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Abstract
Background: When multiple endpoints are of interest in evidence synthesis, a multivariate meta-analysis
can jointly synthesise those endpoints and utilise their correlation. A multivariate random-effects meta-
analysis must incorporate and estimate the between-study correlation (ρB).

Methods: In this paper we assess maximum likelihood estimation of a general normal model and a
generalised model for bivariate random-effects meta-analysis (BRMA). We consider two applied examples,
one involving a diagnostic marker and the other a surrogate outcome. These motivate a simulation study
where estimation properties from BRMA are compared with those from two separate univariate random-
effects meta-analyses (URMAs), the traditional approach.

Results: The normal BRMA model estimates ρB as -1 in both applied examples. Analytically we show this

is due to the maximum likelihood estimator sensibly truncating the between-study covariance matrix on
the boundary of its parameter space. Our simulations reveal this commonly occurs when the number of
studies is small or the within-study variation is relatively large; it also causes upwardly biased between-

study variance estimates, which are inflated to compensate for the restriction on B. Importantly, this

does not induce any systematic bias in the pooled estimates and produces conservative standard errors
and mean-square errors. Furthermore, the normal BRMA is preferable to two normal URMAs; the mean-
square error and standard error of pooled estimates is generally smaller in the BRMA, especially given data
missing at random. For meta-analysis of proportions we then show that a generalised BRMA model is
better still. This correctly uses a binomial rather than normal distribution, and produces better estimates
than the normal BRMA and also two generalised URMAs; however the model may sometimes not
converge due to difficulties estimating ρB.

Conclusion: A BRMA model offers numerous advantages over separate univariate synthesises; this paper
highlights some of these benefits in both a normal and generalised modelling framework, and examines the
estimation of between-study correlation to aid practitioners.
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Background
Traditionally, meta-analysis models combine summary
measures of a single quantitative endpoint, taken from
different studies, to produce a single pooled result. How-
ever, multiple pooled results are required whenever there
are multiple outcomes [1] or multiple treatment groups
[2]. A multivariate meta-analysis model uses the correla-
tion between the endpoints and obtains the multiple
pooled results collectively [3,4]. For example, Reitsma et
al. [5] have suggested a bivariate random-effects meta-
analysis (BRMA) to jointly synthesise logit-sensitivity and
logit-specificity values from diagnostic studies. Multivari-
ate meta-analysis has been quite widely used, including
application to genetic associations [6], surrogate end-
points [7,8], psychological findings [9] and prognostic
markers [10].

Often the advantage of a multivariate random-effects
meta-analysis lies in its ability to use the between-study
correlation of the multiple endpoints of interest. For
example, in diagnostic studies the sensitivity and specifi-
city are usually negatively correlated across studies due to
the use of different thresholds [5]. Van Houwelingen et al.
[4] use the between-study correlation to describe the
shape of the bivariate relationship between the true log-
odds in a treatment group and the true log-odds in a con-
trol group (baseline risk). Riley et al. [10] algebraically
assess BRMA and show that the correlation allows a 'bor-
rowing of strength' across endpoints. This leads to pooled
estimates that have a smaller standard error than those
from corresponding univariate random-effects meta-anal-
yses (URMAs), especially when some endpoints are miss-
ing at random across studies.

Some recent articles have indicated the between-study cor-
relation may often be estimated at the end of its parameter
space, as +1 or -1. Thompson et al. [6] apply a normal
BRMA model to genetic studies of coronary heart disease
and report that the between-study correlation was 'poorly
estimated' with the likelihood peaking at +1, and an esti-
mate of +1 has also been reported in other applications
[4,11]. To aid practitioners, in this paper we analytically
consider why this occurs, and then explore the impact, if
any, this has on the pooled estimates and between-study
variance estimates. This investigation also allows us to
examine the general benefits of BRMA over URMA, to
build on a number of other recent articles [5,10], and
encourage a greater use and appreciation of BRMA in prac-
tice.

