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Abstract
Background: Paraoxonase-1 (PON1) is an antioxidant enzyme synthesized by the liver. It
protects against liver impairment and attenuates the production of the pro-inflammatory monocyte
chemoattractant protein-1 (MCP-1). We investigated the relationships between hepatic PON1 and
MCP-1 expression in rats with liver disease and explored the possible molecular mechanisms
involved.

Methods: CCl4 was administered for up to 12 weeks to induce liver damage. Serum and hepatic
levels of PON1 and MCP-1, their gene and protein expression, nuclear transcription factors, and
histological and biochemical markers of liver impairment were measured.

Results: High levels of PON1 and MCP-1 expression were observed at 12th week in the
hepatocytes surrounding the fibrous septa and inflammatory areas. CCl4-administered rats had an
increased hepatic PON1 concentration that was related to decreased gene transcription and
inhibited protein degradation. Decreased PON1 gene transcription was associated with PPARδ
expression. These changes were accompanied by increased hepatic MCP-1 concentration and gene
expression. There were significant direct relationships between hepatic PON1 and MCP-1
concentrations (P = 0.005) and between PON1 and the amount of activated stellate cells (P =
0.001).

Conclusion: Our results from this experimental model suggest a hepato-protective role for
PON1 against inflammation, fibrosis and liver disease mediated by MCP-1.

Background
Chronic liver diseases are characterised by the concomi-
tant presence of oxidative stress and a severe inflamma-
tory response [1]. The ubiquitous presence of antioxidant
enzymes may represent an important defence mechanism

in diminishing the burden of the pro-oxidant stimuli.
Paraoxonase-1 (PON1), an enzyme with lactonase and
esterase activities, is synthesized, in humans, mainly by
the liver [2,3]. It hydrolyses lipid peroxides, and circulates
in plasma bound to high-density lipoproteins (HDL) [4].
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We have reported previously that serum PON1 activity is
decreased in patients with liver diseases, while serum
PON1 concentration and hepatic PON1 protein expres-
sion are increased [5-7]. We also proposed that PON1
may play a role in the regulation of hepatic parenchymal
cell apoptosis [6]. More recent evidence indicates that
PON1 over-expression provides strong protection against
the development of experimental liver disease [8]. Con-
versely, low PON1 levels are associated with an enhanced
sensitivity to the development of liver damage [9].

The cells responsible for the inflammatory response may
vary but, usually, resident or recruited monocytes/macro-
phages play a key role [10]. Monocyte chemoattractant
protein-1 (MCP-1) regulates the recruitment of mono-
cytes into tissues and their subsequent differentiation to
macrophages. Its expression is increased in patients with
chronic inflammatory diseases, including liver impair-
ment [11-14]. In liver cirrhosis, MCP-1 expression is up-
regulated in portal tracts, epithelial cells of regenerating
bile ducts, activated stellate cells and Kupffer cells [10].
This suggests that the protein may be involved in sustain-
ing hepatic injury and fibrosis and, as such, to down-reg-
ulate the action of MCP-1 may represent a potentially
effective therapeutic option.

Despite evident clinical interest, the relationships
between PON1 expression and MCP-1 production in
chronic liver diseases have not been studied to-date. The
present study was designed to investigate the chronologi-
cal sequence and quantitative relationships between
PON1 expression and activity, free radical production,
MCP-1 expression, and fibrosis. The model used was
experimental rats with chronic liver impairment induced
by CCl4 administration and, in which, free radical produc-
tion and inflammatory cell recruitment to the liver have
been extensively documented [15-18]. Also, we examined
the possible rebound of genetic and pathological changes
following the cessation of the hepato-toxic injury, and we
explored the molecular mechanisms that may be impli-
cated in the observed changes.

