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Abstract
Background: Acyclovir (ACV) resistant herpes simplex virus (HSV) isolates can be readily
selected in animal infection models receiving suboptimal ACV treatment, however no comparative
studies of the emergence of resistance following suboptimal treatment with valacyclovir (VCV) or
famciclovir (FCV), the prodrugs of acyclovir and penciclovir, respectively, have been reported.

Methods: Mice (n = 30) were infected with HSV type 1 or 2 in the ear pinnae and administered
oral prodrugs at one fifth a dose previously shown to be effective. To select and amplify drug-
resistant HSV, a total of seven consecutive in vivo passages with suboptimal treatment were
performed for each virus sample and progeny virus from each passage was characterized by the
plaque reduction (PRA) and plating efficiency assays (PEA).

Results: No drug-resistant HSV-2 and only a single drug-resistant HSV-1 variant were identified.
Virus recovered from the first three sequential passages of this HSV-1 sample was susceptible by
PRA, although the proportion of resistant virus recovered gradually increased upon passage. The
resistant HSV-1 phenotype was confirmed by PRA after four sequential passages in mice.
Unexpectedly, this in vivo-selected drug-resistant HSV-1 failed to yield an infection completely
refractory to treatment in subsequent passages.

Conclusions: Sub-optimal therapy of immunocompetent mice with either VCV or FCV did not
readily select for HSV-mutants resistant to either ACV or PCV, suggesting that selection of
resistance with either prodrug remains difficult using this system. Futhermore, this study suggests
that the PEA may represent a useful adjunct to the PRA for monitoring alterations in the
proportion of drug-resistant virus even when no change in IC50 is apparent.
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Background
Resistance to acyclovir (ACV) or penciclovir (PCV) gen-

erally arises by a single base mutation in either the HSV

thymidine kinase (TK) or DNA polymerase (Pol) gene
[for a review, see reference [5]]. Unlike Pol, TK is not es-

sential for virus replication in cell culture [7], although in

vivo analyses implicate it in HSV virulence, pathogenici-

ty and reactivation from latency [4,8,16,22]. Since ACV

and PCV are dependent upon HSV TK for monophos-

phorylation, an event obligatory for the formation of the

active triphosphate inhibitor [14], ACVr isolates often ex-

hibit high levels of cross-resistance to PCV [2,3].

Viral populations are naturally heterogeneous; there are

approximately 6 to 8 TK deficient variants per 104

plaque-forming units (PFU) of HSV-1 (laboratory strains

and clinical isolates) that have never been exposed to an-

tiviral selection [6,13,15,17]. Resistance to nucleoside in-

hibitors of HSV arises readily in tissue culture probably

by selection of pre-existing mutants [10,13,18]. Moreo-

ver, Field et al.[9] demonstrated sequential HSV inocu-

lation from mouse to mouse receiving sub-optimal ACV

therapy led to the selection and amplification of resistant

virus in vivo. After four serial passages in the immuno-

competent mice, the infection became completely refrac-

tory to ACV treatment.

Acyclovir has been in part superceded by the oral prod-

rugs valaciclovir (VCV) and famciclovir (FCV), the latter
being the oral version of PCV [20,24]. No comparative

studies of the emergence of resistance following sub-op-

timal VCV or FCV have been reported and therefore set

out to to select for HSV-1 and HSV-2 isolates resistant to

ACV and PCV after using prodrug selection.

Materials and Methods
Cell lines and virus strains
MRC-5 (pass 18–25) and Vero were grown in Dulbecco's

modified Eagle's medium (DMEM) supplemented with

10% fetal calf serum (FCS) and incubated at 37°C, 5%
CO2. Vero cells were utilized for virus plaque purification

and protein lysate preparations and MRC-5 cells were

used for PRA and PEA. TK-negative (TK-) human oste-

osarcoma (143) cells were propagated in the medium de-

scribed above and utilized for the 3H-thymidine kinase

enzymatic assay.

Virus stocks were prepared by inoculating cells at 0.01

plaque-forming units per MRC-5 cell (PFU/cell). Labo-

ratory virus strains utilized were HSV-1 SC16 and HSV-2

SB5. SC16 was kindly provided by Dr. Sharon Safrin

(Gilead Sciences, CA). SB5 (ATCC; VR-2546) was

plaque-purified from HSV-2 333 kindly provided by Dr.