The outline of the paper is as follows. We begin by intro-
ducing the general normal model for BRMA and discuss
analytically why the between-study correlation can be
estimated at the edge of its parameter space. We then
apply the model to two real examples from the literature,

one involving a diagnostic marker and one involving a
surrogate outcome, and these both give a between-study
correlation estimate of -1. This then motivates a realistic
simulation study to examine how the estimate of
between-study correlation affects the statistical properties
of the pooled and between-study variance estimates. It
also allows us to compare the performance of the normal
BRMA model to two separate URMAs, the more common
approach in practice [10]. We then extend our work to
consider meta-analysis of proportions, and highlight why
a generalised model for BRMA is preferred to the general
normal BRMA model [12], and also two separate general-
ised URMA models. We conclude by summarising the
broad benefits of BRMA for practitioners, and discuss
future research priorities.

Methods
In this section we introduce a hierarchical normal frame-
work for BRMA and URMA. We describe how the BRMA
normal model is estimated, and analytically consider the
estimation of between-study correlation. We then
describe the rationale and methodology for our simula-
tion study of BRMA versus URMA. To ensure a real world
context, this section also includes two motivating exam-
ples from the medical literature where a BRMA is poten-
tially important.

Motivating example 1 – the telomerase data
Glas et al. [13] systematically review the sensitivity and
specificity of tumour markers used for diagnosing primary
bladder cancer. One of these markers was telomerase, a
ribonucleoprotein enzyme, evaluated in 10 studies as
shown in Table 1. Rather than applying a URMA inde-
pendently for sensitivity and specificity, the authors
jointly synthesise the logit-transformed sensitivity and the
logit-transformed specificity in a normal BRMA model as
described below and recently proposed elsewhere [5].

A general normal model for bivariate random-effects 
meta-analysis (BRMA)

Suppose that i = 1 to n studies are identified by a system-
atic review, and that two endpoints (j = 1 or 2) are availa-
ble from each study. Each study supplies summary
measures, Yij, and associated standard errors, sij, for each

endpoint. For instance, for diagnostic studies Reitsma et
al. [5] suggest the logit-sensitivity is Yi1 and the logit-spe-

cificity is Yi2. Each summary statistic (Yij) is assumed to be

an estimate of a true value (θij) in each study, and in a

hierarchical structure each θij is assumed to be drawn from

a distribution with mean (or 'pooled') value βj and

between-study variance . If Yij/θij and θij are bothτ j
2
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Table 1: The telomerase data taken from the bladder cancer review of Glas et al. [13]

Study Number of 
patients with 

bladder cancer

Number of 
patients with 

bladder cancer 
and a positive 

test result

Sensitivity Logit-sensitivity Yi1 Standard error 
of logit-

sensitivity Si1

Number of 
patients 
without 

bladder cancer

Number of 
patients without 
bladder cancer 
and a negative 

test result

Specificity Logit-specificity Yi2 Standard error 
of logit-

specificity Si2

Within-study 
correlation ρWi

1 33 25 0.758 1.139 0.406 26 25 0.962 3.219 1.020 0

2 21 17 0.810 1.447 0.556 14 11 0.786 1.299 0.651 0

3 104 88 0.846 1.705 0.272 47 31 0.660 0.661 0.308 0

4 26 16 0.615 0.470 0.403 83 80 0.964 3.283 0.588 0

5 57 40 0.702 0.856 0.290 138 137 0.993 4.920 1.004 0

6 47 38 0.809 1.440 0.371 30 24 0.800 1.386 0.456 0

7* 43 23.5 0.547 0.187 0.306 13 12.5 0.962 3.219 1.442 0

8 33 27 0.818 1.504 0.451 20 18 0.900 2.197 0.745 0

9 17 14 0.824 1.540 0.636 32 29 0.906 2.269 0.606 0

10 44 37 0.841 1.665 0.412 29 7 0.241 -1.145 0.434 0

* 0.5 was added to each cell of the 2 by 2 table for this study, as a continuity correction was needed given there were zero false negatives
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assumed normally distributed then the BRMA can be
specified as:

