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Abstract
Background: The objective of most biomedical research is to determine an unbiased estimate of
effect for an exposure on an outcome, i.e. to make causal inferences about the exposure. Recent
developments in epidemiology have shown that traditional methods of identifying confounding and
adjusting for confounding may be inadequate.

Discussion: The traditional methods of adjusting for "potential confounders" may introduce
conditional associations and bias rather than minimize it. Although previous published articles have
discussed the role of the causal directed acyclic graph approach (DAGs) with respect to
confounding, many clinical problems require complicated DAGs and therefore investigators may
continue to use traditional practices because they do not have the tools necessary to properly use
the DAG approach. The purpose of this manuscript is to demonstrate a simple 6-step approach to
the use of DAGs, and also to explain why the method works from a conceptual point of view.

Summary: Using the simple 6-step DAG approach to confounding and selection bias discussed is
likely to reduce the degree of bias for the effect estimate in the chosen statistical model.

Background
The objective of most biomedical research, whether exper-
imental or observational, is to predict what will happen to
an outcome if the treatment is applied to a group of indi-
viduals or if a harmful exposure is removed. In other
words, the clinician/policy maker is interested in making
causal inferences from the results of a study. The purpose
of this manuscript is to demonstrate a simple 6-step algo-
rithm for determining whether a proposed set of covari-
ates would reduce possible sources of bias when assessing
the total causal effect of a treatment on an outcome.

There are many nuances to the definition of cause. For the
purposes of this manuscript, we define it in counterfactual
terms: "Had the exposure differed, the outcome would

have differed", where exposure or outcome may be
dichotomous (e.g. presence/absence of exposure; occur-
rence/disappearance of disease) or continuous (e.g. a dif-
ferent value of blood pressure whether blood pressure is
exposure or outcome). Further refinements into sufficient,
complementary and necessary causes [1] are important
but do not alter the essence of the definition. Although
the above causal definition is deterministic at the individ-
ual level, in almost all practical settings the outcome
under the counterfactual condition is unknown. There-
fore, researchers are limited to causal inference at the pop-
ulation level (e.g. comparing average risks) [2]. A
straightforward explanation of the use of counterfactuals
to define cause can be found in [2].
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There are many features of a study that can lead to inap-
propriate causal inference. For the purposes of this discus-
sion, we assume "ideal" processes for the study (i.e. large
studies that minimize the risk of a chance unequal distri-
bution of subjects with different prognoses, no informa-
tion or selection or detection bias, complete follow-up
and adherence, no measurement bias, etc). Under "ideal"
conditions, inappropriate causal inferences (i.e. biases)
are more likely to occur in observational studies com-
pared to randomized trials because some subjects may be
exposed to a treatment for a condition specifically because
of personal factors that are related to prognosis (figure
1a). Under the conditions described above, most epide-
miologists would consider this confounding bias. We rec-
ognize that there are several definitions of confounding
bias and Greenland and Morgenstern provide an excellent
overview of the nuances among the different definitions
[3].

The traditional approach to confounding is to 'adjust for
it' by including certain covariates in a multiple regression

model (or by stratification). One common practice is to
consider a covariate to be a confounder (and "adjust" for
it) if it is associated with the exposure, associated with
outcome, and changes the effect estimate when included
in the model. According to standard textbooks, additional
criteria also need to be applied and the covariate should
not be affected by exposure and needs to be an independ-
ent cause of the outcome [4]. However, recent advances in
epidemiology have proven that even these additional cri-
teria are insufficient. In fact, the methods described above
may introduce conditional associations (sometimes
called selection bias [5,6], collider bias [6] and confound-
ing bias [6,7]; this terminology may be confusing and we
prefer the terminology suggested by the structural
approach to bias as described later) and create bias where
none existed, which is in direct contrast to the objective of
eliminating an existing bias [2,8,9]. Some published
examples include the effectiveness of HIV treatment [10],
and why birth weight should not be included as a covari-
ate when examining the causal effects of exposure during
pregnancy on perinatal outcomes [11].