Priscilla Schaffer (University of Pennsylvania, PA) at
passage 6.

Antiviral agents
PCV and FCV were synthesized at GlaxoSmithKline. VCV

was extracted from Valtrex™ tablets and purity was con-

firmed by HPLC.

Animal inoculation and treatment
Female BALB/c mice (18–20 g; Charles River, Raleigh,

NC) were infected intradermally in both ear pinnae with

20 µl of virus suspension containing 105 PFU of HSV as

previously described [1]. The same viral challenge was

used for each subsequent in vivo passage. VCV or FCV

were administered via drinking water at either 1 mg/ml

(a dose previously shown to be a highly effective [23];

and D Sutton, unpublished observations) or 0.2 mg/ml

(suboptimal treatment) from the time of infection until

day 4 post-infection. No significant difference in daily

consumption between either of the treated groups or the

placebo group (drug-free water) was observed. Daily

drug intake equated to 75 mg/kg or 15 mg/kg, for the 1

mg/ml and 0.2 mg/ml doses, respectively.

To facilitate processing of blinded samples, a coding sys-

tem using sample number-passage number was applied.

Virus sample numbers 1 through 15 were HSV-1, and 16

through 30 were HSV-2. The ears from one mouse were

pooled (passage number 1 inoculation) and used to inoc-

ulate the ear pinnae of one mouse (passage number 2).

There were five replicate mice per treatment group (ei-

ther suboptimally treated with 0.2 mg/ml FCV, VCV or
placebo-treated) and isolates from seven serial in vivo

passages examined. Five individual plaques were puri-

fied three times to homogeneity from the single drug-re-

sistant virus mixture identified after in vivo passage, 14-

P4 (sample 14, passage 4). The clonal purified isolates

from this sample were designated 14-P4A-E.

The in vivo pathogenicity of selected virus preparations

was assessed in mice by monitoring lesion severity for 14

days following inoculation of the left ear pinna with 5 ×
105 PFU. Cumulative lesion scores (day 0–14) were then

calculated from the individual daily scores.

Virus isolation and in vitro assays
Virus stocks were prepared as described previously [17],

titrated and characterized by PRA and PEA. On day 4

post-infection, mice were euthanized, and both ear pin-

nae removed and pooled in coded tubes, one tube per

mouse. The code was not broken until all tissue culture

assays had been completed. The tissue was homogenized

and virus stocks were prepared in MRC-5 cells from cell-

free supernatants. Following virus adsorption onto the

MRC-5 monolayer, two washes with phosphate-buffered

saline were performed to remove any residual antiviral

drug. Cell-free virus was harvested, titrated and charac-
terized by PRA and PEA prior to use in subsequent pas-
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sage experiments (Figure 1). All PRA, PEA and in vivo

studies were carried out using virus that had undergone

a single in vitro passage. PRAs were performed in MRC-

5 cells as described previously [17]. The plating efficiency

of the virus preparations generated in vivo was deter-

mined according to the method developed by Hall et al.

with minor modifications [13] as reported previously

[17]. Briefly, six serial 10-fold dilutions of virus were in-

oculated onto MRC-5 cells in the absence of antiviral

drug or in the presence of either ACV or PCV at a concen-

tration of antiviral 10 times higher than the average IC50

for wild type parental HSV-1 and HSV-2, respectively.

The mutation frequency was calculated as follows: muta-

tion frequency = (virus titer in the presence of drug)/(vi-
rus titer in the absence of drug). The frequency is often

expressed as a plating efficiency, or percentage of viruses

that are resistant, which is calculated as percent resistant

= (mutation frequency) × 100.

Antibodies and biochemical assays
Western blot analysis was performed as described previ-

ously [18]. Viral TK activity was determined by a modifi-

cation of the method utilized by Coen and Schaffer [4] as

described in [17]. Primers utilized for TK sequencing

were described previously [18].