This model is the general normal model for BRMA [4],

where δi and Ω are the within-study and the between-

study covariance matrices respectively. Usually of key

interest from the analysis are the pooled estimates of β1

and β2, although sometimes an estimated function of

these may be desired; for instance in the telomerase exam-
ple an estimate of the log of the diagnostic odds ratio is

given by 1 + 2. The BRMA differs from two independ-

ent URMAs by the inclusion of the within-study correla-

tions (i.e. the ρWi s) and the between-study correlation

(ρB). Equation (2) is equivalent to two independent

URMAs when ρWi = ρB = 0 for all i, i.e. there is zero corre-

lation:

In equation (1) it is common to assume the  s and ρWi

s are known [1,4]. Including the uncertainty of the  s is

unnecessary for URMA [14], but whether the uncertainty

of the  s and ρWi s should be incorporated in BRMA is

yet to be examined. This issue is outside the scope of this
paper but we note that a Bayesian framework is particu-
larly flexible for incorporating such uncertainty [15].

Within- and between-study correlation
The within-study correlation, ρWi, indicates whether Yi1 and
Yi2 are correlated within a study, and these ρWi s are usu-
ally assumed known. For the telomerase data the ρWi s
might be assumed to be zero because sensitivity and spe-
cificity values are calculated independently in a study
using different sets of patients. In other BRMA applica-
tions the ρWi s can be non-zero, for example where the two
endpoints are overall and disease-free survival [10]. In
practice it may be difficult to obtain the value of non-zero

ρWi s, although it can be done as evident in Berkey et al.
[1] and the 'motivating example 2' below [7]. Suggestions
for limiting the problem of unavailable ρWi s have been
proposed [15-17], and this issue is considered further in
the discussion.

The between-study correlation, ρB, is not generally known
and has to be estimated when fitting the BRMA. It indi-
cates how the underlying true values, i.e. the θi1s and the
θi2 s, are related across studies. It may be caused by differ-
ences across studies in patient-level characteristics, such as
age and stage of disease, or changes in study-level charac-
teristics, such as the threshold level in diagnostic studies

Motivating example 2 – the CD4 data
Daniels and Hughes [7] assess whether the change in CD4
cell count is a surrogate for time to either development of
AIDS or death in drug trials of patients with HIV. They
consider between-treatment-arm log-hazard ratios of time
to onset of AIDS or death (Yi1), and between-treatment-
arm differences in mean changes in CD4 count (Yi2) from
pre-treatment baseline to about six months. Fifteen rele-
vant trials were identified. Some of the trials involved
three or four treatment arms, but to enable application to
BRMA here we only consider outcome differences
between the control arm and the first treatment arm in the
reported dataset [7]. All fifteen trials provided complete
data, including the within-study correlations which were
quite small, varying between -0.22 and 0.17 with a mean
of -0.08.

Estimation

In our analyses of equation (1) in this paper the between-

study parameters (i.e. ,  and ρB) and the two pooled

values (β1 and β2) are estimated iteratively using restricted

maximum likelihood (REML) in SAS Proc Mixed, as
described elsewhere [4]. Unless otherwise stated, we also

use Cholesky decomposition [18] of Ω to ensure that this
matrix is estimated to be positive semi-definite and there-

fore that the between-study correlation estimate, B, is in

the range [-1,1]. Cholesky decomposition of Ω also helps

ensure convergence when B is very close to 1 or -1.

