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Abstract

Background: The within-subject coefficient of variation and intra-class correlation coefficient are
commonly used to assess the reliability or reproducibility of interval-scale measurements.
Comeparison of reproducibility or reliability of measurement devices or methods on the same set
of subjects comes down to comparison of dependent reliability or reproducibility parameters.

Methods: In this paper, we develop several procedures for testing the equality of two dependent
within-subject coefficients of variation computed from the same sample of subjects, which is, to the
best of our knowledge, has not yet been dealt with in the statistical literature. The Wald test, the
likelihood ratio, and the score tests are developed. A simple regression procedure based on results
due to Pitman and Morgan is constructed. Furthermore we evaluate the statistical properties of
these methods via extensive Monte Carlo simulations. The methodologies are illustrated on two
data sets; the first are the microarray gene expressions measured by two plat- forms; the
Affymetrix and the Amersham. Because microarray experiments produce expressions for a large
number of genes, one would expect that the statistical tests to be asymptotically equivalent. To
explore the behaviour of the tests in small or moderate sample sizes, we illustrated the
methodologies on data from computer-aided tomographic scans of 50 patients.

Results: It is shown that the relatively simple Wald's test (WT) is as powerful as the likelihood
ratio test (LRT) and that both have consistently greater power than the score test. The regression
test holds its empirical levels, and in some occasions is as powerful as the WT and the LRT.

Conclusion: A comparison between the reproducibility of two measuring instruments using the
same set of subjects leads naturally to a comparison of two correlated indices. The presented
methodology overcomes the difficulty noted by data analysts that dependence between datasets
would confound any inferences one could make about the differences in measures of reliability and
reproducibility. The statistical tests presented in this paper have good properties in terms of
statistical power.
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Background

An extensive literature has been developed on procedures
for testing the equality of two or more independent coef-
ficients of variation as measures of reproducibility [3-5].
Their work shows that likelihood-based methods such as
the likelihood ratio (LR) test, score test, and tests based on
the method of generalized statistics developed by Weera-
handi [6], provide efficient procedures for comparing
coefficient of variations (CV) in univariate normal popu-
lations or from independent samples. However, there are
situations where comparing CVs from related samples
should be considered. Typical situation is when two
instruments are used to measure the same set of subjects,
and each subject is repeatedly measured by the same
instrument. We shall explain in the methods section the
reason why the within-subject coefficient of variation
(WSCV) is a more appropriate measure of reproducibility
than the CV. Many authors use the terms reliability and
reproducibility interchangeably [7-9]; however we believe
that they are conceptually different. The reliability is the
degree of closeness of the repeated observation on the
same subject under the same experimental conditions, so
the instrument is always the same. The Intra-class correla-
tion coefficient (ICC) is commonly used as a measure of
reliability. It is calculated as the ratio between subjects var-
iance to the total variance. Therefore, the larger the heter-
ogeneity among the subjects, with lower or equal random
error the easier it is to differentiate among subjects. In
other words, the ICC measures how distinguishable the
subjects are. On the other hand, reproducibility deter-
mines the degree of closeness of the repeated observations
made on the same subject either by the same instrument
or different instruments. There is a wide debate among
statisticians and psychometricians related to the choice of
appropriate measures of reliability and reproducibility.
We refer the interested reader to [10,11]. The main focus
of our paper is on the reproducibility parameter.

An important application from molecular biology
research in which correlated/dependent reproducibility
coefficients are compared is when microarray technolo-
gies are compared in terms of reproducibility of gene
expression measurements. DNA Microarrays are powerful
technologies which make it possible to study genome-
wide gene expressions and are extensively used in biolog-
ical research. As the technology evolves rapidly a number
of different platforms became available, which introduces
some challenges for researchers to know which technol-
ogy is best suited for their needs. There have been various
studies that directly compared the performance of one
platform with another in terms of cross-platform compa-
rability and agreement of gene expression results. How-
ever the results of these studies are conflicting: some
demonstrate concordance, others discordance between
technologies [12-17]. Thus one needs to take into consid-
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eration the accuracy and reproducibility of different types
of microarrays when allocating the laboratory resources
for future experiments. The key factors for selecting an
appropriate platform are (1) Intra-assay reproducibility,
and (2) the degree of cross-platform agreement [18]. The
concordance among microarray platforms would allow
researchers to directly compare their measurements and
perform meta-analyses.

