Ruiz-Moreno et al. BMC Infectious Diseases 2010, 10:51
http://www.biomedcentral.com/1471-2334/10/51

BMC
Infectious Diseases

RESEARCH ARTICLE Open Access

Spatial clustering in the spatio-temporal
dynamics of endemic cholera

Diego Ruiz-Moreno'", Mercedes Pascual'?, Michael Emch®, Mohammad Yunus®

Abstract

Background: The spatio-temporal patterns of infectious diseases that are environmentally driven reflect the

combined effects of transmission dynamics and environmental heterogeneity. They contain important information
on different routes of transmission, including the role of environmental reservoirs. Consideration of the spatial
component in infectious disease dynamics has led to insights on the propagation of fronts at the level of counties
in rabies in the US, and the metapopulation behavior at the level of cities in childhood diseases such as measles in
the UK, both at relatively coarse scales. As epidemiological data on individual infections become available, spatio-
temporal patterns can be examined at higher resolutions.

Methods: The extensive spatio-temporal data set for cholera in Matlab, Bangladesh, maps the individual location of
cases from 1983 to 2003. This unique record allows us to examine the spatial structure of cholera outbreaks, to
address the role of primary transmission, occurring from an aquatic reservoir to the human host, and that of
secondary transmission, involving a feedback between current and past levels of infection. We use Ripley’s K and L
indices and bootstrapping methods to evaluate the occurrence of spatial clustering in the cases during outbreaks
using different temporal windows. The spatial location of cases was also confronted against the spatial location of
water sources.

Results: Spatial clustering of cholera cases was detected at different temporal and spatial scales. Cases relative to
water sources also exhibit spatial clustering.

Conclusions: The clustering of cases supports an important role of secondary transmission in the dynamics of
cholera epidemics in Matlab, Bangladesh. The spatial clustering of cases relative to water sources, and its timing,
suggests an effective role of water reservoirs during the onset of cholera outbreaks. Once primary transmission has
initiated an outbreak, secondary transmission takes over and plays a fundamental role in shaping the epidemics in

this endemic area.

Background

The spatial distribution of cases for infectious diseases
that are environmentally driven, such as those of water-
borne and vector-borne transmission, reflect the com-
bined effect of environmental heterogeneity and disease
dynamics. As such, spatial patterns can be used to
examine hypotheses on routes of transmission at differ-
ent scales [1-3]. For example, long-term disease data at
the population level for multiple cities and towns, or
presence-absence data in counties or districts, have pro-
vided numerous insights on patterns of propagation at
the relatively large scales of countries and even
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transcontinental couplings [1,4-6]. Detailed spatial
records at the individual level have a long tradition at
the interface of geography and epidemiology, with one
of the best known examples found in the discovery of
cholera’s water source by Snow [7]. However, these
detailed data have been typically short-term and limited
to particular epidemics. Longer-term data sets at the
high-resolution of individuals but spanning multiple epi-
demics are becoming available, with the current interest
in transmission networks and the interface of Geo-
graphic Information Systems and disease patterns. This
type of data makes possible the description of how spa-
tial patterns and clustering in particular, change in time,
as a first step towards addressing the spatio-temporal
dynamics of disease at a high resolution, as well as the
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coarse-graining of these dynamics, from small, indivi-
dual, to large, population, levels.

In general, higher case numbers are expected in areas
surrounding pathogen sources, and lower ones, in areas
far away from these sources. For example, for vector-
borne diseases, the clustering of cases might occur
nearby the specific habitat of the vector, and for water-
borne diseases, in the proximity of infected aquatic
reservoirs. However, patterns are complicated by the
fact that transmission can occur from both environmen-
tal reservoirs and previously infected individuals, reflect-
ing the dynamics of transmission, human behavior and
environmental variability. For cholera, an acute diarrheal
infectious disease caused by the bacterium Vibrio cho-
lerae, two routes of transmission have been proposed
[8], the first one from aquatic reservoirs in the environ-
ment, and the second one, from previously infected indi-
viduals. To address the respective roles of these two
routes of transmission, this paper examines the cluster-
ing patterns of cholera and how they vary in time with
an extensive data set for a rural area of Bangladesh, cov-
ering twenty-one years and groups of households in the
landscape.