Methods
Experimental design
The handling of animals and the procedures described
were approved by the Ethics Committee of the Rovira i
Virgili University. Liver fibrosis was induced in male Wis-
tar rats (n = 30) weighing 207 ± 9 g (Panlab, Barcelona,
Spain) by twice a week intra-peritoneal (i.p.) injections of
0.5 mL of CCl4 diluted 1:1 (v/v) in olive oil [19]. CCl4
administration was continued for up to 12 weeks in a
group of 18 rats; 3 subgroups of 6 animals each being sac-
rificed at 6, 8 and 12 weeks of CCl4 administration.
Another group of 12 rats received CCl4 for 6 weeks, the
toxicity-inducing agent was stopped, and 2 subgroups of

6 animals each were killed at weeks 7 and 8 (1 and 2
weeks of recovery). An additional group of 6 rats receiving
only olive oil was used as a control group. All the animals
were fed ad libitum with standard rat chow (Harlan Inter-
fauna, Barcelona, Spain). Before sacrifice, the livers were
removed under anaesthesia. Portions were fixed in 4%
formaldehyde and embedded in paraffin for histology
examination. The remaining portion of the liver was fro-
zen in liquid nitrogen and stored at -80°C for subsequent
biochemical and RNA expression analyses.

Biochemical measurements
Blood was obtained by cardiac puncture and serum and
EDTA-plasma samples were stored at -80°C until required
for analysis. Liver tissue (30 mg) was homogenised in 500
μl of 25 mM Tris-HCl buffer (pH = 7.4) with 100 mM
NaCl, and 1% Nonidet-40, in a Precellys 24 homogeniser
(Bertin Technologies, Montigny-le-Bretonneux, France).
Homogenisation was 1 cycle of 23 s at 6500 rpm. The este-
rase activity of PON1 was measured as the rate of hydrol-
ysis of paraoxon at 410 nm and 37°C [5]. The lactonase
activity was measured as the hydrolysis of 5-thiobutyl
butyrolactone (TBBL) [20,21]. PON1 concentration was
determined by an in-house ELISA method using a poly-
clonal antibody raised against a peptide derived from the
sequence of mature PON1 [22]. MCP-1 concentration was
analysed with a murine JE/MCP-1 ELISA development kit
from Peprotech (Rocky Hill, NJ, USA). Serum aspartate
aminotransferase (AST) activity, and cholesterol and trig-
lyceride concentrations were measured with reagents pur-
chased from Beckman-Coulter (Fullerton, CA, USA).

Quantitative real-time PCR
A 30 mg portion of liver was lysed with 650 μL of 1×
Nucleic Acid Purification Lysis Solution® (Applied Biosys-
tems, Darmstadt, Germany). RNA extraction was per-
formed in an ABI Prism™ 6100 nucleic acid prep-station
(Applied Biosystems). Reverse transcription to cDNA of 1
μg of total RNA was with random hexamer primers from
Invitrogen (Carlsbad, CA, USA). Real-time PCR analysis
was performed with TaqMan® Low Density Arrays
(Applied Biosystems) [23] using primers and probes (Taq-
Man® Gene Expression Assays) for rat PON1, MCP-1, per-
oxisome proliferator-activated receptor α (PPARα),
PPARδ, and PPARγ genes. Thermal cycling and fluores-
cence detection was performed in an Applied Biosystems
ABI Prism 7900 HT Sequence Detection System. Amplifi-
cation involved 40 cycles with the following parameters:
2 min at 50°C, 10 min at 94.5°C and, for each cycle, 30 s
at 97°C for denaturation and 1 min at 59.7°C for tran-
scription. Analysis of gene expression values were per-
formed using the 2-ΔΔCT method. β-glucoronidase (Gusb)
gene expression was used for normalisation. This gene has
been shown not to undergo any significant change during
prolonged administration of CCl4 [24].
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Measurement of AP-1 and Sp-1 binding activation
DNA-binding activity of Sp-1 and that of several members
of the AP-1 family of nuclear transcription factors (c-Fos,
FosB, c-Jun, JunB, JunD, Fra-1, and Fra-2) were analysed
in liver homogenates using DNA-binding ELISA methods
(Active Motif, Carlsbad, CA, USA).