Most of the microarray reliability or reproducibility and
cross-platform studies use Pearson's correlation, as an
index of reproducibility or agreement. However, it has
long been recognized that application of procedures such
as the paired t-test and Pearson's correlation are not
appropriate tools for measuring agreement between
measuring devices [19,20]. Rather, indices such as the
intra-class correlation coefficient [21] and the within- sub-
ject coefficient of variation should be used as measures of
reproducibility. It has also been demonstrated that the
within-subject coefficient of variation is very useful in
assessing instrument reproducibility [8,22].

The main focus of this paper is to develop several proce-
dures for testing the equality of two dependent within-
subject coefficients of variation computed from the same
sample of subjects, which is, to the best of our knowledge,
has not been dealt with in the statistical literature, and to
evaluate the statistical properties of these methods via
extensive Monte Carlo simulation. We propose two
approaches; one is likelihood based (LRT, Wald, and
Score test), and the other is a regression based approach
coined as PM test. After evaluating the statistical proper-
ties (power and empirical level of significance) of these
tests using Monte Carlo simulation, the methodology is
illustrated on data from two biomedical studies.

Methods

Likelihood based methodology

Suppose that we are interested in comparing the repro-
ducibility of two instruments. Let x;; be the jth measure-
ment of the ith subject by the Ith instrument, j = 1,2,... m,
i=1,2,..n,and =1, 2. To evaluate the WSCV we consider
the one-way random effects model

Xi= i+ b+ ey (1)

where 4 is the mean value of measurements made by the
Ith instrument, b; are independent random subject effects

with b; ~ N(0, o), and ey are independent N(O, o).
Many authors have used the intra-class correlation coeffi-
cient (ICC), p,defined by the ratio p; = crbz/( of +of ) as

measure of reproducibility/reliability [18,23]. Quan and
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Shih [8] argued that p; is study-population based since it
involves between-subject variation. Meaning that the
more heterogeneity in the population, the larger the p,.
Alternatively, they proposed the within-subject coefficient
of variation (WSCV) 6, = ¢j/y as a measure of reproduci-
bility. It determines the degree of closeness of repeated
measurements taken on the same subject either by the
same instruments or on different occasions under the
same conditions. It is clear that, the smaller the WSCV, the
better the reproducibility. We distinguish the WSCV from
Y

H]

the coefficient of variation CV; = (o‘b2+0'12) since

CV,involves o} in the numerator and similar to p;is pop-

ulation based. Therefore, more heterogeneity in the pop-
ulation would result in a large value of CV,. For that

reason we shall focus our work on the WSCYV rather than
the CV. We also note that there is an inverse relationship
between the ICC (p;) and the corresponding within sub-

ject variance o . Clearly, larger values of ICC (higher reli-

ability) would be associated with smaller WSCV (better
reproducibility). The focus of this paper is on aspects of
statistical inference on the difference between two corre-
lated WSCV. The inferential procedure depends on the
multivariate normality of the measurements and is
mainly likelihood based. The following set-up is to facili-
tate the construction of the likelihood function.

Let

X;=(X;1, Xips o X

1

imy’ Xi,mlﬂ' Xi,m1+2/ ""'Xi,m1+m2)

denote the measurements on the i" subject, i = 1,2,....,n

where X}, Xj5,.... X are the m; measurements

im;

obtained by the first method

X X X

(platform),

im 17 Xim,+2/ -+ Xim +m, are the m, measurements

obtained the second method (platform). We assume that

Xi~ N(y, X), where p' = (Ml%l/ #2152) and,

2 P 2
ol + 1 i), P12019 2) iy xm,
1-p1
z:
2 P 2
plzc;162]mlxm2 621m2 + 2 62]m2
1=-p2
(2)

In these expressions 1, is a column vector with all k ele-

ments equal to 1, I, is a k x k identity matrix and J, and J,,,,
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are k x k and k x t matrices with all the elements equal to
1. Thus the model assumes that the m, observations taken

by the first platform have common mean y;, common

variance o, and common intra-class correlation p,,

whereas the m, measurements taken by the second plat-

form have common mean z,, common variance 3, and
common intra-class correlation p,. Moreover, p,, denotes
the interclass correlation between any pair of measure-
ments x;; (j = 1,2,... m;) and x4, (¢ =1,2,...m, ), and

also assumed constant across all subjects in the popula-
tion.

For the I"" method, the WSCV, which will be denoted as 6,
in the remainder of the paper is defined as

O=oyfm 1=1,2.

Our primary aim is to develop and evaluate methods of
testing H,:6, = 6, taking into account dependencies
induced by a positive value of p,,. We restrict our evalua-
tion to reproducibility studies having m, = m, = m.