Although the cholera bacterium has an enormous
diversity with more than 200 serogroups classified based
on the somatic O antigen, only two such groups, O1
and O139, are pathogenic [9-11]. V. cholerae O1 can be
subdivided in turn into two biotypes (phenotypes), clas-
sical and El Tor [12]. The O1 serogroup can also be
subdivided into serotypes (based on antigenic responses)
called Ogawa, Inaba and the extremely rare Hikojima
[10]. Moreover, the Bengal strain, V. cholerae 0139,
appeared in 1992 [13] presumably by horizontal gene
transfer between O1 and another O serogroup [10].
Nowadays, evidence from field studies and epidemiologi-
cal models, supports the fact that the classical variant is
more infective than the El Tor variant. However, the El
Tor variant is more resilient outside the human host,
surviving in the environment for a longer period than
the classical strain [14,15]. Recent evidence suggests that
V. cholerae 0139, which exhibits no cross immunity
with the O1 serogroups, performs better in both, the
environment and the human gastrointestinal tract [16],
raising questions on its short epidemic period.

Survivorship of the pathogens, availability of suscepti-
ble individuals and temporal immunity appear to be
important processes shaping the pronounced seasonality
of cholera. In non-endemic locations (like Peru, Brazil
and several countries in Africa), epidemics are confined
to the warm and rainy season. By contrast, in endemic
areas in Bangladesh and former Bengal, two epidemic
peaks occur each year corresponding to the warm sea-
sons before and after the monsoonal rains [11,17]. A full
explanation of this complex seasonal pattern is still
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lacking, and a number of environmental and ecological
drivers have been proposed (for example, the presence
of environmental cholera phages, the degree of crowd-
edness and availability of susceptible individuals) [18].
For estuarine regions of Bangladesh with two peaks per
year, evidence supports a relationship between the
initiation of the spring peak of cholera and favorable
environmental conditions for the bacterial population,
such as warmer temperatures [19]. A dilution effect
would then drive the reduction of cholera during the
monsoonal season [17], although recent mathematical
models of historical mortality time series, suggest an
alternative explanation in which susceptibles are
depleted by a large number of asymptomatics and short-
term immunity [20]. Finally, an increase in human-to-
human contact, as a consequence of the post monsoonal
floods might be an important factor in the second epi-
demic peak [21].

Infectivity and survivorship affects the spatial distribu-
tion of V. cholerae and its availability to colonize sus-
ceptible individuals. From this perspective, an initial
study on the spatial occurrence of cholera cases by
Glass and colleagues [22] provided a detailed description
of cholera epidemics during the period from 1966 to
1980. This study identified villages with high and low
cholera risk. Based on these findings, Miller and collea-
gues proposed a cholera model with two routes of trans-
mission, primary and secondary, respectively [8].
Primary transmission occurs as the result of eating con-
taminated shellfish or aquatic plants, and drinking con-
taminated water. Secondary transmission results instead
from a ‘person-to-person’ infection. Thus, primary trans-
mitted cases should be scattered in space, occurring
almost simultaneously in different areas with no appar-
ent interconnection, and should be located relatively
close to water sources. These initial cases would be fol-
lowed by the clustering of secondary transmitted cases
[8]. Miller and colleagues further proposed that primary
transmission shapes the seasonal patterns in endemic
areas, whereas secondary transmission determines the
level of infection.

It is important to note that secondary transmission
can occur directly or indirectly (i.e., via fecally contami-
nated water), and that it can involve the same aquatic
reservoirs than those of primary transmission. These
two modes of transmission effectively represent the two
extremes of a possible continuum, with the key distinc-
tion being the degree of memory in the current force of
infection of previous levels of infection. Only the sec-
ondary route possesses this memory, and this is the
sense in which ‘human-to-human’ transmission should
be interpreted.

The study of spatial cholera patterns by Craig further
addressed the existence of clustering with case data
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from 1970 to 1982 at the level of baris, patrilineally
related household groups [23]. A significant excess of
cases was detected at short distances, “within baris“ of
less than 250 meters, and short time intervals (3 and 10
days). However, this analysis did not take into account
that the spatial location of cases is not random and that
the distribution of the baris themselves must be taken
into account. It also did not consider the timing
between the occurrence of clusters and the epidemic
peaks, and the nature of the clustering (positive or nega-
tive). Nevertheless, Craig’s study was the first descrip-
tion of cholera’s spatial distribution in an endemic area
at high resolution.