One method to help understand whether bias is poten-
tially reduced or increased when conditioning on covari-
ates is the graphical representation of causal effects
between variables. In the causal directed acyclic graph
(DAG) approach, an arrow connecting two variables indi-
cates causation; variables with no direct causal association
are left unconnected. Therefore the bi-directional arrows
in figure 1a are replaced with unidirectional arrows (figure
1b). There are of course situations where each variable
may cause the other – the functional disability created by
chronic pain may cause depression, and depression may
cause chronic pain through diminished pain thresholds.
These more complex situations are simplified by under-
standing that time is a component in the above relation-
ship. Therefore, there is a variable for depression at time
1, chronic pain at time 1, depression at time 2, and
chronic pain at time 2; the same construct measured at
different times represents distinct variables and must be
treated as such.

Although other articles have previously described the
DAG approach to confounding [9,12,13], the articles
demonstrate relatively simple DAGs. However, many clin-
ical problems require complicated DAGs and little has
been published on how to assess whether a particular sub-
set of covariates potentially reduces or increases bias in
this context [6,9]. Therefore, although many investigators
now understand the problem, they continue to use tradi-
tional practices because they do not have the tools neces-
sary to choose the statistical model that is most likely to
yield an unbiased effect estimate. The objective of this
manuscript is to demonstrate a simple 6-step approach
developed by Pearl [14] that helps determine when the

The bi-directional arrows in A show the traditional represen-tation of a confounder as being associated with the exposure (X) and outcomeFigure 1
The bi-directional arrows in A show the traditional 
representation of a confounder as being associated 
with the exposure (X) and outcome. Because con-
founders must cause (or be a marker for a cause) of both 
exposure and outcome (see text for rationale based on basic 
principles), directed acyclic graphs use only unidirectional 
arrows to show the direction of causation (B).
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traditional statistical approaches of regression/stratifica-
tion on specific covariates is likely to reduce or increase
bias, and to provide our explanation as to why the
method works from a conceptual point of view. Although
this manuscript is limited to the conceptual discussion
necessary for clinical researchers to use DAGs, there are
many different facets and a complete theoretical develop-
ment of these materials has been published elsewhere and
has been summarised in one source [15]. Readers are also
encouraged to learn more about counterfactual random
variables, an important complement to the theory of
DAGs [3,16].

The Pragmatic Solution: a Six-Step Process Towards 
Unbiased Estimates [14]
By applying the following simple 6-step process correctly,
we will show how including only 2 covariates in a compli-
cated causal diagram (figure 2a) is likely to reduce bias. As
each step is described, we also explain its conceptual role
in the process. Formal proofs of the underlying theorems
have been summarised in one source [15]. In the subse-
quent section of the manuscript, we will add an additional
covariate from the diagram into the model and show how
including this additional variable is likely to increase bias
rather than reduce it. It is important to note that this algo-
rithm demonstrates whether bias would be minimized in
a specific situation, but does not indicate all the situations
in which bias is minimized. For example, if a confounder
causes a second variable with a high probability (i.e. the
second variable is a strong marker for the confounder),
including the marker for the confounder should reduce
bias [6]. However, in this situation, the algorithm we
describe would still suggest that there is bias in the effect
estimate. Therefore, the algorithm is used to "rule-in"
appropriate sets of covariates and it is beyond the scope of
this article to discuss the special cases where bias might be
reduced even when the algorithm fails. Therefore, if the
algorithmic conditions are not met, readers are encour-
aged to either choose another set of covariates, or seek fur-
ther help in order to determine if their particular model is
one of the cases where bias might still be reduced.

Figure 2a is one possible causal diagram for the relation-
ship between warming up prior to exercise and the out-
come injury (we will show another possible causal
diagram later in the manuscript). The question we want to
answer is whether including a measure of neuromuscular
fatigue (Z1) and tissue weakness (Z2) (in the design or
analysis stage) would minimize bias in the estimate of the
effect of warming up on injury if this is the true causal dia-
gram. We will later discuss how to approach the more gen-
eral problem when multiple causal diagrams are possible.
As with any analytic approach to bias in an observational
study (including the one below), we must make some
assumptions regarding how variables are causally related

to each other; we seek to determine whether our analytic
approach would succeed under these assumptions. The
algorithm we describe below only works if the DAGs are
drawn so that they include all variables that cause two or
more other variables shown in the DAG [17]. In other
words, no common causes can be omitted from the DAG.
Finally, the DAG approach does not reduce or eliminate
other sources of bias (e.g. measurement bias). Finally, at
the end of the manuscript, we have provided a glossary of
terms used so that readers unfamiliar with DAG terminol-
ogy have an easy reference immediately available (genea-
logical terms are often used to describe relationships
between variables).