Figure 1
Experimental design for in vivo selection of drug-resistant HSV. This cartoon depicts the methodology used to select drug-
resistant virus. Both ear pinnae of each mouse were infected with HSV. There were five replicate mice per treatment group
(treated suboptimally with 0.2 mg/ml FCV or VCV, or with placebo) and isolates from seven serial in vivo passages examined.
The resulting virus preparation from the pooled ears of an individual mouse (sample number 1, passage number 1) were used
to inoculate both ear pinnae of one mouse for the subsequent serial passage (sample number 1, passage number 2).
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Results
Virus yield after antiviral treatment

To evaluate efficacy of prodrug treatment in this model,

VCV and FCV were provided in the drinking water at 1.0

mg/ml or at 0.2 mg/ml (sub-optimal treatment) for mice

infected with either HSV-1 SC16 or HSV-2 SB5. Titers

(day 4 post-infection) of approximately 4.5 log10 virus

per ear were recovered from placebo-treated mice, re-

gardless of virus type (Table 1). As expected, a significant

reduction in virus yield (greater than 3.5 log10 decrease)

was noted for mice treated with either VCV or FCV at 1.0

mg/ml following infection with either HSV-1 or HSV-2.

In the same experiment, virus yield from suboptimally-

treated mice was reduced approximately 1.6–2.6 log10
compared to placebo-treated mice, and these data are

consistent with a previous report in which ACV was ad-

ministered at a concentration of 0.25 mg/ml [10]. At 0.2

mg/ml, viral replication, albeit reduced, was still ongo-

ing, a prerequisite for the in vivo selection of resistant

HSV.

A reproducible difference in virus yield between the two

antiviral treatment groups at the suboptimal concentra-

tion was evident, regardless of virus type. For HSV-1, the

difference in titer between VCV-treated mice (2.45 log10
PFU/ml) and FCV-treated (2.92 log10 PFU/ml) was sta-

tistically significant (p = 0.049). Similarly for HSV-2,

VCV at 0.2 mg/ml was significantly more effective than

FCV in this mouse model. Titers from VCV- or FCV-

treated mice were 2.06 log10 PFU/ml or 2.55 log10 PFU/

ml, respectively (p = 0.001). Similar trends were noted

when the antivirals were compared at 1.0 mg/ml for both

HSV-1 and HSV-2 (Table 1). These observations can not

be accounted for by differences in exposure to ACV and

PCV since oral administration of VCV and FCV results in

almost identical blood concentration-time curves for

ACV and PCV [11]. A more probable explanation is that

ACV is approximately four-fold more potent than PCV in

murine cells [21].

To select and amplify drug-resistant HSV in mice, a total

of seven consecutive passages were performed, and

progeny virus from each passage was characterized in

vitro by PRA and PEA.

PRA susceptibility
IC50s were determined for each virus sample by the PRA.

The parental control virus stock (which was not passaged

in mice) was tested in parallel to provide a baseline for

every PRA. Consistent with previous studies [2], IC50s

for PCV tended to be marginally higher than for ACV,

and IC50s were higher for HSV-2 SB5 than for HSV-1

SC16. The in vitro breakpoint for defining ACV resist-

ance (2.0 µg/ml) and the provisionally-defined PCV re-

sistance breakpoint, an IC50 greater than 10-fold above

the wild-type control virus IC50 within a particular assay

[17], were utilized.

Drug-selected HSV-1 SC16
Mean PCV susceptiblities of the HSV-1 isolates (n = 105)

from passages 1 through 7 are listed in Table 2. All iso-

lates from mice treated with either placebo or FCV re-

mained sensitive to PCV (IC50s ranging from 0.28–1.50

µg/ml) and to ACV (results not shown) according to the

standard resistance breakpoint criteria, whereas isolates

Table 1: Virus Titer Day 4 post-infection in mice inoculated with HSV-1 strain SC16 or HSV-2 strain SB5 and treated orally with Placebo, 
FCV or VCV

Virus Titer (log10 PFU/ear)

Virus inoculumb Placebo FCV VCV

0.2 mg/mlc 1.0 mg/mlc 0.2 mg/mlc 1.0 mg/mlc

HSV-1 (SC16) 4.54 ± 0.04a 2.92 ± 0.23 (2.4)d 1.0 ± 0.21 
(0.03)

2.45 ± 0.15 (0.80) 0.74 ± 0.35 (0.02)

HSV-2 (SB5) 4.73 ± 0.30 2.55 ± 0.25 (0.67) 0.98 ± 0.13 
(0.02)

2.06 ± 0.17 (0.20) 0.72 ± 0.44 (0.01)

aGeometric mean titer ± standard deviation of virus obtained from the ears of five mice and titrated independently. bA total of 105 PFU was inocu-
lated into each ear pinna. cTreatment in the drinking water from the time of virus inoculation. Mice drank approximately 1.5 ml per day. No differ-
ences in intake volume or spillage between treatment groups were evident. dPercent virus yield compared to placebo-treated mice.
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from mice treated with VCV had PCV IC50s ranging from