Methods for testing the null hypothesis
Wald test (WT)

If X,, X,,.... X,,is a sample from the above multivariate nor-
mal distribution, then the log-likelihood function I, as a

function of w = (1, 1t,, 6%, 63, P, Po P1) is given by:

—2L=Q+nmlog(612cr§)—nlog((l—pl)(l—pz))+nlogw

(3)
where,
- 2 52
W=1uUy-m* Py,
w=1+(m-1)p,1=1,2and,
S 1- O 1- _
Q= 12+m( Plz)“ZZ( ,1—#1)2+—22+m( pg)ul (xfz—ﬂz)z
1 wo{ Py 5 wo'y i1
2 n
_2mTp12 (o o NN (5 - ) (Fiy -
v (1= (1=92)) 7 B (F =) (% = 12

From [24] the conditions {1 + (m - 1)p,} {1 + (m - 1)p,}

>m2 p{, and -1/(m - 1) <p;< 1 must be satisfied for the

likelihood function to be a sample from a non-singular
multivariate normal distribution.

The summary statistics given in (3) are defined as:
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The maximum likelihood estimates (MLE) for 4 and o}

are given respectively by g, =x,67 =S /n(m-1),
n

where Xx; =%2§,~j and =1, 2. Clearly, 67 exists for val-
i=1

ues of m > 1. Therefore we shall assume that m > 1
throughout this paper. From [24], we obtain p; and p,

by computing Pearson's product-moment correlation
over all possible pairs of measurements that can be con-

structed within platforms 1 and 2 respectively, with p;,

similarly obtained by computing this correlation over the
nm? pairs (X, Xiyp.;)-

The WT of H,,: 6, = 6, requires the evaluation of variance of

él, I=1,2 and cov(él,é2 ) . To obtain these values we

use elements of Fisher's information matrix, along with
the delta method [26,27]. On writing:

14 = (w1, w) v = (11, H)'s and

’
l//zz(clz,czz,pl,pz,plz), the Fisher's information

matrix I = -E102]/0w0y/1 has the following structure:

[, o
pol

This is based on a result from [26] (page 239) indicating
that, I,, = I,, = -E(82/dy,0%/,) = 0. Therefore, from the

asymptotic theory of maximum likelihood estimation we
have:

| ovar(m) o cov(an )
11 — ~ o~ ~
cov(fy fy)  var(fy)

And the elements of I,, are given in the Appendix.

The elements of I5) are the asymptotic variance- covari-

ance matrix of the maximum likelihood estimators of the
covariance parameters. Inverting Fisher's information
matrices we get:
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2
o]

var(p; ) = )[1+(m—1)p,]. (5)

nm(1-pj

Applying the delta method [27], we can show, to the first
order of approximation that:

var(G,)=o} /2n(m-1). 1=1,2 (6)

The maximum likelihood estimator of 6 is 0, = gl

Again, by application of the delta method, we can show to
the first order of approximation that:

- 04[1+(m—1 )pl] 0?2
~ 1 l 7
Var(01)~ " (1_ 0 +2n( _1), (7)

as was shown by Quan and Shih [8].

Again using the delta method we show approximately
that:

2912922/?12
ny(1-p1)(1-p2)

From [28] we apply the large sample theory of maximum
likelihood to establish that:

(8)

cov (64,0, )=

61-62

Z = = = —
\/V3r(01)+var(92)—2 cov(61,07)

)

is approximately distributed under H,, as a standard nor-
mal deviate. The denominator of Z is the standard error of

él - éz and is denoted by SE él - éz . Since the standard
error of él - éz contains unknown parameters, its maxi-
mum likelihood estimate SE(él - éz) is obtained by sub-
stituting 6, for 6, p, for pjand p,, for p,,. Moreover, we

may construct an approximate (1-&)100% confidence
interval on (6, - 6,) given as:

0, -0, 2, ,SE(0, —0,), where z,, is the (1-2/2)100%

cut-off point of the standard normal distribution.

Likelihood ratio test (LRT)

An LRT of H,: 6, = 6, was developed numerically, and
computed by first setting 4= ¢,/ 6, I = 1,2 in Equation (3),
and then adopting the following algorithm:
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1- Set 4= 0/, 1 = 1,2 in Equation (3), thereafter;
2-Set 6, = 6,=0in (3)

3- Minimize the resulting expression with respect to all six
parameters (oy, 6y, Py, P P12 0) and;

4- Subtract the minimum from the minimum of -2L as
computed over all seven parameters (o3, 65, Py, Por P12 6y,
6,) in the model.

It then follows from standard likelihood theory that the
resulting test statistic is approximately chi-square distrib-
uted with 1 degree of freedom under H,,.