Step 1 (figure 2a): The covariates chosen to reduce bias 
[fatigue (Z1) and tissue weakness (Z2) in this case] should 
not be descendants of X (i.e. they should not be caused by 
warming up)
This does not occur in this situation and one can proceed to Step 2
Step 1 ensures that the covariates chosen are possible con-
founders in the traditional sense of the word; if the covari-
ates are descendants of X, then the statistical model
adjusting for these variables may yield a biased estimate
for the total causal effect of X on the outcome and a differ-
ent set of covariates needs to be chosen. The step is
required because confounding bias (as defined by the
structural approach) can only occur if a covariate causes
the exposure or is a marker for a cause of exposure (note
that other biases are still possible and discussed in Step 4).
Although more formal proofs exist [12], this can be
deduced from the following standard criteria for a poten-
tial confounder: the covariate must be associated with the
exposure and with the outcome, but cannot be affected
(i.e. caused) by exposure [4,18] (for completeness, these
standard criteria are in fact insufficient to define con-
founding [9], and more complicated scenarios such as
time-dependent confounding [19] are not covered by the
standard definitions). Because it is inappropriate to
include a variable that lies along a causal pathway
between the exposure of interest and the outcome, it is
also inappropriate to include a marker for a variable that
lies along a causal pathway. For example, if the marker is
100% correlated with the causal pathway variable, there is
no mathematical difference in a statistical model between
the marker and the causal pathway variable. Thus, if a cov-
ariate is associated with an exposure, and the exposure
cannot cause or be a marker for a cause of the covariate,
then the covariate must cause (or be a marker for a cause
of) the exposure. By similar reasoning, one can deduce
that confounding only occurs if the covariate also causes,
or is a marker for a cause of the outcome. Returning to the
DAG, if the covariate is a descendant of X, it means the
exposure is a cause of the covariate.
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Figure 2 (see legend on next page)
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Step 2 (figure 2b): Delete all variables that satisfy all of the 
following: 1) non-ancestors (an ancestor is a variable that 
causes another variable either directly or indirectly) of X, 
2) non-ancestors of the Outcome and 3) non-ancestors of 
the covariates that one is including to reduce bias (Z1 and 
Z2 in this example)
In figure 2a, the only covariate that fulfills this criterion is previous 
injury (Z3) and this is deleted in figure 2b. Note that the exposure, 
outcome and covariates should not be deleted
Step 2 is essential because after completing the step, all
variables left are either conditioned on, or have one of
their descendants conditioned on. The importance of this
result will become clear in Step 4.

Step 3 (figure 3a): Delete all lines emanating from X
In this setting, warming-up causes a change in proprioception, and 
therefore we delete this arrow
In Step 3, deleting all lines emanating from X effectively
simplifies the DAG because we have already said that X
should not be a cause of the covariates in the model. We
leave the variables in and eliminate the line because these
variables may be responsible for bias through an indirect
pathway. This will become clearer in Step 4, and the exam-
ple where we include a third covariate, which results in the
introduction of bias.

