infection [23], these authors and another group found
associations suggesting immune protection measured by
GST-L1 when using extreme or stringently defined viral
outcomes [23,42].
We do not always expect different HPV serological as-

says to have high pair-wise concordance, because they do
not measure equivalent aspects of the immune response

and their seropositivity cutoffs are not calibrated to one
another. Both GST-L1 and VLP-ELISA are capable of
measuring polyclonal responses, and neither is restricted
to measuring neutralizing antibodies. Though the assays
are similar biologically, our results demonstrate that differ-
ences in seropositivity cutoffs between GST-L1 and ELISA
produce substantial pair-wise discordance. Our group
previously found positive agreement for HPV16 among
unvaccinated women to be 45% for VLP-ELISA/cLIA,
55% for VLP-ELISA/SEAP-NA, and 68% for cLIA/SEAP-
NA [29]. In the present study, positive agreement between
GST-L1 and other assays at laboratory cutoffs did not ex-
ceed 42%. One study of the early GST-based ELISA found
substantial (kappa = 0.62) agreement with the VLP-based
ELISA [14]. This is higher than our result (kappa = 0.34),
likely because the study included a high proportion of
VLP-ELISA seropositives and used a GST-L1 cutoff that
gave equal numbers of seropositive samples by the two
assays.
The laboratory suggested seropositivity cutoff is lower

for VLP-ELISA than GST-L1 compared to their respective
overall distributions over the entire range of antibody
levels. The higher GST-L1 cutoff gives high specificity and
seroprevalence estimates that are robust to small cutoff
adjustments [43], but it produces pair-wise discordance
with VLP-ELISA. In our study, lack of correspondence

Table 3 Sampling-adjusted agreement between GST-L1 and VLP-ELISA at GST-L1 laboratory suggested (400 MFI) and
alternate cutoffs

HPV type GST-L1 cutoff (MFI) GST-L1 + (N) GST-L1 – (N) Percent agreement Positive agreement Kappa

HPV 16

400
VLP-ELISA + 133 407

85.1% 39.2% 0.34
VLP-ELISA – 7 2,239

72
VLP-ELISA + 344 197

88.7% 68.6% 0.62
VLP-ELISA – 118 2,128

400
cLIA + 64 98

93.7% 42.1% 0.39
cLIA – 76 2,547

72
cLIA + 122 40

86.4% 39.1% 0.33
cLIA – 339 2,284

400
SEAP-NA + 92 296

86.8% 33.1% 0.27
SEAP-NA – 77 2,349

72
SEAP-NA + 199 189

79.9% 41.3% 0.30
SEAP-NA – 377 2,049

HPV 18

400
VLP-ELISA + 90 618

77.1% 20.8% 0.13
VLP-ELISA – 65 2,206

65
VLP-ELISA + 403 305

83.1% 61.5% 0.51
VLP-ELISA – 199 2,072

400
cLIA + 43 67

94.0% 32.1% 0.29
cLIA – 113 2,757

65
cLIA + 100 9

82.8% 28.2% 0.23cLIA – 502 2,367

Analyses are based on 467 women for HPV16 and 477 women for HPV18; displayed sample sizes are sampling-adjusted. Alternate GST-L1 cutoffs were calculated
to maximize agreement with VLP-ELISA (see Statistical Methods).
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between cutoffs explained a large portion of pair-wise
discordance between GST-L1 and VLP-ELISA, as posi-
tive agreement improved from 20-40% to 60-70% with
adjustment of GST-L1 cutoffs. However, use of a lower
GST-L1 cutoff increases the proportion of samples posi-
tive by GST-L1 but negative by VLP-ELISA; the samples
that enter this category are visible between the refer-
ence lines for the laboratory and alternate cutoffs in the
upper-left quadrants of Figure 3A-B. These discordant
samples at a lower cutoff may result from nonspecific
background in the GST-L1 assay [25], which compli-
cates distinction between seronegative and low positive
results. For most serologic assays, including GST-L1,
seroprevalence estimates and assay sensitivity and spe-
cificity depend strongly on the seropositivity cutoff.
Therefore, population studies of naturally acquired cumu-
lative HPV infection that use GST-L1 should be inter-
preted in light of the cutoff employed.

Our results aid interpretation and design of research
involving HPV seroepidemiology. For example, HPV16
seroprevalence has been reported as 13.0% and 7.1% in
the United States and German general populations,
respectively [21,44]. However, as VLP-ELISA was used in
the U.S. study and GST-L1 in the German study, the
discrepancy could reflect assay differences in addition to
differences in study design or true population level dif-
ferences in HPV16 exposure. When choosing an assay,
investigators should consider implications for compar-
ability to other studies, specify whether they aim to
measure HPV cumulative infection or immune protec-
tion, and address discrepancies that may arise due to
lack of calibration between assay cutoffs. While using la-
boratory suggested cutoffs is important for consistency
across studies using the same assay, additional analyses
using alternate cutoffs may enable approximate compari-
son across studies using different assays. Importantly,
however, comparisons are hampered by issues beyond
non-calibration of seropositivity cutoffs, and would be
aided by use of quality control panels and development
of a universal reference standard with a known antibody
concentration for many HPV types.
Strengths of our study include a well-defined source

population, complete follow-up data, validated laboratory
techniques, and assay reproducibility data. One limitation
is that we were unable to assess the association of GST-L1
with current cervical infection, because type-specific DNA
negativity was required for inclusion in each analysis. The
utility of GST-L1 as a cumulative infection marker would
be supported by a finding of higher GST-L1 seropreva-
lence among women with a current cervical infection.
This has been reported by some studies [24,31,40] though
results have not been entirely consistent [22,23]. Finally, it
is unknown whether the same alternate cutoffs calculated
in our study would be obtained using other ELISA re-
agents, such as VLPs, or in other laboratories.

Conclusions
Our data suggest that the GST-L1 assay is a measure of
cumulative HPV infection, but not future immune protec-
tion, and that a portion of pair-wise discordance between
GST-L1 and VLP-ELISA is explained by lack of calibration
between assay seropositivity cutoffs.
Each of the assays studied here has important advantages

and disadvantages for use in seroepidemiologic research.
When neutralizing responses and immune protection are
of interest, SEAP-NA is the most comprehensive measure
of neutralization potential but is laborious and costly; cLIA
is more efficient but measures only a subset of neutralizing
antibodies (i.e., antibodies that bind to one neutralizing
epitope).
As a marker of cumulative HPV infection, the GST-L1

assay measures many different HPV types in a high-

Figure 3 Antibody levels as measured by GST-L1 vs. VLP-ELISA
among HPV-unvaccinated women. Legend: Antibody levels are
displayed on a logarithmic scale for HPV16 (Panel A) and HPV18
(Panel B). Dashed lines represent laboratory suggested seropositivity
cutoffs, and dotted lines represent alternate GST-L1 cutoffs calculated
to maximize agreement with VLP-ELISA (see Statistical Methods). K
refers to the kappa statistic, calculated separately at the laboratory
(lab.) and alternate (alt.) cutoffs. Points that appear to form a line
reflect assay limits of detection. Percentages displayed are
sampling-adjusted and are based on laboratory cutoffs.
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throughput manner at relatively low cost. However, our
data suggest GST-L1 is not appropriate for use as a
marker of immune protection from future cervical HPV
infection, and that its comparability to cLIA and SEAP-
NA is limited. The GST-L1 more closely approximates
the commonly used VLP-ELISA at a lower cutoff, and
may be an appropriate choice for studies aiming to
assess population-level patterns in the epidemiology of
cumulative infection with many HPV types.
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