We further examine here the spatio-temporal distribu-
tion of cholera cases in Matlab, Bangladesh, to address
the occurrence of clustering during epidemic years. We
specifically consider the relationships between cluster
size and epidemic intensity, between the timing of clus-
tering and the epidemic curve, and that between clusters
of cases and water sources. Primary transmission from
water reservoirs is believed to occur when environmen-
tal conditions are favorable [19,24]. A spatial association
between cholera cases and water sources should be
observed if primary transmission drives the development
of epidemics, with no significant spatial correlation
between observed cholera cases at the beginning of the
outbreak [8]. Because water sources (rivers, canals and
water ponds of diverse size) are found almost every-
where and are extremely abundant in our study area,
they are not likely to impose significant spatial con-
straints on the occurrence of cases. Thus, cases gener-
ated by environmental transmission should occur almost
anywhere. By contrast, once epidemics have reached a
threshold size, secondary transmission should dominate
the dynamics, generating spatial associations between
cases. This pattern should be most pronounced during
the fall peak after the monsoonal rains, when secondary
transmission has been suggested to play a more impor-
tant role [17,21], since flooding disrupts sanitary condi-
tions and concentrates human populations in the
landscape. This hypothesis would predict a significant
clustering of cases during the fall peak and a weak spa-
tial association between cholera cases and water sources.
We examine these predictions here.

Methods

The data for this study come from the rural area of
Bangladesh known as Matlab, located about 50 km
south-east of Dhaka, the capital of the country. The
study area is adjacent to the confluence of the Meghna
and the Ganges Rivers, and is bisected by the Dhona-
goda River into two approximately equal parts. Numer-
ous canals and water ponds are present in the whole
region (Fig. 1).
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People in this area live in groups of patrilineally
related households known as bari, with an average of
six households [25]. Starting in 1994, a spatial database
was created to facilitate the analysis of health and popu-
lation research. All the baris were identified by a census
number by the ICDDR, B (International Centre for Diar-
rhoeal Disease Research, Bangladesh) demographic sur-
veillance system, allowing incidence data to be linked to
the specific location of a single bari [25,26]. Comple-
menting the information on baris, geographic coordi-
nates of major water sources (i.e., big water ponds) were
also acquired. Untreated surface water from ponds and
rivers is used by villagers for household uses, but there
is conflicting evidence about its use for drinking pur-
poses [26,27], given that water from tube wells has been
found to be contaminated with arsenic. Our analyses
focus on the cholera cases from 1983 to 2004 for 8340
baris of this spatial database.

Health data were obtained from both surveillance and
laboratory analyses. Individual health and demographic
surveillance data were regularly collected for all indivi-
duals living in the Matlab study area. The Matlab hospi-
tal is the only diarrheal treatment center in the rural
area, providing free treatment to all patients. Stool sam-
ples for all patients were collected and screened for
enteric pathogens in the laboratory. Cholera cases were
registered using the date of admission to the hospital
and both biotype and serotype were reported. Thus,
with approval of the ICDDR, B for this study we only
used anonymous surveillance data (in agreement with
the World Medical Association Medical Ethics Manual).

During the study period, 7241 cholera cases were
recorded (1972 cases correspond to classical O1 and
5269 cases, to El Tor O1). Temporal variability is evi-
dent at both seasonal and inter-annual scales in the data
(Fig. 2). The spatio-temporal information for all cases
was used to analyze the spatial clustering of cholera
cases per se (clustering of cases from now on), the spa-
tial clustering of cholera cases with respect to the avail-
able water sources locations (clustering of cases-water
from now on) and the timing between the occurrence of
significant spatial associations and the dynamics of the
epidemics.

Initially, we studied the spatial distribution of cholera
cases in order to detect the presence of spatial trends
(i.e., first order trends, see Additional File 1). Although
the distribution of cholera cases seems to display spatial
trends (Additional File 2, Fig. S1), when this distribution
is corrected by the spatial heterogeneity of the baris,
such spatial trends are not statistically significant (Addi-
tional File 2, Fig. $2-S9). Some spatial trends have been
previously reported [28] but, different spatial and tem-
poral scales of aggregation for the data were considered
in those studies. In addition, by performing Monte
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rivers.