Step 4 (figure 3b): Connect any two parents (direct causes 
of a variable) sharing a common child (this step appears 
simple but it requires practice not to miss any)
For example, team motivation and poor proprioception can both 
cause an individual to warm-up more than someone without these 
factors – these two variables are joined because they share a 
common effect
Step 4 is essential for the following reason. If two covari-
ates both cause a third covariate, then adjustment for the

third covariate (or an effect of the third covariate) creates
a conditional association between the first two covariates
(i.e. if one conditions on the child or descendant of the
child, there is a conditional association between the par-
ents), and could introduce bias [20]. For example, both
rain and sprinklers can cause a football field to be wet. If
one knows the grass is wet, then knowing the sprinklers
were off improves your assessment of the probability that
it rained; rain and sprinklers become associated when the
common effect of "field wetness" is known. Consider a
second example from the health sciences: both a throm-
bus and a haemorrhage can cause a stroke. If we condition
on the patient having symptoms of a stroke and learn that
there was no haemorrhage, the probability that a throm-
botic event occurred is increased. By connecting the two
parents of a common child in the figure after Steps 1–3 are
completed, we are explicitly stating that we understand
that these variables are associated because we have either
conditioned on the value of the child or one of the child's
descendants (otherwise the variable would have been
removed in Step 2). As we shall later see, it is this condi-
tional association that can cause the introduction of bias
when traditional rules of confounding adjustment are
applied without reference to a DAG. In DAG terminology,
the child is called a "collider" because two directed arrows
collide at the covariate (node).

Step 5 (figure 4a): Strip all arrowheads from lines
In Step 5, we strip all the arrowheads from the lines. This
is because the arrowheads (causal direction) were only
necessary to note the conditional associations created
between two parents of a collider. Once this is done, we
can simplify the diagram as we have now completed all
the steps related to causation.

a-b. Diagrammatic equivalent of the 6-step process to determine if one obtains an unbiased estimate of the exposure of inter-est (X) on the Outcome by including a particular subset of covariates (see text for details of the specific steps)Figure 2 (see previous page)
a-b. Diagrammatic equivalent of the 6-step process to determine if one obtains an unbiased estimate of the 
exposure of interest (X) on the Outcome by including a particular subset of covariates (see text for details of 
the specific steps). In this example, we are interested in minimizing the bias when estimating the causal effect of warming up 
on the risk of injury. In figure 2a, a possible causal diagram of variables that are associated with warming up (X) and injury (out-
come) are shown. The main mediating variable is believed to be proprioception (balance and muscle-contraction coordination) 
during the game. Starting at the top of the figure, the coach affects the team motivation (including aggressiveness), which affects 
both the probability of previous injury and the player's compliance with warm-up exercises. A player's genetics affects their fit-
ness level (along with the coach's fitness program) and whether there are any inherent connective tissue disorders (which leads 
to tissue weakness and injury). Both connective tissue disorders and fitness level affect neuromuscular fatigue, which independ-
ently affects proprioception during the game and the probability of injury. Finally, if the sport is a contact sport, the probability 
of previous injury is greater, as is the probability of minor bruises during the game that would affect proprioception. Although 
other causal models are also possible, we will use this one for illustrative purposes at this time. For this example, we have 
decided to include neuromuscular fatigue (Z1) and tissue weakness (Z2) in the statistical model. Step #1 is to ensure that these 
covariates are not descendants of (i.e. directly or indirectly caused by) warm-up exercises. Step 2 is illustrated in 2b. The open 
circle (previous injury, Z3) represents the only non-ancestor (an ancestor is direct or indirect cause of another variable) of 
warm up exercises (X), neuromuscular fatigue (Z1), tissue weakness (Z2) and injury (Outcome). It is therefore deleted from 
the causal diagram in figure 2b.
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a-b. In Step 3 (3a), all arrows emanating from X are deletedFigure 3
a-b. In Step 3 (3a), all arrows emanating from X are deleted. In Step 4 (3b), one joins all parents of a common child. 
We have used dashed lines here for clarity.
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a-b. In Step 5 (4a), we strip all the arrowheads off all the linesFigure 4
a-b. In Step 5 (4a), we strip all the arrowheads off all the lines. In Step 6 (4b), all lines touching the covariates neu-
romuscular fatigue (Z1) and tissue weakness (Z2) are deleted. Because the exposure of interest (warm up exercises) is dissoci-
ated from the Outcome (injury) after Step 6, the statistical model that includes the covariates neuromuscular fatigue and tissue 
weakness minimizes the potential bias for the estimate of effect of warm up exercises on the risk of injury.
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Step 6 (figure 4b): Delete all lines between the covariates 
in the model and any other variables
All lines into and out of Neuromuscular fatigue (Z1) and tissue 
weakness (Z2) are deleted
Step 6 is simply the graphical equivalent of standard
regression techniques. When a covariate is included, the
estimate of the effect represents the relationship between
the exposure and the outcome independent of any causal
pathway going through that covariate; including the cov-
ariate "blocks" all associations occurring through this
pathway. Therefore, we can delete all lines between the
covariates included in the model and any other covariates.