Score test

One of the advantages of likelihood based inference pro-
cedure is that in addition to the WT and the LRT "Rao's
score test" can also be readily developed. The motivation
for it is that it can sometimes be easier to maximize the
likelihood function under the null hypothesis than under
the alternative hypothesis. A standard procedure for per-
forming the score test of Hy: 6, = 6,is to set 8, = 6, + A, so
that the null hypothesis is equivalent to H,: A = 0, where
A is unrestricted. Replacing 4 by ¢/, the log-likelihood
function L is then independent of ;.

Let L = L(A; y*) = L(A; 6, 0, 6y p1 Py P1p) and

][, =oL j — dL
17 9A "2 31//*'

From [28] the score statistic is given by:

S= ilTAl_-lzilr

where

(10)

and A, =A,; —A;,A5»A,, . The matrices on the right

hand side of A,,, are obtained from partitioning the

. - . . [ An A
Fisher's information matrix A so that A =
Ay Ay

2
where A11=E(—;Aé),A12=A2Tl=E(— 971

2
; J, and

dAIy

2
Ay, =E _*aizq with all the matrices on the right
oy dy

hand side of A,,, evaluated at A = 0. When an estimator
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other than the MLE is used for the nuisance parameters

, provided that the estimator " is ~/n consistent, it
p 4

was shown that the asymptotic distribution of S is that of
a chi-square with 1 degree of freedom [29,30].

The score test has been applied in many situations and has
been proven to be locally powerful. Unfortunately, the
inversion of A,,, is quite complicated and we cannot
obtain a simple expression for S that can be easily used.
Moreover, we have also found through extensive simula-
tions that while the score test holds its levels of signifi-
cance, it is less powerful than LRT and WT across all
parameter configurations. We therefore focus our subse-
quent discussion of power to LRT and WT.

Regression test

Pitman [1] and Morgan [2] introduced a technique to test
the equality of variances of two correlated normally dis-
tributed random variables. It is constructed to simply test
for zero correlation between the sums and differences of
the paired data. Bradley and Blackwood [31] extended Pit-
man and Morgan's idea to a regression context that affords
a simultaneous test for both the means and the variances.
The test is applicable to many paired data settings, for
example, in evaluating the reproducibility of lab test
results obtained from two different sources. The test could
also be used in repeated measures experiments, such as in
comparing the structural effects of two drugs applied to
the same set of subjects. Here we generalize the results of
Bradley and Blackwood to establish the simultaneous
equality of means and variances of two correlated varia-
bles, implying the equality of their coefficients of varia-
tions.

—_— 1 —_— —_—
Let Xij:ZXijk/m, and define d;=X;; —X;,, and
k=1
Sj = Xip + Xjz.

Direct application of the multivariate normal theory
shows that the conditional expectation of d; on s; is linear
[32]. That is

E(d;|s) = a+ fs; (11)
where
a =(ﬂ1_#2)_(ﬂ1+ﬂ2)(01 _Ug)k
(11.a)
ﬁz(alz—crz)k (11.b)
where
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k' =ol(1-p)  (1+(2m-1)p, )+ 03 (1-p,) " (1+(2m-1)p,)

is strictly positive.
The proof is straightforward and is therefore omitted.

It can be shown then from direct application of the multi-
variate normal theory that the conditional expectation
(11) is linear, and does not depend on the parameter p; ,.

From (11.a) and (11.b), itis clear that « = =0 ifand only
if 4, = y, and o = o, simultaneously. Therefore, testing the
equality of two correlated coefficients of variations is
equivalent to testing the significance of the regression
equation (11). From the theory of least squares, if we
define:

1

n —\2 2” _\2
Tsszz(di_d) JRSS=B7Y (s;—5)° and EMS =
i1 =1

(TSS - RSS)/(n - 2),

the hypothesis Hy: a = = 0 is rejected when RSS/EMS
exceeds F,; (,.5), the (1 -v) 100% percentile value of the F-
distribution with 1 and (n-2) degrees of freedom [32].

Results

Simulation

The theoretical properties of the test procedures discussed
thus far are largely intractable in finite samples. We there-
fore took a Monte Carlo study to determine the levels of
significance and powers of these tests over a wide range of
parameter values. For this study we generated observa-
tions from a multivariate normal distribution with covar-
iance structure defined as in (2). Simulations were

http://www.biomedcentral.com/1471-2288/8/24

performed using programs written in MATLAB (The Math.
Works, Inc., Natic, MA).

The parameters of the simulation included the total
number of subjects (n), the number of replications (m; =
m, =m), and various values of (8,, 8,, p;, p,, p1,)- For each
of 2000 independent runs of an algorithm constructed to
generate observations from multivariate normal distribu-
tion, we estimated the true level of significance and power
of the LRT, Wald, Score and PM tests using a nominal level
of significance 5% (two sided) for various combinations
of parameters.