Figure 1 Study Area. The Matlab rural area. Light gray points are mapped water sources (ponds), dark gray points are baris and, as example,
black points map cases from one epidemic of cholera classical Ogawa. Black lines represent the limits of the study area and light gray lines are

Carlo replications to evaluate the significance of the
results (see details bellow), we explicitly considered the
heterogeneity in the spatial distribution of the baris, an
underlying pattern that was not taken into account in
previous analyses.

The clustering of cases was studied using spatial sta-
tistics derived from the popular Ripley’s K index [3,29].
The Ripley’s K index quantifies nonrandom clustering
patterns (by estimating the second order effects from an
observed point pattern). For a particular region R with
area R, where n events (i.e., infections) have been
observed, the Ripley’s K index can be estimated as:

i In(d;i)
Mm=€y§:§:Zé’ 1)

n i#j

where the function I;(d;) indicates whether or not the
events { and j occurred within a distance less than or
equal to /; and w;; is an edge correction to handle arbi-
trary shaped regions [29,30]. It is important to notice
that the K function considers the intensity, the mean
number of events (infections) per unit area, of the

process under analysis, and therefore the detection of a
clustered distribution means that the number of cases
(more properly, events) is above the expected density of
cases at that particular scale.

The K function can be easily transformed into the
well-known L function [29], estimated by:

iy =+ <) _y (2)

When | (/) is plotted against /, the peaks for positive
values indicate spatial attraction of events, or clustering,
whereas the troughs for negative values indicate the spa-
tial repulsion, or regularity, at the corresponding scale of
distance / in each case. Zero values indicate a random
spatial distribution. The Ripley’s K function provided in
the R package “spatstat” was used for these analyses
[31]. Ripley’s K and L functions were calculated by
aggregating the daily cholera data into temporal win-
dows ranging from 2 to 17 days. This temporal window
represented potential infectious periods [12]. In addition
this also allowed the inclusion of sufficient cases to
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Figure 2 Temporal Dynamics of Cholera epidemics. The different lines represent annual cholera epidemics, solid black lines correspond to
epidemics of classical (Inaba and Ogawa) strain, dashed dark gray lines show El Tor epidemics (Inaba and Ogawa). Variability is strongly marked,
not only inter-annual or seasonality, but also intra-annual variability in both the timing of the outbursts and magnitude of the epidemics.

Month

statistically evaluate clustering of cases for the different
strains.

Two important factors must be considered in the spa-
tial analysis of cholera cases. First, their spatial location
is constrained by the spatial location of baris. Second,
the baris themselves are not homogeneously distributed
in the Matlab region. One way to take into account
these deviations from the original tests, is to perform
Monte Carlo replications for the sequence of cholera
cases over time, and thus evaluate significance account-
ing for the underlying landscape. Spatial clustering and
repulsion are statistically significant when the observed
L values are outside the envelope defined by the maxima
and minima of the Monte Carlo replications (technical
details in Fig. 3). The spatial distances for which the
Ripley’s functions were calculated (the maximum value
for & in formulas (1) and (2)) were restricted to below 8
kilometers because of the size of the study area (which
spans approximately 18 kilometers in longitude and 22
kilometers in latitude).

The spatial clustering and/or repulsion of cases-water
was studied by using a cross K function. For this analy-
sis, cholera cases and water sources are considered as
two different types of events. Rivers and canals were not
included in this analysis. Distance to main rivers have
been proven to be unrelated with cholera cases in this
area [26]. Frequent dryness of canals make them a very
unlikely source of disease.