Histological and immunochemical methods
Livers were fixed in 10% phosphate-buffered formalin for
24 h at room temperature, washed twice with water,
stored in 70% ethanol at 4°C, and embedded in paraffin.
PON1 protein expression was assessed by immunohisto-
chemistry using the previously described polyclonal anti-
PON1 antibody [22]. MCP-1 and PPARδ protein expres-
sions were assessed with polyclonal antibodies from Santa
Cruz Biotechnology Inc. (Santa Cruz, CA, USA). Hepatic
4-hydroxy-2-nonenal-protein adducts were measured as
an index of lipid peroxidation using a monoclonal anti-
body from the Japan Institute for the Control of Aging
(Shizuoka, Japan). Macrophage staining was performed
with a monoclonal antibody against the F4/80 antigen
(Serotec, Oxford, UK). The amount of activated stellate
cells in the liver was estimated by α-smooth muscle actin
(α-SMA) immunohistochemistry [25] using an anti-SMA
antibody from Novocastra (Menarini, Florence, Italy).
Biotinylated secondary antibodies used in all the immun-
ochemical methods were obtained from Vector Laborato-
ries (Burlingame, CA, USA). Sections were counterstained
with haematoxylin. Collagen content of biopsies was esti-
mated by image analysis of the Masson's trichrome stain
using an image software system (AnalySIS™, Soft Imaging
System, Munster, Germany).

Evaluation of hepatic proteolytic activity
To evaluate the hepatic proteolytic ability, we measured
the cathepsin B activity in liver homogenates obtained as
described above. Cathepsin B is a lysosomal cysteine pro-
tease and its levels are a reliable index of the overall
hepatic proteolysis [26]. We used the Innozyme™ Cathep-
sin B Activity Assay Kit (Calbiochem, Gibbstown, NJ,
USA). We investigated the appearance in the homoge-
nates of the inactive procathpsin B by Western Blot using

a rabbit polyclonal primary antibody against rat cathepsin
B (Abcam, London, UK) which also recognises the proen-
zyme. Secondary antibodies used were goat polyclonal
anti-rabbit immunoglobulins/HRP (Dako, Glostrup,
Denmark). We also investigated the presence of anti-
PON1 immunoreactive fragments in liver homogenates
by Western Blot using the polyclonal anti-PON1 antibody
described before [22].

Statistical analyses
The effects of CCl4 administration and cessation (recov-
ery) on the biochemical variables over multiple time peri-
ods were analysed by ANOVA. The Mann-Whitney U test
was used to compare differences between any 2 individual
time periods. The Spearman regression test was used to
evaluate the degree of association between any 2 varia-
bles. Results are shown as means ± SEM. Statistical analy-
ses were performed with the SPSS 14.0 statistical package
(SPSS Inc., Chicago, IL. USA).

Results
Changes in variables associated with liver injury
The development of chronic liver impairment was associ-
ated with significant increases in serum AST activity, the
percentage of collagen, and the amount of activated stel-
late cells in liver tissue. Cessation of CCl4 administration
was associated with a partial recovery of normal liver his-
tology and function, as evidenced by a decrease in serum
AST activity and the percentage of collagen and activated
stellate cells staining in the liver tissue (Table 1). Serum
cholesterol and triglyceride concentrations decreased sig-
nificantly with CCl4 administration and, in the case of
cholesterol, became normalised by the end of the study.
Cessation of CCl4 administration was associated with a
partial recovery of both parameters.

Hepatic PON1 expression is associated with MCP-1 and 
fibrosis
The hepatic immunoreactivities of PON1 and MCP-1
were significantly increased in CCl4-administered rats
after 12 weeks of CCl4 exposure (Fig. 1). Of note is that the
distribution was similar for both proteins. Hepatocytes

Table 1: Effect of CCl4 on the liver injury

Control group No CCl4 CCl4 administration groups Recovery groups CCl4 withdrawal

6 weeks 8 weeks 12 weeks 1 week 2 weeks

Collagen (%) 0.22 (0.04) 0.97 (0.31)a 0.47 (0.06)a 3.6 (0.3)a, e, h 0.67 (0.09)a 0.73 (0.16)a

α-smooth muscle actin staining (%) 0.109 (0.02) 1.2 (0.3)b 0.41 (0.07)b 1.8 (0.5)b, g 0.21 (0.03)a, d 0.11 (0.02)d, i

Aspartate aminotransferase (μkat/L) 2.0 (0.2) 5.9 (1.2)a 5.4 (1.0)a 25.0 (7.7)a, c, f 2.3 (0.4)d 2.0 (0.3)d