Interpretation: If X is dissociated from the outcome after 
Step 6, then the statistical model chosen (i.e. one that 
includes only the chosen covariates) will minimize the bias 
of the estimate of X on the chosen outcome
If this causal model is correct, then a statistical model that includes 
a measure of tissue weakness and neuromuscular fatigue minimizes 
the bias in the estimate of the effect of warming up on the risk of 
injury
We have now deleted all the direct causal pathways
between the exposure of interest and the outcome, and
between the covariates and the outcome, and explicitly
noted the conditional associations created by including
specific covariates with two different causes as explained
in step 4. If there is no uninterrupted series of lines
through nodes from X to the outcome after completing
the six steps (figure 4b), then within this specific causal
DAG, there is no non-causal structural association
between X and the outcome. In other words, any meas-
ured association between the exposure and outcome that
exists conditional on the covariates in the model mini-
mizes the bias in the estimate of the causal relationship.

Discussion
When including covariates creates a conditional 
association and introduces bias
In the last step of this process, we show that including a
different subset of covariates in the statistical model can
introduce a conditional association or bias (called "col-
lider-stratification bias" or "selection bias" by different
authors) (figure 5). In this example, we again include neu-
romuscular fatigue (Z1) and tissue weakness (Z2), and add
the covariate previous injury (Z3) to our statistical model.
Note that previous injury is a marker for a direct cause of
warming up (X) (team motivation/aggression). It is also a
marker for contact sport (an indirect cause of the out-
come). Therefore previous injury is associated with both
the exposure and the outcome and many researchers
would include it in the statistical model. Figure 5a–c show
the result of including previous injury in the model graph-
ically. The key to the process in this case lies in step 4.
Because previous injury is now present in the model, its
two parents are conditionally associated (because includ-

ing Z3 means the value of Z3 is known) where they were
not associated in the previous example. After step 6,
warming up remains connected to the outcome and there-
fore the estimate of the effect of warming up on the injury
would be biased. It is essential to understand that previ-
ous injury (Z3) may be a very important predictor of the
outcome, and techniques such as stepwise regression
might strongly suggest that it be included in the model.
Further, simply measuring univariate relationships and
finding that Z3 is related to both the exposure and the out-
come would also suggest that it be included in the model.
Finally, adding Z3 to a model that included Z1 and Z2
would indeed change the effect estimate, and this is often
used as a criterion to suggest that a specific covariate
causes confounding bias. It is only through an under-
standing of the theoretical framework that one realises
that including Z3 in the model along with Z1 and Z2 will
lead to a conditional association and a biased estimate of
effect.

Understanding the conditional associations naturally
leads to what is sometimes known as the structural
approach to bias [5,15]. Using this approach, epidemio-
logic biases can be categorized as either lack of condition-
ing on a common cause (known as confounding bias), or
conditioning on a common effect of two parents (or a
descendant of the common effect; known as selection
bias). The typical selection bias described in observational
studies is due to conditioning on a common effect (one
conditions on willingness to participate), as are Berkson's
bias (conditioning on admission to hospital), loss to fol-
low-up or missing data (conditioning on presence of data;
occurs in both observational or randomized trials), some
forms of Simpson's Paradox, etc [5,12]. Indeed, we believe
it is possible to represent all epidemiologic biases in
DAGs; therefore, the restrictions we set out at the begin-
ning of this article concerning an ideal study were used
only as a pedagogical tool and are not necessary for this
approach.

Selecting a subset of covariates that minimizes the bias in
the estimate of the effect requires trial and error and a
sound foundation of the theoretical model. At the present
time, there is no algorithm and the six-step process should
be repeated until a subset of covariates is found such that
X is dissociated from the outcome after the 6-step process
is completed.