Under the assumption of independence between types
of events (cholera cases and water sources), the location
of one type should be random with respect to that of
the other type, regardless of the overall spatial distribu-
tion of either type. Hence if cases originated from water
sources, the location of cases will be correlated with the
location of water sources, and therefore the K function
will identify such relationship as clustering at particular
scales. Following the previous reasoning, the L function
can be used to consider the interaction of two (or more)
types of events, to evaluate spatial attraction, indepen-
dence or repulsion (see [29] chapter 4 for details). An
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Figure 3 Ripley’s L function for an particular epidemic. These three examples show variability and characteristics of the spatial clustering.
Plotted in dark gray, the Ripley’s L function for the observed data against distance. The Ripley’s L function for observed data (dark gray) is
plotted bold when statistically significant (i.e, outside the bootstrapping envelop), but otherwise is dashed. The light gray area was defined by
the 10000 bootstrapping replications, these replications were constructed using all the cases for a particular epidemic. The most significant
cluster size, or simply cluster size, is defined as the distance at which the difference between the bootstrapping envelope and the observation is
maximum (black bold vertical segment), this is indicated by the vertical dashed line in the figure. The top panel shows a case where the cluster
size is relatively large (2340 meters) but small scale significant clusters are also present. The bottom-left shows a cluster size with small scale (50
meters) without the occurrence of clusters at large scales. The bottom-right displays a large cluster size (5010 meters) without clusters at small

equivalent bootstrapping technique was used to evaluate
the statistical significance of the clustering of cases-
water.

For both spatial analyses (clustering of cases and
cases-water), the characteristic cluster size was defined
as the distance corresponding to the largest significant
difference (i.e., the most significant difference). Hence,

the largest difference between the observed L values and
the corresponding superior envelope from the boot-
strapping was considered as the characteristic cluster
size [29]. Note that during the course of an outbreak,
significant clusters may occur at several scales (Fig. 3),
but only the most significant is considered for the ana-
lyses presented in this work.
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During the study period, several cholera outbreaks
with different intensity occurred. To reduce the variabil-
ity presented in the data we defined (and analyzed) epi-
demics as outbreaks that surpassed 30 new cases during
the course of a week. This is based on the observed dis-
tribution of epidemic sizes. Although epidemics exhib-
ited the typical seasonal pattern of two peaks per year
during most of the study period in this endemic region,
the timing of initiation of these peaks exhibited variabil-
ity from year to year. Based on the ideas from Cazelles
and Stone [32], we rescaled time for each epidemic as
follows: Each epidemic was mapped onto the interval |0,
41|, with the beginning mapped to time 0, the first (fall)
peak to m, the inter-peak decay to 2m, the second
(spring) peak to 3m and finally the end of the epidemic
to 4m. Four stages (1 to 4) were thus defined, with stages
1 and 3 corresponding to the rise of epidemics (fall and
spring), and stages 2 and 4, to their decay. Given that
no biological cross-immunity between O1 and 0139
strains has been reported [33], the dynamics of 0139
epidemics can be considered independent from that of
01 and was therefore not considered here.

Results

During the period of study, cholera epidemics in Matlab
exhibited the typical pattern of two peaks per year (Fig.
4) reported for other endemic areas in Bangladesh [17]
and some areas in historical Madras [21]. This pattern
was observed regardless of the specific strain (Fig. 2).
Moreover, the fall peak (corresponding to m in the fig-
ures) is bigger than the spring peak (in Fig. 4, Kruskal-
Wallis test x > = 21.5, df = 1, p-value = 3e-06, for a
temporal aggregation of 7 days, see Additional File 1,
Table S2 for other examples). The decay of cholera
cases during the monsoon season usually leads to a
fade-out of the epidemic, while the decrease in the win-
ter rarely reaches extinction.

We present representative results based on the (most
significant) cluster size for cholera cases (see Methods),
however it must be noticed that high variability is pre-
sent in both data (Fig. 2) and results (Fig. 5). Given the
small outbreaks of El Tor Ogawa variant, the results
corresponding to this strain are not included here. All
yearly epidemics display several significant clusters of
cases with varying sizes. Moreover, cluster sizes fall into
two dominant scales, a small spatial scale (hundreds of
meters) and a relatively large scale (ranging from 3 to 6
Kilometers), bigger clusters are rare (Fig. 5a). These spa-
tial scales are present independently from the temporal
scale of aggregation of the cases (see Additional File 3,
Fig. S10 and Additional File 4, Fig. S11, or Additional
File 5 and Additional File 6 for high resolution version
of those figures). In addition, significant clusters are not
present in a continuous way (i.e., a random pattern is
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detected at several intermediate scales, Fig. 3 and Fig.
5a). Finally, the most significant cluster size exhibits
high variability during the course of epidemics, but big
cluster sizes correspond to peaks in epidemic size.