0.31–8.3 µg/ml. One isolate (4th passage; 14-P4) in this

treatment group was confirmed as resistant to both PCV

(IC50 = 8.3 µg/ml) and ACV (IC50 = 9.5 µg/ml). General-

ly, test sample IC50s varied within two-fold of the non-

passaged control virus IC50, within each particular assay

(data not shown); however, isolate 14-P4 was clearly dif-

ferent, with an IC50 greater than 11-fold over the control

virus IC50 for both PCV and ACV.

Interestingly, although 14-P4 was resistant, the third

pass isolate for this sample was completely sensitive to

both antiviral agents (ACV IC50 = 0.16 µg/ml; PCV IC50

= 0.53 µg/ml). Therefore, the PRA provided no early in-

dication at pass 3 of potentially increasing resistant var-

iants upon subsequent passage. Furthermore, the

resulting virus preparation from subsequent passaging

of 14-P4 reverted to a sensitive phenotype (ACV IC50 =

0.74 µg/ml; PCV IC50 = 0.74 µg/ml), although subopti-

mal treatment was still utilized.

Drug-selected HSV-2 SB5
Mean PCV susceptiblities of the HSV-2 isolates (n = 105)

from passages 1 through 7 are listed in Table 3. No resist-

ant HSV-2 emerged among the total of 105 HSV-2 iso-

lates tested from the three treatment groups (PCV IC50s

ranged from 0.66–1.85 µg/ml across treatment groups).

These results were confirmed when the same isolates

were tested for susceptibility to ACV (results not shown)

and all the IC50s were sensitive over a similar range as

PCV. As with HSV-1, the HSV-2 test samples were gener-

ally within two-fold of the control virus IC50 (data not

shown).

PEA profiling
All isolates were tested by the PEA, a test which may pro-

vide a more sensitive indicator of emergence of drug re-

sistance than the PRA, since it measures the proportion

of resistant isolates in the population. The parental con-

trol virus stock was tested in parallel in order to provide

a baseline for every PEA.

Drug-selected HSV-1 SC16
The HSV-1 control virus preparation contained between

0.002–0.02% ACVr virus and 0.004–0.009% PCVr,

which equates to an average of 6.6 ACVr and 6.0 PCVr re-

sistant viruses per 105 PFU. Generally, the proportion of

PCVr virus varied only two-fold between tests when com-

pared to the control virus, ranging from 0.004 to 0.009%

(data not shown); however, three serial samples in the

VCV-treatment group, 14-P2, 14-P3 and 14-P4, clearly

showed a substantial increase in the proportion of resist-

ant virus relative to the wild type control, specifically an

11-, 300- and 8800-fold increase, respectively (14-P2,
0.002%; 14-P3, 2%; and 14-P4, 44% PCVr). Although

passage 3 preparation contains a two log increase in re-

sistant virus compared to passage 2, this level is insuffi-

cient to significantly increase the IC50. Consistent with

the failure to establish an infection refractory to treat-

ment, the proportion of resistant virus decreased to

0.08% PCVr and 0.05% ACVr by passage 5.

Drug-selected HSV-2 SB5
The HSV-2 control virus preparation contained between

0.24–0.40% ACVr and 0.13–0.40% PCVr virus, which

equates to an average of 3.1 ACVr and PCVr viruses per

103 PFU. Generally, the proportion of resistant virus var-

ied only three-fold between tests when compared to the

control virus (data not shown), however a continual in-

crease in the proportion of resistant virus was seen with

Table 2: Susceptibility of serial passaged HSV-1 SC16 isolates to PCV as measured by the PRA.