Additional Advantages
There are two other potential advantages to the DAG
approach. First, only a subset of covariates that are associ-
ated with both exposure and outcome are necessary to
yield an unbiased estimate of effect. Second, because one
may require fewer covariates in the model, the statistical
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a-c. This example illustrates the effect of adding the covariate "previous injury" (Z3) to the statistical model used for the causal diagram in Figure 2aFigure 5
a-c. This example illustrates the effect of adding the covariate "previous injury" (Z3) to the statistical model 
used for the causal diagram in Figure 2a. Note that previous injury is associated with both warming up (through team 
motivation/aggression) and the outcome injury (through Contact Sport). After completing steps 1–4, one is left with figure 5b. 
Because previous injury (Z3) is included in the model, it has not been deleted from the causal diagram in Step 2, and one must 
join its ancestors (dotted line). Figure 5c represents the causal diagram after completing Steps 5–6. Because warm up is not dis-
sociated from the outcome risk of injury in figure 5c, the statistical model that includes the covariates Z1, Z2, and Z3 will yield 
a biased estimate of warm up on the risk of injury.
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efficiency of the analysis is increased (i.e. there are more
degrees of freedom if one uses fewer covariates).

Limitations to the 6-Step approach
The immediate question that always arises is how can one
know the true underlying causal structure in order to draw
the DAG (i.e. Step 0) – if we knew it, we wouldn't have to
study the disease. Although it can be a challenging exer-
cise, the fact remains that understanding the causal struc-
ture is an essential step when one wants to know if
including a covariate is likely to reduce or increase bias in
the effect estimate. In other words, the DAG representing
the true causal structure exists even if we do not know
what it is, and all causal inferences based on statistical
models are implicitly based on a causal structure – the
DAG approach simply makes the assumptions explicit.

As an example, the causal DAG in Figure 2a may be incor-
rect and one alternative is illustrated in Figure 6a. In this
causal diagram, we have added a causal link from previ-
ous injury to pre-game proprioception, and indicated the
additional conditional associations that occur due to this
change using dotted lines. If Figure 6a represents the true
causal diagram, traditional regression/stratification using
only neuromuscular fatigue and tissue weakness with or
without previous injury will introduce bias for the follow-
ing reason. Previous injury is now an ancestor of warm-up
exercises (previous injury causes pre-game proprioception
which causes warm-up) and is therefore not deleted in
Step 2 and this leads to two important features. First, con-
tact sport is now a common cause of warm-up (contact
sport – previous injury – pre-game proprioception –
warm-up) and of injury (contact sport – intra-game prop-
rioception – injury) and therefore including only neu-
romuscular fatigue and tissue weakness will still provide a
biased estimate. Second, the conditional association
between Team Motivation/Aggression and Contact Sport
exists whether or not we condition on previous injury
because we have already conditioned on a descendant of
previous injury in this DAG (i.e. warm-up). Therefore,
although adding previous injury or pre-game propriocep-
tion to the statistical model would block the bias due to
the common cause "contact sport", the inclusion of either
of these variables does not block the conditional associa-
tion that now exists between Team motivation/Aggression
and Contact Sport; using the six-step algorithm illustrates
this clearly for those not used to working with DAGs. In
Figure 6b, we present a different causal diagram where we
have added a causal link from pre-game proprioception to
intra-game proprioception. Figure 7a shows the diagram
after step 4 has been completed, and Figure 7b shows the
result after completing all the algorithmic steps once we
condition on Tissue Weakness, Neuromuscular Fatigue,
Previous Injury and Contact Sport. The presence of a path
through the variables Warm-up Exercise, Pre-game propri-

oception (directly or through Team Motivation/Aggres-
sion), and Intra-game proprioception to Injury means
that we still have a biased estimate. Authors who make
causal inferences without explicitly using the DAG
approach are assuming a specific DAG (i.e. causal struc-
ture) without consideration of other possibilities.