Analytic consideration of the between-study covariance 
parameters
Estimation and inference in classical linear mixed models
are based on the marginal model, which for equation (1)
is the bivariate normal model with variance-covariance δi
+ Ω. Assume for the sake of simplicity that the within-
study covariance matrix δi = δ for all studies. Then the cov-
ariance matrix of the observed Yi1 s and Yi2 s is given by V
= δ + Ω, where δ is known. Now, this puts (severe) restric-
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tions on V, namely that V - δ is a covariance matrix, that is
non-negative definite. If the estimated V does not satisfy
this restriction, the maximum likelihood estimate of Ω
will be truncated on the boundary of its parameter space.
This means that if Ω is diagonal (as for URMA) the maxi-
mum likelihood estimate on the boundary will have one
or both of the between-study variances equal to zero; else
if Ω is non-diagonal (as for BRMA) then either one or
both of the between-study variances equals zero or else
the between-study correlation equals -1 or +1. In meta-
analysis a between-study variance estimate of zero is well-
understood, but a between-study correlation estimate of -
1 or +1 is likely to be less familiar to practitioners. Thomp-
son et al. [6] refer to this issue as 'poor estimation' but it
perhaps should rather be considered a natural conse-
quence of the sensible restrictions imposed on V, and one
that prevents a variance estimate < 0 or a correlation esti-
mate > +1 or < -1, as might otherwise be obtained.

Rationale for the research in this paper

In this paper, to aid practitioners we will further assess the
normal BRMA model and the role of between-study corre-
lation. In particular, we aim to identify the situations

when B is likely to be +1 or -1 and examine the impact

this has on the pooled and between-study variance esti-
mates. We will also evaluate the benefits of BRMA over
two separate URMAs, the more common approach in

practice, and explore extensions to a generalised BRMA
model for meta-analysis of proportions. To achieve these
goals we firstly apply the normal BRMA of equation (1) to
the two motivating examples. We then perform a simula-
tion study of the normal BRMA model, as described
below. The generalised BRMA model is then introduced
and assessed in relation to the normal BRMA model and
two separate generalised URMAs (see Results).

A simulation study to assess BRMA and the between-study 
correlation
We carried out a simulation study of the general normal
model for BRMA in 11 scenarios, labelled (i) to (xi) (Table
2). Each of scenarios (i) to (xi) relates to a different but
realistic specification of equation (1). Scenarios (i) to (vi)
consider complete data, as in the telomerase example,
whereas scenarios (vii) to (vi) consider when some data
are missing at random across studies, as assumed in the
BRMA of Thompson et al. [6]. The scenarios also vary in
the relative sizes of the within- and between-study corre-
lations, and also the within- and between-study variation.
For example, scenarios (i) to (iv) involve within-study var-
iances similar in size to the between-study variances, as
observed in prognostic studies [10], and in scenario (vi)
there is one relatively low and one relatively high
between-study variance, as for the CD4 dataset. The sizes
of the meta-analysis were either n = 5 or n = 50 studies for
complete data, and either n = 10 or n = 50 for missing

ρ̂

Table 2: Scenarios used in the simulations based on equation (1)

Pooled 
values

Between-study 
variances

Within- and 
between-study 

correlation

Within-study variation

Scenario β1 β2 ρWi ρB Median value of the  s: Description

Complete data n = 50 n = 5
(i) 0 2 0.25 0.25 0 0 0.254 0.147 Zero correlation; within-study variation similar to between-study variation
(ii) 0 2 0.25 0.25 0 0.8 0.254 0.147 No within-study correlation but high between-study correlation; within-study 

variation similar to between-study variation
(iii) 0 2 0.25 0.25 0.8 0 0.254 0.147 High within-study correlation but no between-study correlation; within-study 

variation similar to between-study variation
(iv) 0 2 0.25 0.25 0.8 0.8 0.254 0.147 High within- and between-study correlation; within-study variation similar to 

between-study variation
(v) 0 2 0.0025 0.0025 0.8 0.8 0.254 0.147 High within- and between-study correlation; within-study variation large 