Cholesterol (mmol/L) 0.94 (0.07) 0.70 (0.09)a 0.78 (0.15) 1.08 (0.14)c 1.00 (0.15) 1.12 (0.95)
Triglycerides (mmol/L) 2.65 (0.41) 0.63 (0.08)b 0.56 (0.06)b 0.72 (0.18)b 1.08 (0.13)b 0.89 (0.13)b

a: p ≤ 0.05, b: p < 0.01, with respect to the control group. c: p ≤ 0.05, d: p < 0.01, e: p < 0.001, with respect to 6 weeks of CCl4 administration. f: p ≤ 
0.05, g: p < 0.01, h: p < 0.001, with respect to 8 weeks of CCl4 administration. i: p ≤ 0.05, with respect to 1 week of CCl4 withdrawal/recovery
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Representative micrographs of protein expression (A and B) PON1; (C and D) MCP-1; (E and F) F4/80 and (G and H) 4-hydroxy-2-nonenal-protein adducts in liver tissue of control rats (A, C, E, G) and rats treated with CCl4 for up to 12 weeks (B, D, F, H)Figure 1
Representative micrographs of protein expression (A and B) PON1; (C and D) MCP-1; (E and F) F4/80 and (G 
and H) 4-hydroxy-2-nonenal-protein adducts in liver tissue of control rats (A, C, E, G) and rats treated with 
CCl4 for up to 12 weeks (B, D, F, H). Original magnification: ×100. The inserts represent the mean percentages of posi-
tively-stained areas with respect to the total, in control and treated animals. * P < 0.001.
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were strongly stained when located in close proximity to
inflammatory infiltrates (indicated by macrophage F4/80
antigen staining) and fibrosis septa. The expression of 4-
hydroxy-2-nonenal protein adducts (an index of the
degree of hepatic oxidative stress) was highest in these
areas. The amounts of positively-stained hepatocytes for
PON1 and MCP-1 were lower in the less-affected areas of
the liver.

To extend these observations, we measured the hepatic
and serum concentrations of PON1 and MCP-1 and their
respective gene expressions. Hepatic PON1 concentration
was significantly increased in CCl4-administered rats but,
surprisingly, PON1 gene expression showed a significant
decrease throughout the CCl4 exposure period. Serum
PON1 concentration showed a significant decrease after 6
weeks of CCl4 exposure, followed by a subsequent
increase to reach levels similar to those of control animals
(Fig. 2A). Hepatic MCP-1 concentration and gene expres-
sion showed significant increases that were accompanied
by moderate increases in plasma MCP-1 concentrations.

When we evaluated the recovery of liver histology and
function following the cessation of CCl4 administration,
we found that the hepatic and serum PON1 concentra-
tions proceeded towards normal levels, and PON1 gene
expression remained relatively unmodified (Fig. 2B). The
recovery period was associated with a significant decrease
in hepatic MCP-1 protein, MCP-1 gene expression, and
plasma MCP-1 concentration.

Taking all the experimental data together (treatment +
recovery), we observed significant direct relationships
between hepatic PON1 concentrations, MCP-1 (r = 0.47;
P = 0.005) and α-SMA staining (r = 0.55; P = 0.001).

Changes in hepatic PON1 expression are associated with 
nuclear transcription factors and decreased proteolysis
To assess the molecular mechanisms of the apparently
contradictory changes in the hepatic PON1 gene and its
protein product expressions, we sought associations
between nuclear transcription factors and the changes in
PON1 gene expression. Hence, we analysed the levels of
activated Sp-1 and those of several members of the AP-1
family, as well as the gene expressions of PPARα, PPARδ
and PPARγ . We observed a strong decrease of PPARδ gene
expression during the CCl4 exposure (Fig. 3A and 3B). Fra-
2 changes followed a similar trend, albeit not so pro-
nounced. We did not observe any significant change in
Sp-1 or any of the other AP-1 proteins studied, nor in
PPARα and PPARγ gene expressions (data not shown).

Taking all the experimental data together (treatment +
recovery), we observed a significant direct relationship
between PPARδ and PON1 (Fig. 3C) gene expression (r =

0.55; P < 0.001) but not between activated Fra-2 levels
and PON1 (r = 0.27; P = 0.121) or between Fra-2 and
PPARδ (r = 0.26; P = 0.127). PPARδ immunohistochemis-
try confirmed gene expression analysis, since it was clearly
positive in control rats and faint in animals treated with
CCl4for 12 weeks (Fig. 3D). These results suggest that
PPARδ reduction may be involved in the molecular alter-
ations underlying the inhibition of PON1 gene expres-
sion.