Drawing causal DAGs can be challenging. Causal DAGs
represent theory, and theory needs to be developed within
the context of all the evidence (basic science, observa-
tional and clinical trials) available. Because of this, gener-
ating a causal DAG necessarily requires the collaboration
of methodological experts, clinicians, physiologists, and
others (e.g. psychologists, sociologists) depending on the
particular question. The inclusion of latent (unmeasured)
variables poses additional problems [21,22]. For many
conditions, it is likely that even after reviewing all the evi-
dence, we still won't have enough information to deter-
mine if one particular DAG is more appropriate than
another DAG. Under these conditions, it is necessary to
draw each of the possible DAGs and determine if the same
choice of covariates yields an unbiased estimate for each.
If not, then one should present each of the interpretations
and future research will determine which causal diagram,
and which interpretation is correct. Not using the causal
approach because of uncertainty on which is the correct
DAG simply means that one is allowing chance rather
than rational deliberation to make the choice among the
different causal diagrams. A further corollary of the struc-
tural approach to bias is that an understanding of biolog-
ical mechanisms and basic science is necessary for
appropriate epidemiological studies, and that cross-disci-
pline collaborations should be encouraged.

The DAG approach requires a "node" for each of the cov-
ariates. Effect modifiers or covariates that interact with
other covariates in a synergistic or antagonistic manner
are not currently indicated as such in a DAG. Although
there is some theoretical work currently being done in this
area (e.g. [23,24]), one can conceptually think of two
binary variables that interact as a single variable with mul-
tiple levels, and include them as a single node in the DAG.
This is somewhat analogous to treating socio-economic
status as one variable in a model even though it represents
the two distinct constructs of sociological and economical
influences. As is known, when two variables both cause a
third variable, there is interaction on either the multipli-
cative scale, additive scale, or both. Therefore, if a DAG
were to model synergism or antagonism, one would need
different DAGs for different measures of effect (e.g. risk
ratio versus risk difference). Finally, issues related to suffi-
cient and component causes have also recently been
addressed elsewhere [25].
Page 10 of 15
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Figure 6 (see legend on next page)
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The DAG approach is not a statistical technique that yields
an estimate of effect. However, it will allow users of tradi-
tional stratification and regression techniques to reduce
the magnitude of the bias in the estimate. Although
researchers should generally not adjust for a covariate (or
a marker for a covariate) that lies along a causal pathway
when assessing the total causal effect, this may not be the
case for researchers interested in decomposing total causal
effects into direct and indirect effects. In these cases, one
may sometimes need to include covariates that lie along
the causal path, but this is a process that needs to be care-
fully thought out or incorrect inferences may occur
[26,27]. We also think it is important to highlight the
effect of newer statistical techniques to assess total causal
effect like marginal structural models [28] that are often
necessary in special situations, such as when the covariate
is affected by exposure or when a covariate is both a "col-
lider" and a "confounder" at the same time [29,30].

Conclusion
The traditional approach to confounding bias by deter-
mining only associations and avoiding discussions related
to causation is problematic and has led to inappropriate
data analysis and interpretation [10,13]. The DAG
approach can be used to help choose which covariates
should be included in traditional statistical approaches in
order to minimize the magnitude of the bias in the esti-
mate produced. Investigators should become aware of the
other statistical causal approaches available so that the
appropriate technique is used to answer the appropriate
question.
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Appendix
A short summary of the Six-Step Process Towards Unbi-
ased Estimates

Step 1. The covariates chosen to reduce bias should not be
descendants of X

Step 2. Delete all variables that satisfy all the following cri-
teria: 1) non-ancestors of X, 2) non-ancestors of the out-
come and 3) non-ancestors of the covariates that one is
including in the model to reduce bias.

Step 3. Delete all lines emanating from X.

Step 4. Connect any two parents sharing a common child.

Step 5. Strip all arrowheads from lines.

Step 6. Delete all lines between the covariates in the
model and any other covariates

Interpretation: If X is dissociated from the outcome after
Step 6, then the statistical model chosen (i.e. one that
includes only the chosen covariates) minimizes the bias
of the estimate of X on the chosen outcome.

Glossary of Terms
Genealogy: The DAG approach often uses terms familiar in 
genealogy
1. Parent: A parent is a direct cause of a particular variable.