Tables 1 and 2 report the empirical significance levels
based on 2000 simulated datasets for four (WT, Score, LRT
and PM) procedures for sample size of n = 50 and n = 100,
respectively. It is seen that all procedures provide satisfac-
tory significance levels at all parameter values examined.
The empirical significance levels for smaller sample sizes
(n = 10, 20, and 30) were also estimated. All test proce-
dures provided empirical levels that are very close to the
5% nominal level (data not shown).

Tables 3 and 4 display empirical powers based on 2000
simulated datasets for WT and LRT in sample sizes n = 30
and 50, respectively. As alluded to earlier, the score test is
excluded from the power Tables 3 and 4 because its simu-
lated empirical power values were unacceptably low (as
we show in Table 5). We observe that for all parameter val-
ues that WT and LRT provide almost identical values of
power (Tables 3 and 4). Thus, although the LRT shows
greater power at some parameter combinations than the
WT, the difference is usually less than three percentage
points. We also conducted simulations to estimate the
powers of the test statistics for smaller sample sizes (n =

Table I: Empirical significance levels based on 2000 runs at nominal level 5% (two sided) for testing 6, = 6, = 0.15 using the LRT, Wald,

Score and PM for n = 50 subjects and m replicates, p, = p, = p.

n =50 p=04 p=0.6 p=07
P12 0.1 0.2 0.3 0.1 0.3 0.5 0.1 0.4 0.6
m=2
Wald 0.049 0.048 0.050 0.051 0.050 0.049 0.046 0.052 0.048
Score 0.057 0.051 0.053 0.055 0.055 0.058 0.051 0.058 0.054
PM 0.052 0.050 0.047 0.050 0.049 0.048 0.053 0.052 0.051
LRT 0.051 0.051 0.052 0.052 0.051 0.049 0.050 0.048 0.050
m =
Wald 0.048 0.046 0.049 0.052 0.049 0.050 0.048 0.047 0.049
Score 0.056 0.053 0.055 0.058 0.054 0.051 0.054 0.047 0.051
PM 0.053 0.052 0.050 0.049 0.049 0.052 0.052 0.050 0.052
LRT 0.050 0.047 0.051 0.053 0.047 0.051 0.049 0.045 0.048
m =
Wald 0.048 0.049 0.052 0.045 0.049 0.050 0.050 0.049 0.046
Score 0.054 0.050 0.051 0.051 0.053 0.054 0.049 0.048 0.056
PM 0.050 0.052 0.050 0.048 0.051 0.049 0.053 0.052 0.047
LRT 0.051 0.051 0.050 0.048 0.050 0.049 0.049 0.050 0.044
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Table 2: Empirical significance levels based on 2000 runs at nominal level 5% (two sided) for testing 6, = 6, = 0.15 using the LRT, Wald,

Score and PM for n = 100 subjects and m replicates, p, = p, = p.

n=100 p=04 p=0.6 p=07
P12 0.1 0.2 0.3 0.1 0.3 0.5 0.1 0.4 0.6
m=2
Wald 0.049 0.048 0.051 0.049 0.050 0.045 0.046 0.050 0.051
Score 0.050 0.056 0.056 0.053 0.055 0.049 0.051 0.057 0.056
PM 0.049 0.048 0.052 0.049 0.049 0.050 0.050 0.051 0.051
LRT 0.048 0.044 0.051 0.044 0.050 0.042 0.042 0.048 0.050
m =
Wald 0.051 0.050 0.048 0.048 0.049 0.049 0.051 0.047 0.044
Score 0.051 0.049 0.048 0.050 0.054 0.053 0.057 0.052 0.056
PM 0.052 0.050 0.052 0.048 0.049 0.049 0.049 0.050 0.048
LRT 0.050 0.051 0.050 0.047 0.046 0.048 0.048 0.050 0.043
m =
Wald 0.050 0.049 0.052 0.049 0.048 0.050 0.051 0.050 0.046
Score 0.053 0.052 0.054 0.054 0.053 0.051 0.052 0.053 0.052
PM 0.050 0.049 0.053 0.049 0.051 0.050 0.049 0.050 0.047
LRT 0.049 0.050 0.052 0.048 0.050 0.049 0.047 0.051 0.045

10, and 20) (data not shown). We found that for some
parameter combinations Wald and LRT provided accepta-
ble power especially if the distance between 6, and 6, is
large, and showed greater power than both the Score and
PM tests. The power of Score test was generally very low.