Parental SC16a Passage No. PCV IC50 (µg/ml)

Placebo FCV VCV

0.39 1 0.36 ± 0.04b 0.42 ± 0.07 0.42 ± 0.05
0.57 2 0.48 ± 0.16 0.76 ± 0.23 0.74 ± 0.35
0.90 3 0.33 ± 0.08 0.50 ± 0.24 0.49 ± 0.36
0.73 4 1.13+0.46 1.31 ± 0.42 2.73 ± 3.11c

0.77 5 1.15 ± 0.24 0.68 ± 0.15 0.68 ± 0.07
0.70 6 0.79 ± 0.13 0.74 ± 0.09 0.80+0.12
0.70 7 0.81 ± 0.38 0.57 ± 0.27 0.66 ± 0.24

aIC50 against PCV for the original parental control virus preparation (not passaged in mice). bIC50 against PCV ± standard deviation for test isolates 
for n = 5 samples. cIC50 (µgml) PCV for samples 26–30 ranged from 1.09–8.3.
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the sample 30 passages (VCV treatment group). The pro-

portion of PCVr virus in sample 30 increased from 0.40%

to 2.8% to 12.2% throughout serial passages 1 through 3

and declined to 0.2% by passage 4. All of these isolates

were susceptible to PCV by the PRA (IC50s for sample 30,

passage 2 through 4, were 0.79, 0.90 and 1.2 µg/ml, re-

spectively).

Analysis of drug-resistant isolate
Of 210 HSV isolates from mice treated sub-optimally

with FCV or VCV, or with placebo, only one HSV-1 iso-

late, 14-P4 was identified in the PRA as an antiviral-re-

sistant isolate. Five single plaques from 14-P4 were

isolated after three rounds of plaque purification and

characterized. The clonal isolates were tested for suscep-

tibility to using the PRA and were found to be highly re-

sistant to ACV (ACV IC50s > 25 µg/ml) and PCV (Table

4; PCV IC50s > 25 µg/ml), although susceptible to foscar-

net.

Western blot analysis showed that each clonal isolate

produced a truncated TK polypeptide compared to the

wild type TK protein product of approximately 43 kD
(Figure 2). Moreover, all five clones were defective for TK

activity compared with HSV-1 SC16 in a 3H-thymidine

kinase assay (Table 4). Sequence analysis of the TK cod-

ing region from all five plaque isolates identified a G nu-

cleotide insertion in the homopolymeric hot-spot G7

tract at nucleotide 435, a common mutation present in

other ACVr HSV isolates [18,19]. This base insertion pro-

duced a frame shift in the coding sequence, resulting in a

loss of the ATP / nucleoside-binding site and the creation

of a premature stop codon at amino acid 228 to encode a

truncated 28 kD TK polypeptide.

Lastly, the in vivo pathogenicities of 14-P4 and one of its

clonal isolates (14-P4E) were compared with the control

virus, HSV-1 SC16. Isolate 14-P4 containing 45% resist-

ant virus caused significant clinical disease in mice, only

marginally less severe than that observed with HSV-1

SC16. In marked contrast, mice inoculated with the

plaque-purified isolate, 14-P4E, developed a mild infec-

tion. The cumulative disease scores for parental virus

control HSV-1 SC16, 14-P4 and 14-P4E were 136, 96 and

15, respectively.

Table 3: Susceptibility of serial passaged HSV-2 SB5 isolates to PCV as measured by the PRA

Parental SB5a Passage No. PCV IC50 (µg/ml)

Placebo FCV VCV

0.79 1 0.76 ± 0.08b 0.78 ± 0.05 0.87 ± 0.09
1.02 2 0.98 ± 0.08 0.82 ± 0.23 0.96 ± 0.27
1.06 3 1.10 ± 0.23 1.04 ± 0.22 0.87 ± 0.04
1.43 4 1.55 ± 0.15 1.02 ± 0.51 1.14 ± 0.58
1.11 5 1.32 ± 0.38 1.47 ± 0.48 1.14 ± 0.18
0.80 6 0.96 ± 0.18 0.81 ± 0.05 0.85 ± 0.16
0.90 7 0.81 ± 0.08 0.77 ± 0.05 0.82 ± 0.12

aIC50 against PCV for the original parental control virus preparation (not passaged in mice). bIC50 against PCV ± standard deviation for test isolates 
for n = 5 samples.

Table 4: Biochemial Characterization of 14-P4 clonal plaque isolates.

Clone 14-P4A 14-P4B 14-P4C 14-P4D 14-P4E WT SC16

TK activity 0.3% 0.4% 0.5% 0.3% 0.3% 100%
PCV IC50 >25 µg/ml >25 µg/ml >25 µg/ml >25 µg/ml >25 µg/ml 0.3 µg/ml
PFA IC50 48 µg/ml 62 µg/ml 55 µg/ml 80 µg/ml 55 µg/ml 64 µg/ml
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Discussion
HSV-1 or HSV-2 isolates were passaged serially seven

times in mice inoculated in the ear pinnae and treated
with suboptimal (15 mg/kg per day) concentrations of

FCV or VCV to select resistant virus. Despite ongoing, al-

beit reduced, viral replication in the animals, selection of

resistant HSV with the prodrugs proved difficult. Inter-

estingly, the single drug-resistant isolate identified from

this study reverted to a sensitive phenotype upon rein-

fection, even with suboptimal antiviral treatment.