2. Ancestor: An ancestor is a direct cause (i.e. parent) or
indirect cause (e.g. grandparent) of a particular variable.

3. Child: A child is the direct effect of a particular variable,
i.e. the child is a direct effect of the parent.

4. Descendant: A descendant is a direct effect (i.e. child) or
indirect effect (e.g. grandchild) of a particular variable.

Causes, Effects and Associations
1. Common Cause: A common cause is covariate that is an
ancestor of two other covariates.

2. Common Effect (also known as collider): A common
effect is a covariate that is a descendant of two other cov-
ariates. The term collider is used because the two arrows
from the parents "collide" at the node of the descendant.

a-b. Figure 6a is an example of an alternative causal diagram to figure 2aFigure 6 (see previous page)
a-b. Figure 6a is an example of an alternative causal diagram to figure 2a. The only difference between the two is an 
additional causal relationship where previous injury causes a decrease in pre-game proprioception (we have also included the 
additional conditional associations that occur as a result of this change with dotted lines). We are still interested in the causal 
effects of warm-up on injury risk. Because previous injury is an ancestor of warm up exercises (previous injury causes a 
decrease in pre-game proprioception which causes an increase in warm up exercises), it is not deleted in Step 2. This leads to 
two effects. First, contact sport is now a common cause of exposure and outcome. Second, there are additional conditional 
associations in Step 4 (dotted lines) even if "Previous Injury" is not conditioned on in the statistical model because one is 
already conditioning on a descendant of previous injury (i.e. the main exposure of interest, warm-up); the effect estimate of 
warm-up on injury is biased if the statistical model includes only warm-up, neuromuscular fatigue and tissue weakness. Figure 
6b shows the same causal diagram as 6a (without the conditional associations), but now a causal link is added from pre-game 
proprioception to intra-game proprioception.
Page 12 of 15
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a-b. Figure 7a represents the causal diagram in Figure 6b after step 5 (dark dotted line represents the additional conditional association due to the new causal link in figure 6b), and Figure 7b shows the result after step 6 if one conditions on Tissue Weakness, Neuromuscular Fatigue, Previous Injury and Contact SportFigure 7
a-b. Figure 7a represents the causal diagram in Figure 6b after step 5 (dark dotted line represents the addi-
tional conditional association due to the new causal link in figure 6b), and Figure 7b shows the result after step 
6 if one conditions on Tissue Weakness, Neuromuscular Fatigue, Previous Injury and Contact Sport. The pres-
ence of a path through the variables Warm-up Exercise, Pre-game proprioception (directly, or indirectly through Team Moti-
vation/Aggression) and Intra-game proprioception to Injury means that we would still obtain a biased estimate for the causal 
effect of warm-up on the risk of injury.
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3. Conditioning: Conditioning on a variable means that
one has used either sample restriction or stratification/
regression (stratification/regression being two forms of
the same mathematical approach) to examine the associ-
ation of exposure and outcome within levels of the condi-
tioned variable. Other terms often used such as "adjusting
for" or "controlling for" suggest an interpretation of the
statistical model that is sometimes misleading and there-
fore we prefer the word conditioning.

4. Unconditional Association: If knowing the value of one
covariate provides information on the value of the other
covariate without conditioning on any other variable, the
two variables are said to be unconditionally associated.
This is also known as marginal statistical dependence and
its absence as marginal statistical independence.

5. Conditional Association: If knowing the value of one
covariate provides information on the value of the other
covariate after conditioning on one or more covariates
(i.e. within any level of the conditioned covariate(s)), the
two variables are said to be conditionally associated. This
is also known as conditional statistical dependence and its
absence as conditional statistical independence.

Structural Approach to Bias: Structural sources of bias include [5,15]
1. Confounding bias: occurs when there is a common
cause of the exposure and outcome that is not "blocked"
by conditioning on other specific covariates.

2. Selection bias: occurs when one conditions on a com-
mon effect (e.g. Berkson's Bias, loss to follow-up, missing
data, healthy worker bias, etc) such that there is now a
conditional association between the exposure and the
outcome.
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