For selected parameter values, power levels of PM, Wald,
and the score tests for n = 50 subjects are given in Table 5.
As already mentioned, the power of the score test is gener-
ally low. We note that the power of the Wald test is quite
sensitive to the distance between 61 and 62. We note that
the equality of the means and variances implies the equal-
ity of the WSCV, but the reverse is not true. This strong
assumption might explain the relatively poor perform-
ance of the PM test, particularly when the means are not
well separated.

To assess the effect of non-normality on the properties of
the proposed test statistics we generated data from a log-
normal distribution, and evaluated the performance of

the four procedures for 2000 simulated datasets. The
empirical levels of the regression based PM test were quite
close to the 5% nominal level, but the power was poor.
However, the likelihood based procedures (Wald, LRT
and Score) did not preserve their nominal levels for the
majority of the parameters combinations (data not
shown).

Applications

Gene expression data

We illustrate the proposed methodologies by analyzing
data from two biomedical studies. In the first data sets we
illustrate the methodology on the gene expression meas-
urement results of identical RNA preparations for two
commercially available microarray platforms, namely,
Affymerix (25-mer), and Amersham (30-mer) [14]. The
RNA was collected from pancreatic PANC-1 cells grown in
a serum-rich medium ("control") and 24 h following the
removal of the serum ("treatment"). Three biological rep-
licates (B1, B2, and B3) and three technical replicates (T1,

Table 3: Empirical power based on 2000 runs for testing 6, = 6, using the LRT and Wald test for n = 30 subjects.

n=30 (P p2) = (0.7,05) (P p2) = (06,05) (P p2) = (05,04)
(6, 6,) =(0.1,0.2) (6,,6,) = (0.15,0.2) (6,,6,) = (0.2,0.3)

P12 0.2 0.3 0.4 0.2 0.3 0.4 0.1 0.2 0.3
m=2

Wald 0.92 0.93 0.94 0.30 0.33 0.32 0.55 0.50 0.51

LRT 0.94 0.95 0.96 0.35 0.33 0.34 0.60 0.56 0.54
m=3

Wald 0.99 1.00 1.00 0.55 0.56 0.54 0.79 0.80 0.79

LRT 1.00 1.00 1.00 0.57 0.56 0.55 0.82 0.83 0.83
m=5

Wald 1.00 1.00 1.00 0.80 0.82 0.84 0.96 0.95 0.97

LRT 1.00 1.00 1.00 0.81 0.82 0.85 0.97 0.97 0.98
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Table 4: Empirical power based on 2000 runs for testing 6, = 0, using the LRT and Wald test for n = 50 subjects.

n=50 (P1. p2) = (0.7.05) (P1. P2) = (0.6,0.5) (1. P2) = (0.5, 0.4)
6, 6,) =(0.1,0.2) ©,,8,) =(0.15,0.2) 6,,6,) =(0.2,0.3)

P12 0.2 0.3 0.4 0.2 0.3 0.4 0.1 0.2 0.3
m=2

Wald 0.99 0.98 0.99 0.47 0.50 0.49 0.75 0.72 0.74

LRT 0.99 0.99 0.99 0.49 0.52 0.51 0.77 0.77 0.78
m=3

Wald 1.00 1.00 1.00 0.76 0.77 0.78 0.94 0.95 0.95

LRT 1.00 1.00 1.00 0.79 0.78 0.79 0.95 0.95 0.96
m=5

Wald 1.00 1.00 1.00 0.94 0.93 0.95 1.00 0.99 1.00

LRT 1.00 1.00 1.00 0.95 0.95 0.96 1.00 0.99 1.00

T2, and T3) for the first biological replicate (B1) were pro-
duced by each platform. Therefore, for each condition
(control and treatment) five hybridizations are con-
ducted. The dataset consists of 2009 genes that are identi-
fied as common across the platforms after comparing
their Gene Bank IDs, and is normalized according to the
manufacturer's standard software and normalization pro-
cedures. More details concerning this dataset can be found
in the original article [14].

The results presented in this section were not restricted to
the group of differentially expressed genes, and we used
the "control" part of the data for both technical and bio-
logical replicates. The normalized intensity values are
averaged for genes with multiple probes for a given Gene
ID. Hence, we have a sample size of n = 2009 genes meas-
ured three times (m = 3) by each of the two platforms (or
instruments). We have used the within- gene coefficient of
variation as a measure of reproducibility of a specific plat-
form.