relative to between-study variation
(vi) 0 2 0.0025 1.5 0.8 0.8 0.254 0.147 High within- and between-study correlation; within-study variation large (for 

endpoint 1) and small (for endpoint 2) relative to between-study variation
(vii) 0 2 1.5 1.5 0.8 0.8 0.254 0.147 High within- and between-study correlation; within-study variation small 

relative to between-study variation

Missing data n = 50 n = 10
(viii) 0 2 1.5 1.5 0 0.8 0.244 0.183 No within-study correlation but high between-study correlation; within-study 

variance small relative to between-study variance
(ix) 0 2 0.25 0.25 0 0.8 0.244 0.183 No within-study correlation but high between-study correlation; within-study 

variance similar to between-study variance
(x) 0 2 1.5 1.5 0.8 0.8 0.244 0.183 High within- and between-study correlation; within-study variance small 

relative to between-study variance
(xi) 0 2 0.25 0.25 0.8 0.8 0.244 0.183 High within- and between-study correlation; within-study variance similar to 

between-study variance

τ1
2 τ2

2
sij
2
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data. Our method of simulation was deliberately chosen
to be similar to that previously used by Berkey et al. [1]
and Sohn [19]. As an example, we now describe the simu-
lation procedure for scenario (i) with n = 50.

Description of the simulation procedure for scenario (i) 
with n = 50
Generation of a dataset of 1000 meta-analyses

We chose β1 = 0 in order to reflect little clinical benefit

(e.g. a sensitivity of 50%) and in contrast β2 = 2 (e.g. a spe-

cificity of 88%). The within study variances required, i.e.

the 50  s and 50  s, were each found by sampling

from a N(0.25,0.50) distribution and squaring the value

obtained. This produced a median  of 0.25 and an

interquartile range of 0.7, values similar to those for the

telomerase data (median  = 0.21) and for the BRMA of

Thompson et al. [6] (median  = 0.28, interquartile

range = 0.76). The between-study variances,  and ,

were chosen to be 0.25 in scenario (i), which meant that
they were similar in size to the median within-study vari-
ances. The within and between-study correlations were
both set to zero for this scenario. All these choices were
substituted into equation (1) and 1000 meta-analyses
each of 50 studies were generated. Calculations were per-
formed in S-Plus using the 'rmvnorm' function for gener-
ating bivariate normal values (code available upon
request).

Estimation using the dataset of 1000 meta-analyses
Each of the 1000 meta-analyses in scenario (i) were ana-
lysed separately by:

• fitting two separate URMAs as in equation (2) (where ρB

= 0) using REML to estimate β1, β2,  and 

• fitting a BRMA as in equation (1) using REML to esti-

mate β1, β2, , , and ρB

The 1000 BRMA estimates and the corresponding 1000
URMA estimates from scenario (i) were then compared by
calculating:

• average parameter estimates across all the simulations
(to check for bias)

• coverage of the 95% confidence intervals for β1 and β2

• average standard error and mean-square error (MSE) of
β1 and β2

• the number of occasions B was equal to +1 or -1 in the

BRMA

To assess coverage, the 95% confidence intervals for βj
were calculated using:

with nj the number of studies providing endpoint j. This t-
distribution is commonly used in the meta-analysis liter-
ature, although it is only an approximation [20].

Description of the simulation procedure for scenarios (ii) 
to (xi)
Simulations in the other scenarios followed in the same
manner as described above but with the data generated
from the parameter values specific to each scenario as
given in Table 2. For those missing data simulations of
scenarios (viii) to (xi) we simulated data as described for
complete data, except that for each generated meta-analy-
sis we removed the data for the second endpoint in a ran-
domly selected 50% of studies. So, for example, with n =
50 in scenario (viii) each of the 1000 simulated meta-
analyses contained 25 studies with complete data and 25
studies with data for the first endpoint only.