Although virus recovered at passage 4 from one of five

mice treated with VCV (14-P4) was clearly resistant in

the PRA (IC50s 8.3 and 9.5 for PCV and ACV, respective-

ly), the preceding and the subsequent isolates were sen-

sitive according to the criteria for defining resistance.

The PEA identified a gradual increase in the proportion

of resistant virus from 14-P2 (0.002%) to 14-P3 (~2%) to

14-P4 (44%). However, for the most part, the PEA data

did not correlate with the eventual appearance of drug-

resistant virus as defined by the PRA. Consistent with

this, an earlier studied showed that the proportion of

drug-resistant virus in a preparation needs to be approx-

imately 50% before resulting in a signficant change in

IC50[9].

Biochemical characterization of the 14-P4 isolate con-

firmed that impaired TK activity was most likely respon-
sible for the resistance phenotype. Sequence analysis of

one of these clonal isolates (14-P4E) revealed insertion of

an extra G within the G7 homopolymeric region of the TK

coding region. This mutation has also been detected in

clinical isolates from patients immunocompromised [12]
or with AIDS [19] as well as resistant HSV selected in tis-

sue culture [15,18]. Interestingly, this mutation was

present in ACVr clinical isolates obtained during reacti-

vation in the absence of drug pressure, as well as in ACVr

strains which evolved during ACV therapy and were fol-

lowed by ACV-susceptible isolates at the next reactiva-

tion [19].

It was surprising to find that the ACV-resistant virus se-

lected in vivo was not retained or amplified in subse-

quent passages despite continued suboptimal treatment

with VCV. This result appears to be in direct contrast to

that of Field [9] who found that following selection of

ACV-resistant virus in vivo, such viruses remained re-

fractory to treatment upon subsequent passage using

suboptimal treatment with ACV. The reason for this dif-

ference is unclear. However, the failure to maintain the

resistant virus on subsequent passage suggests that the

pathogenicity of 14-P4 may have been only partially at-

tenuated relative to the sensitive virus and indeed the

pathogenicity of the clonal virus isolate, 14-P4E, was se-

verely attenuated. Further studies on the 14-P4 clonal

isolates and the clinical significance of their attentuation

should be explored.

Conclusions
Sub-optimal therapy of immunocompetent mice with ei-

ther VCV or FCV did not readily select for HSV-mutants

resistant to either ACV or PCV, suggesting that selection

of resistance with either prodrug remains difficult using

this system. All the virus isolates from each serial pas-

sage were examined by both PRA and PEA. The former is

widely accepted as the gold standard for susceptibility

testing of HSV, and for ACV, a correlation between PRA

in vitro IC50 and clinical outcome has been established.

In spite of this, the PEA appears to have potential as an

adjunct to the PRA by providing earlier detection of the

emergence of resistant HSV. However, it is important to

note that although an increase in the number resistant

variants within isolates was readily detected by the PEA,

clinically-resistant virus did not develop in the immuno-

competent mice. Therefore, the presence of resistant vi-

rus within an isolate, even at levels substantially above

background, does not in itself indicate that increased re-

sistance will follow, nor does it necessarily predict clini-

cal resistance. It would be of interest to apply the PEA to

an extensive series of clinical isolates, particularly iso-

lates obtained from severely immunocompromised pa-

tients, in order to evaluate the proportions of resistant

virus that occur within different clinical isolates.

Figure 2
Biochemical characterization of clonal plaque isolates derived
from 14-P4 in MRC-5 cells. Western blot analysis of TK pro-
tein products from five clonal isolates of virus sample 14-P4.
Lanes A through E represent infected cell protein extract
from isolates 14-P4A, 14-P4B, 14-P4C, 14-P4D and 14-P4E.
Mock represents uninfected MRC-5 cell protein extract.
Wild type TK, indicated as WT SC16, is a 43 kD polypeptide
expressed from an HSV-1 SC16 infected cell extract.
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