The results of the data analyses are summarized in Table
6. Parameter estimates for both platforms, the estimated
WSCV under the null hypotheses, as well as confidence
interval of the difference of the two WSCVs are given in
the Table. We note that the correlation estimates remain
the same under both hypotheses. Moreover, we note that

Table 5: Empirical Power of PM, Score and Wald tests based on
2000 data sets, n = 50 subjects, m = 3 replicates.

(1 1) (CIAY) Pi P2 P2 PM Score  Wald
(10,10) (0203) 05 04 03 0.53 0.37 0.94
(0.204) 05 03 02 0.84 0.51 0.99

(8,10) (02,03) 05 04 03 0.71 0.40 0.95
(0.2,04) 05 03 02 0.69 0.51 1.00

(6,10) (0.203) 05 04 03 0.84 0.35 0.94
(0.204) 05 03 02 0.99 0.54 1.0

(5,10) (0.203) 05 04 03 091 0.40 0.95
(0.2,04) 05 03 02 0997 0.54 1.00

the intraclass correlations (p) are quite high. Using bench-
marks provided in [33], both platforms produce substan-
tially reproducible gene expression levels. Clearly, this is
due to the large heterogeneity among the genes in the data
set. Application of the LRT, Wald, and the PM tests for test-
ing the equality of two dependent WSCV show that the
Amersham has significantly lower WSCV (P < 0.001) i.e.
better reproducibility for both the technical and biologi-
cal replicates.

Analysis of computer aided tomographic scan measurements

Here we demonstrate the statistical methodologies of this
paper on a much smaller data set than the microarray gene
expression example. The data are from a study using the
Computer-Aided Tomographic Scans (CAT-SCAN) of the
heads of 50 psychiatric patients [20,34]. The measure-
ments are the size of the brain ventricle relative to that of
the patient's skull, and given by the ventricle-brain ratio
VBR = (ventricle size/brain size) x 100. For a given scan,
VBR was determined from measurements of the perimeter
of the patient's ventricle together with the perimeter of the
inner surface of the skull. These measurements were taken
either: (i) from an automated pixel count (PIX) based on
the images displayed on a television screen, or (ii) a hand-
held planimeter (PLAN) on a projection of the X-ray
image. Table 7 summarizes the results. Clearly all tests
show that PIX has significantly lower WSCV that the PLAN
(p < 0.001); that is better reproducibility.

Discussion

A comparison between the reproducibility of two measur-
ing instruments using the same set of subjects leads natu-
rally to a comparison of two dependent indices. In this
paper, several procedures are developed for testing equal-
ity of two dependent within-subject coefficient of varia-
tions computed from the same sample of subjects. We
proposed two approaches; one is likelihood based (LRT,
Wald, and Score test), while the other is regression based
approach (extension of Pitman-Morgan). We assessed the
powers and the empirical levels of significance of these
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Table 6: Microarray Gene Expression data results (n = 2009 genes, m = 3 replicates)

(a) Technical replicate

Affymetrix (I = 1)

Amersham (I = 2)

Estimate SE Estimate SE
H 2759 150.5 3.74 0.22
¥ 0.94 0.002 0.99 0.0003
6 0.58 0.03 0.25 0.015
o 1603 17.88 0.93 0.0l

P12=0.51,T,,4=11.85 LRT =122, PM = -7.89 (p < 0.001 for all tests) The estimate of the common WSCYV under the nullis 0.31 (SE = 0.014) 95%
Cl for (0,-6,): (0.28, 0.39)

(b) Biological replicate

Affymetrix (I = 1)

Amersham (I = 2)

Estimate SE Estimate SE
4 2819 142.6 343 0.18
£ 0.91 0.003 0.93 0.0025
4 0.71 0.037 0.63 0.034
fe 2003.7 22.35 2.16 0.02

P12 =050, T, 4= 2.35 LRT=8.56, PM = -9.04 (p < 0.02 for all tests) The estimate of the common WSCV under the null is 0.67 (SE = 0.025) 95%
Cl for (8,-6,): (0.014, 0.15)

methods via extensive Monte Carlo simulations. It is
shown that the relatively simple Wald's test (WT) is as
powerful as the likelihood ratio test (LRT) and that both
have consistently greater power than the score test. A sim-
ple procedure based on results due to Pitman [1] and Mor-
gan [2] is also developed and shown to be as powerful as
the likelihood based tests.