A less clear pattern is obtained for the clusters sizes
corresponding to cases-water (Fig. 5b). Clusters of dif-
ferent sizes are present at different times, although few
clusters seem to be present during the winter (corre-
sponding to 2m in Fig. 5b).

Results for the dynamics of clustering are summarized
in Fig. 6 where the dynamics of epidemic size and clus-
ter size (for cases and cases-water) averaged over all epi-
demics for each particular strain are shown. Not
surprisingly cluster size tracks epidemic size. Sudden
changes in epidemic size are reflected in either cluster
size of cases and/or cases-water sources. A closer look
reveals some additional features. The size of the cluster-
ing of cases-water sources is, in general, bigger than that
corresponding to clustering of cases. As expected signifi-
cant clustering appears with some delay with respect to
the onset of the epidemics (for both peaks) (see also Fig.
5). Clusters occur more frequently during the decay
than during the onset of the epidemics (regardless of
the peak), and also are more frequent during the fall
than during the spring peak (regardless of the rate of
increase of epidemics) (see Tables 1 and 2).

The distribution of cluster sizes exhibited by the dif-
ferent strains (over all epidemics) is shown in Fig. 7.
The first row show the distribution of cluster sizes for
cases and the second row, for cases-water. For classical
Ogawa epidemics (Fig. 7 top-left) the distribution of
cluster sizes for cases displays two characteristic sizes
(around 200 meters and 5000 meters). The distribution
of cluster sizes for cases-water on the other hand shows
one typical scale around 7100 meters (Fig. 7 bottom-
left). For classical Inaba epidemics (Fig. 7 top-center)
the distribution of cluster sizes for cases displays also
two characteristic sizes (around 200 meters and 4000
meters), but the distribution of cluster sizes for cases-
water does not exhibit a characteristic scale (Fig. 7 bot-
tom-center). The distribution of cluster sizes for cases
of El Tor Inaba (Fig. 7 top-right) shows a small charac-
teristic scale (150 meters), however two characteristic
scales are found in the distribution of cluster sizes for
cases-water (around 800 meters and 7000 meters).

Discussion and Conclusions

Our results indicate that primary transmission sparks the
start of epidemics at several distant locations more or
less synchronously. This generates the clustering of cases
only at big scales with respect to water sources, as
opposed to small clusters close to a few punctual sources.
Secondary transmission follows, and the clustering of
cases at relatively small scales becomes dominant. At the
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larger scales, however, these new cases create a relatively
homogeneous spatial distribution because of the multiple
origins of seasonal outbreaks, and therefore clustering
with respect to water sources persists for those scales
most of the time. The onset of epidemics is therefore
controlled by both secondary and primary transmission.
However, rapid increases in the number of cases are

clearly tracked by spikes in clustering, indicating that sec-
ondary transmission plays a fundamental role in the
development of epidemics. These findings are consistent
with the interpretation of cholera patterns previously
proposed by Miller and colleagues [8].

Additional support for the fundamental role of sec-
ondary transmission during the onset of the epidemics
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epidemic size in black. Left column displays classical Ogawa data, center is classical Inaba and right column shows El Tor Inaba data.
J

Table 1 Presence of significant clustering for cases

Table 2 Presence of significant clustering for cases-water

Proportion of time with sig. clustering of

Proportion of time with sig. clustering of

cases-water

cases

Interval classical Ogawa classical Inaba El Tor Inaba Interval classical Ogawa classical Inaba El Tor Inaba
Fall Peak [0-m] 0.7278 09218 0.9722 Fall Peak [0-m] 0.8000 0.9665 0.9994
[r-2m] 0.8218 0.8889 0.9611 [m-2m] 0.8851 0.9991 0.9996
Spring Peak [2m-3m] 06259 0.9278 0.8833 Spring Peak [2m-3m]  0.7143 0.9833 0.9667
[3m-4m]  0.7206 08111 0.9700 [3m-4n]  0.8676 0.8667 0.9992

Proportion of time that significant clustering was exhibited (corrected for the

presence of the disease) for clusters between cases.

water sources.

Analogous to Table 1, but considering the clustering of cases with respect to
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is provided by the fact that the “epicenter” of the epi-
demic (calculated as the center of mass for the location
of cases) moves during the course of the outbreaks
(results not shown). A more constant epicenter would
reflect the spread of epidemics from an initial source of
contamination.