Results
Application to the telomerase and CD4 data

The normal model for BRMA (equation (1)) and then two
separate URMAs (equation (2)) were applied to the tel-
omerase data. Both approaches gave a pooled sensitivity
of about 76% and a pooled specificity of about 88%
(Table 3). The BRMA gave a between-study correlation
estimate of -1 but the profile likelihood reveals that there

is little information regarding ρB with the log-likelihood

gradually increasing as B approaches -1 (Figure 1), the

end of its parameter space. Interestingly, the between-
study variances were estimated to be somewhat larger in
the BRMA than the URMA, and the standard errors of the
pooled estimates were also slightly larger in the BRMA;
just the opposite of what one might expect from a bivari-
ate analysis utilising large correlation [10]. A similar find-
ing was observed upon application of BRMA and URMA
to the CD4 data. The BRMA again gave a between-study
correlation estimate of -1 and both between-study vari-
ances were estimated somewhat larger in the BRMA than
the URMA, as were the standard errors of the pooled esti-
mates.

si1
2 si2

2

sij
2

sij
2

sij
2

τ1
2 τ2

2

τ1
2 τ2

2

τ1
2 τ2

2

ρ̂

ˆ ( . ) ( ˆ ) ,β βj n jt
j

± ∗( )−1 0 05 var

ρ̂
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The question is thus posed: is the estimation of ρB at the
boundary of its parameter space adversely influencing the
other BRMA parameter estimates and, if so, how (e.g. does
it introduce bias)? Also, in terms of the individual pooled
estimates, the telomerase and CD4 examples indicate lit-
tle benefit of BRMA over two separate URMAs, despite the
utilisation of correlation; but is this generally true and in
what situations should a BRMA be preferred? To under-
stand the answers to these important questions, it is help-
ful to now consider the results from our simulation study.

We note at this point that, for both telomerase and CD4,
we also tried estimation of BRMA using an unstructured
form of Ω, rather than using Cholesky decomposition of
Ω as previously. Interestingly, this approach produced
non-sensical between-study correlation estimates of -1.12
and -1.074 for the telomerase and CD4 datasets respec-
tively. This emphasises the importance of a boundary con-
straint on ρB as imposed by the Cholesky decomposition.

Profile log-likelihood for the between-study correlation from the general normal BRMA of the telomerase dataFigure 1
Profile log-likelihood for the between-study correlation from the general normal BRMA of the telomerase data.

 1

 

Table 3: URMA and BRMA results for the telomerase and CD4 datasets

Dataset Model Pooled value 

endpoint 1 1 

(s.e.)

Between-study 
variance endpoint 

2 

Pooled value 

endpoint 2 2 

(s.e.)

Between-study 
variance endpoint 

2 

Between-study 

correlation B

Telomerase Normal URMA 1.155 (0.186) 0.186 1.964 (0.541) 2.386 NA

Normal BRMA 1.166 (0.186) 0.202 2.058 (0.554) 2.584 -1.0

Generalised 
URMA

1.182 (0.176) 0.155 2.215 (0.578) 2.680 NA

CD4 Normal URMA -0.049 (0.0695) 0.025 17.300 (5.561) 379.73 NA

Normal BRMA -0.109 (0.0748) 0.048 18.314 (5.740) 412.96 -1.0

s.e. = standard error; NA = not applicable; 95% confidence interval calculated using t-distribution with 9 degrees of freedom. Restricted maximum 
likelihood estimation was used for the normal models, whereas maximum likelihood estimation was used for the generalised model.
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Simulation results
Table 4 includes the simulation results for scenarios (i),
(ii), (viii) and (ix). The results for all other scenarios are
provided in Appendix 1 (see Additional file 1). We now
discuss the key findings.