We illustrated the proposed methodologies with the anal-
yses of data from two biomedical studies. The majority of
microarray reproducibility and cross-platform agreement
studies use Pearson's correlation, as an index of reproduc-
ibility and agreement, which would not be an appropriate
measure of reproducibility. Because of the large heteroge-
neity among the genes in the data set, the intra-class cor-
relation coefficient as an index of reproducibility of the
platform would also not be an appropriate index of relia-
bility as highly heterogeneous populations artificially pro-
duces high reliability index. Therefore, WSCV should be
used as an index of reproducibility. In addition, the meth-

odology presented in this paper overcomes the difficulty
noted by Tan et al. [14] in which the authors state that
"Dependence between the datasets would confound any infer-
ences we could make about the differences in correlations. ...
determination whether differences in correlation were statisti-
cally significant could not be made". In this paper, we have
used the within- gene coefficient of variation as a measure
of reproducibility of a specific platform. Therefore, a com-
parison across platforms leads naturally to a comparison
of two dependent within-subject coefficients of variation.

Two issues need to be discussed in this section. The first is
related to the nature of the data to be analyzed while the
other is related to situations when the assumed underly-
ing model generating the data deviates from the normal
distribution.

First, a frequently occurring question in the planning of
biomedical investigations is whether to measure the
response or the trait of interest on a continuous scale (e.g.

Table 7: Analysis of computer-aided tomographic scan data on 50 patients via PIX or PLAN with two replicates

PIX (I=1) PLAN (I = 2)
Estimate SE Estimate SE
H 1.41 0.074 1.79 0.056
oy 0.99 0.002 0.73 0.066
4 0.028 0.003 0.12 0.013
o 0.04 0.004 0.22 0.02

P12 =065 T, 4= -7.3, LRT =79, PM = -4.6 (p < 0.001 for all tests) The estimate of the common WSCV under the null is 0.034 (SE = 0.003) 95%
Cl for (8,-6,): (-0.12,-0.07)
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gene expressions; systolic blood pressures etc.) or dichot-
omous scale (e.g. highly expressed gene vs. low expressed
genes; hypertensive vs. normtensive etc.). In the case of
two measuring devices and two dichotomous responses,
the most commonly used measure of test-retest reliability
or agreement is the kappa coefficient introduced in [35].
Donner and Eliasziw [36] and more recently Shoukri and
Donner [37] cautioned against dichotomizing traits meas-
ured on the continuous scales. They demonstrated that
the loss in the efficiency in estimation of the reliability
coefficient can be severe. The conclusion is that for natu-
rally dichotomous traits (e.g. affected vs. not affected) one
can use kappa to assess the test-re-test reliability, while for
continuous traits the methods presented in this paper
would be more appropriate.

Second, it should be noted that the inference procedures
discussed in this paper (except the PM test) are likelihood
based and their statistical properties may not be appropri-
ate in small samples. The difficulty is that the sampling
distribution of a test statistics is unknown. Alternatively,
one may use the bootstrap technology to estimate the
sampling distributions of the test statistics. When the data
are hierarchical in nature with variance covariance matrix
¥ as shown in (2), one may use model-based approach to
generate bootstrap samples [38], which is achieved by
sampling subjects with replacement and estimate the coef-
ficients of variations and hence their empirical sampling
distributions. There is already a rich class of bootstrap
methods for clustered data in the literature but there is an
absence of detailed theoretical results on the properties of
these methods [39]. Gaining insight into bootstrapping
clustered data for all these methods and draw comparison
to our proposed likelihood based approach warrants seri-
ous investigation and is beyond the scope of this paper.

Conclusion

Comparison of reproducibility or reliability of measure-
ment devices or methods on the same set of subjects
comes down to comparison of dependent reliability or
reproducibility parameters. Testing the equality of two
dependent WSCV has not been dealt with in the statistical
literature. The presented methodology overcomes the dif-
ficulty noted by data analysts that the issue of dependence
when ignored, would confound the inference on meas-
ures of reliability or reproducibility. It should also be
emphasized that when comparison among platforms reli-
ability indices the ICC is not an appropriate measure of
reliability due to the large heterogeneity among the genes.
Because the magnitude of the ICC depends on the degree
of heterogeneity among the subjects it is not an appropri-
ate index of reproducibility. We therefore recommend the
WSCV in similar settings.

http://www.biomedcentral.com/1471-2288/8/24

The LRT and WT procedures presented in Section 2 may
also be extended in a straightforward manner to compare
more than two platforms (methods, labs, or measurement
devices). A further advantage of the LRT in this context is
that it may easily be extended to deal with the case of an
unequal number of replicates for each platform.

The codes developed (in MATLAB) can be used to do
power calculations for planning a reproducibility study
when comparing two methods (or devices), and can be
obtained on request from the authors.

APPENDIX
Elements of Fisher's information matrix (m, = m, = m)
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The matrix I,, is therefore given by:

i35 i34 I35 O i3

lgg 0 4 1y

I = Iss lsg 157
lee o7
177
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