Spatial clustering practically disappears during inter-
epidemic periods, as expected, with a few randomly spa-
tially distributed cases (if any) occurring until the begin-
ning of another outbreak (Fig. 5 and Fig. 6). The spatial
clustering of cases is detected at several scales, with two
dominant sizes, given by hundreds of meters and a few
kilometers, consistent across the different epidemics.
These two scales suggest the occurrence of long distance
transmission events that might be triggered (among
other causes) by the movement of asymptomatic indivi-
duals, given their importance during epidemics [20].

The frequency of cluster occurrence (Tables 1 and 2)
showed that the clustering of cases-water occurs more
often than that of cases. This difference is consistent
with the observation of cases-water clustering from the
very beginning of outbreaks as primary transmission
triggers epidemics. It is also consistent with the cluster-
ing of cases emerging with some delay but still in the
early stages of epidemics, as secondary transmission
becomes established and dominates the dynamics (Fig. 5
and Fig. 6). This pattern exhibits small differences
among the different strains. The contamination by sec-
ondary cases of new water sources could explain the
persistence of clustering at large scales for cases-water.

The spatial clustering pattern observed during the
decay of the outbreaks is sometimes indistinguishable
from a random spatial pattern (Fig. 5 and Fig. 6). This
could be due to several factors. One possibility is that,
the increase in rainfall and associated dilution effect,
might eliminate the spatial structure. In addition, het-
erogeneity in the recovery time of infected individuals
and behavioral changes, induced by the presence of
cases, would alter the observed spatial pattern. This ran-
dom pattern could also reflect a failure of the chain of
transmission of the disease, with the re-initiation of epi-
demics from environmental sources.

The lack of strong seasonality on the presence of
cases-water clustering (Table 2) could reflect the effec-
tiveness of water sources as a reservoir and their role as
a ‘link’ between the clusters of secondary cases. Some of
the variability in the effectiveness of water sources
might result from strong El Nino-Southern Oscillation
(ENSO) events which have been shown to be strongly
associated with cholera epidemics [34].

This work presents results on the spatial distribution
of cholera cases during twenty-one years in Matlab,
Bangladesh, that support the role of secondary transmis-
sion in the dynamics of the disease. During the study
period a mass vaccination program took place in Matlab
[35-37]; the cholera vaccine appears to provide temporal
immunity and reports suggest that herd immunity was
present at some spatial scales [38-40]. Our analyses of
spatial trends shows, however, that for the scales consid-
ered in this study the effects of immunization were not
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important (see supplementary material). The spatial
information from this vaccination program, together
with more detailed local information (i.e., sanitary con-
ditions, education and socioeconomic status at the level
of baris or even individuals), could be incorporated in
further studies that address the localization of the clus-
ters and disease risk. In particular, local clustering meth-
ods may be useful for analyzing the effects introduced
by the construction of a flood control embankment that
protects the northern half of the study area in the
late1980’s [41,42].

Finally, the analyses presented in this work are based
on a static framework, where clustering is calculated
from snapshots. A natural next step is to incorporate
dynamical feedbacks between disease processes and the
state of the population together with seasonality. Sto-
chastic spatio-temporal models, similar to the ones
developed for the advance of the “epidemic front” for
rabies in the USA [2,43], are under construction. The
rabies model identified in particular the consequences of
spatial heterogeneity for the spread of the front of infec-
tion. Endemic dynamics such as those of cholera in Ban-
gladesh require the development of stochastic models
that not only describe the propagation of a front but are
also able to include the “back-propagation” to areas with
both previously uninfected (still susceptible) and/or
recovered individuals. Nested models can be formulated
to evaluate the role of primary and secondary transmis-
sion, as well as the importance of immunity and cross-
immunity in determining the complex spatial patterns
observed in cholera dynamics [44,45]. This work would
extend the current scope of metapopulation and indivi-
dual-based models of infectious diseases, to consider the
stochastic dynamics that arise at high spatial resolution
for diseases with temporary immunity. Such high resolu-
tion models would provide a basis to examine how to
scale the dynamics up to the population level, to the
simpler temporal models that are currently used for
cholera and other infectious diseases in confronting
time series data (e.g. [1,2,5,20,46-53]). These approaches
will lead to a better understanding of the importance of
spatial structure in the temporal dynamics of the
disease.
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