Between-study correlation

One can see from Table 4 that the normal model for

BRMA often estimates the between-study correlation, ρB,

as either +1 or -1, especially when the number of studies
in the meta-analysis is small. For example, with n = 5 in

scenario (ii), where the true ρB was 0.8, 605 of the 1000

simulations (60.5%) gave B equal to +1 and 103 simu-

lations (10.3%) gave B equal to -1. This led to a mean

value of B equal to 0.639, a downward bias of about

20%. However, this downward bias is not in itself a con-
cern because it is simply caused by the maximum likeli-

hood estimator sensibly truncating B at +1 and -1,

which improves the mean-square error of B. Further-

more, B is clearly asymptotically unbiased, with the

occurrence of B equal to -1 or +1 and thus the bias in

mean B becoming increasingly less as the number of

studies in the meta-analysis increases (Table 4). Interest-
ingly though, the number of studies required to reduce the

occurrence of B equal to -1 or +1 was far greater when

the within-study variation was large relative to the
between-study variation. For example, even with a large n
= 50 studies in scenario (v), where the within-study varia-
tion was relatively large, 58% of the simulations gave a
between-study correlation of -1 or +1.

These findings indicate why B equals -1 in the BRMAs of

the telomerase and CD4 datasets. For the telomerase data
there are 10 studies; the simulations show that this mag-
nitude of studies will often provide little information

about ρB, causing B to often be constrained at -1 or +1

so that the restrictions imposed on V are met. For the CD4
data, even though there are five more studies than telom-
erase, the mean within-study variance for endpoint j = 1 is
0.15 and this is large relative to the between-study varia-

tion (  = 0.048). In such situations where the within-

study variation dominates, the simulations again show

that B will often require truncation at the end of its

parameter space to ensure V is non-negative definite.

Between-study variance estimates

Our simulation results show that the between-study vari-
ance estimates were less frequently truncated at zero in the
BRMA than the URMA (Table 4). For example, in scenario

(ii) with n = 5  was zero for 104 of the URMA simula-

tions and none of the BRMA simulations. Furthermore, in
those scenarios where the between-study correlation was
often +1 or -1 (e.g. scenario (ii) with n = 5), the normal
BRMA model produces a noticeable upward bias in the
between-study variance estimates. For example, in sce-
nario (ii) with n = 5 there was an upward bias of 0.024 in

 and , about 10% above their true value. To under-

stand analytically why this occurs, we need to consider

that the between-study covariance (τ12) is formulated by

τ12 = ρB τ1 τ2. Now, if B is constrained at -1 or +1, then to

obtain the necessary solution for 12 the maximum like-

lihood estimator can only increase the j s, which do not

have an upper bound constraint. Thus the between-study
variance estimates are inflated to compensate for the con-

straint on B. This explains why the BRMAs of the telom-

erase and CD4 data, where B was truncated at -1, give j

s that are noticeably larger than those from two separate
URMAs. Practitioners need to be aware of this issue; how-
ever, we do not consider it a major concern as the maxi-

mum likelihood estimator for  is still asymptotically

unbiased (the bias decreases as the number of studies
increases) and the inflation is simply caused by the sensi-

ble and necessary constraint on B. Furthermore, the

inflation is essentially conservative, leading to a larger
standard error and mean-square error of pooled estimates
as now discussed.

Pooled estimates

For all complete and missing data scenarios, the pooled
estimates were approximately unbiased for both BRMA

and URMA. Even in those scenarios where B was often

+ 1 or -1 it is encouraging that, despite the upward bias in
between-study variances, there was no systematic bias in
the pooled estimates from the BRMA (Table 4 and Appen-
dix 1 – see Additional file 1). The main affect on the
pooled estimates was an inflated standard error and
mean-square error. This is a conservative property, but
meant that in some complete data scenarios the BRMA
performed slightly worse than URMA, despite the utilisa-
tion of correlation in the BRMA that might be expected to
improve efficiency [10]. For example, in the n = 5 results
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Table 4: Simulation results of the normal BRMA and URMA models for scenarios (i), (ii), (viii), and (ix)