We then investigated the possibility that a decrease in
PON1 protein degradation explains the increase in the
intra-hepatic levels of this protein, despite the decreased
gene expression. We estimated the liver proteolytic activ-
ity by measuring the protease cathepsin B, a reliable
marker of hepatic cell proteolysis [26]. The hepatic cathe-
psin B activity was significantly increased after 6 weeks of
CCl4 administration, followed by a decrease at weeks 8
and 12. This change was accompanied by the appearance,
on Western Blot analysis, of bands corresponding to inac-
tive procathepsin B (Fig. 4). We confirmed these results by
performing Western Blot analyses of liver homogenates by
using a specific anti-PON1 antibody. We observed that
the presence of small immunoreactive fragments (MW
lower than 35 kDa) was decreased after 12 weeks of CCl4
administration (Fig. 5).

Changes in PON1 lactonase and esterase activities
Serum and liver PON1 lactonase activities were consist-
ently decreased throughout the exposure to CCl4, relative
to control animals. We did not observe any significant
change in PON1 esterase activity. The recovery of liver
function was associated with a significant increase in
serum PON1 lactonase activity, but PON1 esterase activity
did not show any major alteration (Fig. 6). Hepatic PON1
lactonase activity was inversely related to hepatic MCP-1
concentration (r = -0.55; P = 0.001), and to the percentage
of collagen in the liver biopsies (r = -0.37; P = 0.028), and
to α-SMA staining (r = -0.61; P < 0.001). Serum PON1 lac-
tonase activity was directly related to hepatic lactonase
activity (r = 0.40; P = 0.017), and inversely to AST (r = -
0.53; P = 0.001), to the percentage of collagen (r = -0.46;
P = 0.005), and to α-SMA staining (r = -0.69; P < 0.001).
We did not find any significant relationship between
PON1 esterase activity and any of these parameters.

Discussion
The molecular mechanisms underlying the effects of CCl4
involve the production of the highly pro-oxidant trichlo-
romethyl free radical (CCl3 *) and trichloromethylperoxy
radical (CCl3OO*) which play key roles in the develop-
ment of hepatic damage [27]. Reactive oxygen intermedi-
ates and aldehyde end-products of lipid peroxidation
(such as 4-hydroxy-2-nonenal) act as mediators affecting
signal transduction pathways as well as proliferation and
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Changes in MCP-1 and PON1 protein and gene expression with CCl4 administration (A) and with CCl4 withdrawal/recovery of liver function (B)Figure 2
Changes in MCP-1 and PON1 protein and gene expression with CCl4 administration (A) and with CCl4 with-
drawal/recovery of liver function (B).
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Changes in PPARδ gene expression and Fra-2 activation over the period of CCl4 administration (A) and CCl4 withdrawal/recov-ery (B). Panel (C) shows the relationship between PPARδ and PON1 gene expressions in all the animals studied (treatment and recovery). Panels (D) shows representative micrographs of PPARδ protein expression in liver tissue of control rats (left) or animals treated with CCl4 for 12 weeks (right)Figure 3
Changes in PPARδ gene expression and Fra-2 activation over the period of CCl4 administration (A) and CCl4 
withdrawal/recovery (B). Panel (C) shows the relationship between PPARδ and PON1 gene expressions in all the animals 
studied (treatment and recovery). Panels (D) shows representative micrographs of PPARδ protein expression in liver tissue of 
control rats (left) or animals treated with CCl4 for 12 weeks (right). Original magnification: ×100.
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functional responses of hepatic cells [28,29]. MCP-1
expression by the liver is up-regulated by 4-hydroxy-2-
nonenal [30]. Our results show a significant increase in
MCP-1 gene and protein expression in our experimental
model, and which support previous studies in patients
with chronic hepatitis or liver cirrhosis [31,32] in which
MCP-1 expression correlated with monocyte infiltration
in the liver. In these previous studies, the infiltration was
observed in the portal tracts, the regenerating bile ducts,
and in the septa surrounding the regenerating nodules,
and was similar to the distribution of MCP-1 immunos-
taining observed in the present investigation. We also
found that the histological and functional recovery fol-
lowing the CCl4 withdrawal was associated with a signifi-
cant decrease in MCP-1 protein and gene expression.

MCP-1 is synthesised by a variety of hepatic cells includ-
ing macrophages, endothelial cells, smooth muscle cells
and hepatocytes [31]. The influence of MCP-1 on the his-
tological alterations leading to liver impairment would
appear to be crucial. This protein enhances hepatic stellate
cell chemotaxis and contributes to the increase in collagen

synthesis [33]. Further, MCP-1 knockout mice develop a
lower degree of oxidative stress and accumulation of
inflammatory cell infiltrate than their corresponding
wild-type animals when receiving a single CCl4 dose [34].
Aldehyde products of lipid peroxidation and MCP-1
would appear to induce a synergistic effect on the fibroge-
netic process leading from acute to chronic liver damage.

Several studies have investigated the role played by intra-
cellular antioxidant defences in the protection against
hepatic oxidative stress [35]. However, there is a paucity of
information on the contribution of PON1 in this process.
Recently, transgenic mice over-expressing human PON1
were shown to be partially protected against CCl4-induced
liver injury [8]. PON1 attenuates MCP-1 production in
cultured endothelial cells incubated with oxidised low-
density lipoproteins [36]. This enzyme catalyses the
hydrolysis of oxidised phospholipids and at least two of
these phospholipids [1-palmytoyl-2-(5-oxovaleroyl)-sn-
glycero-3-phosphorylcholine and 1-palmytoyl-2-glutar-
oyl-sn-glycero-3-phosphorylcholine] stimulate the pro-
duction of MCP-1 [37]. In the present study, we observed

Changes in (A) cathepsin B activity; (B) cathepsin B protein expression analysed by Western Blot over the period of CCl4 administration, and the subsequent withdrawal/recovery periodFigure 4
Changes in (A) cathepsin B activity; (B) cathepsin B protein expression analysed by Western Blot over the 
period of CCl4 administration, and the subsequent withdrawal/recovery period.
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a significant increase in the hepatic PON1 concentration
following 6 and 8 weeks of CCl4 administration. During
this period, MCP-1 hepatic concentration and gene
expression were low. MCP-1 only increased around the
12th week when PON1 concentration showed a trend
towards a decrease. These data suggest that PON1 acts as
a barrier against hepatic oxidative stress and, only when
this barrier is overcome by protracted exposure to CCl4,
does MCP-1 increase together with a concomitant devel-
opment of a severe pro-inflammatory reaction. The histo-
logical examination of the liver biopsies in our present
study suggests, as well, that the enhanced PON1 protein
expression is related to the protection of hepatocytes from
increased oxidative stress; PON1 staining being stronger
in those cells surrounding the areas of 4-hydroxy-2-none-
nal deposition and of macrophage infiltration. The recov-
ery of liver function was associated with a significant
decrease in hepatic PON1 protein expression.

The mechanisms underlying the regulation of PON1 and
MCP-1 in this experimental model are complex. Of note
was that despite observing an increased PON1 protein
expression, PON1 gene expression was not enhanced but,
rather, was decreased following CCl4 administration.
These results may seem paradoxical, but we need to bear
in mind that the intracellular accumulation of any protein
is a result of a balance between synthesis, degradation,
and secretion into the medium. Our results suggest that
changes in PPARδ may be, at least in part, responsible for
this alteration. PPARδ is the lesser known of the PPAR
group of nuclear transcription factors. PPARδ increases

apolipoprotein A-I and HDL synthesis by mechanisms
that probably involve activation of the ATP-binding cas-
sette transporter (ABCA1) gene [38]. We hypothesise that
the decrease in PPARδ gene expression observed in the
present study would be associated with a decreased HDL
synthesis, which accords with the decreased serum choles-
terol concentrations. This decrease would have, as a con-
sequence, a decreased PON1 secretion to the extracellular
medium. This would explain the decreased serum PON1
concentrations at weeks 6 and 8 of CCl4 administration
(paralleling those of cholesterol) and the increased
hepatic PON1 concentration. Moreover, PPARδ has been
shown to up-regulate the expression of several antioxidant
genes including superoxide dismutase, catalase and
thioredoxin [39]. As such, a direct effect of PPARδ on the
regulation of PON1 gene expression is a likely possibility.

A precise explanation for PPARδ gene expression decrease
in experimental liver disease is difficult. This transcription
factor inhibits apoptosis in cultured cardiomyoblasts [40]
and we have previously described hepatocyte apoptosis as
being stimulated in experimental liver disease [41]. Prob-
ably, PPARδ levels decrease as a part of a pro-apoptotic
mechanism tending to eliminate damaged hepatocytes
during the process of liver damage. Within this context,
hepatic PON1 levels continue to be elevated as a conse-
quence of the combination of a decreased PON1 secretion
into the HDL particles, essentially very early in the study,
and to an inhibition of lysosomal protein degradation by
the last weeks of the study. This enables the enzyme to
continue playing its antioxidant and hepato-protective

Hepatic PON1 protein expression over the period of CCl4 administrationFigure 5
Hepatic PON1 protein expression over the period of CCl4 administration. Mature PON1 appears as a double band 
at ~40 kDa. Low-molecular weight immunoreactive fragments are clearly observed in control rats and in animals receiving 
CCl4 for 6 and 8 weeks, but their expression is decreased at week 12. In addition, the expression of a high-molecular weight 
(~55 kDa) unknown immunoreactive protein is enhanced in CCl4-administered animals at 6 and 8 weeks.
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Changes in the PON1 serum and liver lactonase and esterase activities during CCl4 administration (A) and recovery (B)Figure 6
Changes in the PON1 serum and liver lactonase and esterase activities during CCl4 administration (A) and 
recovery (B).
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A hypothetical biochemical pathway that could explain the PON1 alterations observed in the CCl4-administered ratsFigure 7
A hypothetical biochemical pathway that could explain the PON1 alterations observed in the CCl4-adminis-
tered rats. Free radical-induced liver impairment would result in a decrease in PPARδ gene expression and, as a consequence, 
in PON1 gene expression. It would also induce an inhibition of ABCA1, a decrease in HDL synthesis and, therefore, a decrease 
in serum PON1 concentration. Serum lactonase activity would be decreased secondarily to these changes and, as well, due to 
a direct inhibition by free radicals. Intrahepatic PON1 levels would be increased as a consequence of a decreased protein deg-
radation.
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role. A scheme of the proposed mechanisms underlying
the alterations in PON1expression in experimental liver
disease is shown in Fig. 7.

A similar rationale to that of PPARδ may apply to Fra-2.
This protein also stimulates ABCA1 gene expression [42],
decreases cell apoptosis and stimulates proliferation [43].
However, our results show that Fra-2 decrease is lower
than that of PPARδ, and does not correlate with PON1
gene expression. Probably, the contribution of this tran-
scription factor to hepatic PON1 levels is, if any, modest
or even indirect.

Hepatic and serum lactonase activity decreased during
CCl4 administration and increased during the recovery
period (CCl4 withdrawal). The finding of a reduced lacto-
nase activity together with an enhanced hepatic PON1
protein expression is consistent with our previous studies
in which we observed similar results in patients with
chronic liver diseases [6]. The decreased lactonase activity
is perhaps secondary to enzyme depletion following its
reaction with products of lipid peroxidation. For example,
there is evidence that PON1 is inactivated following the
hydrolysis of lipid peroxides [44,45]. The changes in
serum PON1 lactonase activity observed in our study
were, in general, inversely correlated with the alterations
in the concentrations of serum PON1 and MCP-1, and the
degree of liver impairment. Conversely, the esterase activ-
ity, with paraoxon as the substrate, did not show any sig-
nificant relationships with these parameters. Serum
esterase activity is much lower in rats than in humans [5]
and, in the light of the present results, we propose that it
does not represent functional PON1 activity, but rather a
more non-specific activity due, at least in part, to the
action of other serum esterases, or to the esterase capabil-
ity of serum albumin [46]. These results suggest that inter-
preting serum PON1 esterase activity would need to be
conducted with caution in experimental studies in
rodents.

Conclusion
We suggest a hepato-protective role for PON1 against
inflammation, fibrosis and liver disease mediated by
MCP-1, and propose a hypothetical model to explain the
hepatic PON1 alterations observed. Further studies with
animals treated with artificial PON1-containing lipid con-
structs or with PPARδ agonists would be valuable in inves-
tigating measures to counteract the inflammatory and
fibrogenetic processes in chronic liver impairment and,
possibly, to provide new effective tools to treat this dis-
ease.
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