Meta-analysis 
model

n No. of the 
1000 

simulations 
that 

converged

Bias of 
mean 

1

Mean 
s.e. of 

1

MSE 
of 

1

Coverage of the 

95% CIs for 1

Bias of 
mean 

2

Mean 
s.e. of 

2

MSE 
of 

2

Coverage 
of the 95% 

CIs for 2

Bias of mean 

(no. of = 0)

Bias of mean 

(no. of = 0)

Bias of 
mean 

B

% of B = -1 % of B = 1

Scenario (i): Complete data – zero correlation; within-study variance similar to between-study variance

URMA 50 1000 -0.005 0.102 0.010 94.8% 0.001 0.107 0.0108 95.4% -0.003 (0) 0.005 (1) - - -

BRMA 50 1000 -0.005 0.101 0.010 94.7% 0.001 0.106 0.0108 95.5% -0.003 (0) 0.005 (0) -0.001 0.2% 0.4%

URMA 5 1000 -0.002 0.267 0.081 96.0% -0.006 0.267 0.0887 94.0% -0.006 (89) 0.015 (81) - - -

BRMA 5 998 -0.002 0.274 0.081 96.7% -0.006 0.269 0.0894 95.3% 0.008 (10) 0.024 (0) -0.027 29.6% 29.0%

Scenario (ii): Complete data – no within-study correlation, high between-study correlation; within-study variance similar to between-study variance

URMA 50 1000 -0.004 0.102 0.010 95.6% 0.001 0.106 0.0114 94.4% 0 (0) -0.004 (1) - - -

BRMA 50 1000 -0.004 0.100 0.010 95.3% 0 0.104 0.0107 95.4% 0.001 (0) -0.001 (0) -0.005 0% 25.2%

URMA 5 999 -0.002 0.271 0.077 97.3% -0.005 0.263 0.0826 94.2% 0.004 (80) 0.005 (104) - - -

BRMA 5 1000 -0.002 0.279 0.077 98.1% -0.008 0.268 0.0819 95.7% 0.024 (15) 0.024 (0) -0.161 10.3% 60.5%

Scenario (viii): Missing data – no within-study correlation, high between-study correlation; within-study variance smaller than between-study variance

URMA 50 1000 -0.004 0.071 0.005 94.9% 0 0.099 0.0101 95.0% -0.006 (0) -0.005 (0) - - -

BRMA 50 1000 -0.004 0.071 0.005 94.9% 0 0.082 0.0068 95.2% -0.006 (0) -0.007 (0) -0.001 0% 0%

URMA 10 1000 -0.002 0.154 0.028 94.1% -0.003 0.209 0.0576 93.7% -0.006 (0) -0.006 (0) - - -

BRMA 10 1000 -0.002 0.154 0.028 94.1% -0.001 0.174 0.0427 93.3% -0.006 (0) 0.006 (0) -0.040 0% 3.9%

Scenario (ix): Missing data – no within-study correlation, high between-study correlation; within-study variance similar to between-study variance

URMA 50 1000 -0.004 0.102 0.010 95.6% -0.001 0.145 0.0228 94.2% 0 (0) -0.003 (6) - - -

BRMA 50 1000 -0.004 0.101 0.010 95.8% -0.003 0.137 0.0203 94.7% 0.001 (0) 0.003 (0) -0.012 0.1% 35.6%

URMA 10 1000 -0.001 0.218 0.045 93.9% -0.005 0.263 0.0825 94.2% 0.006 (45) 0.005 (84) - - -

BRMA 10 997 -0.001 0.222 0.045 96.5% -0.007 0.255 0.0797 95.6% 0.020 (0) 0.025 (0) -0.164 10.1% 60.2%

MSE = mean-square-error, n = number of studies in each meta-analysis, CIs = confidence intervals, s.e. = standard error;
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for scenario (iii), where about 56% of simulations gave

B equal to +1 or -1 and there was an upward bias in

between-study variances, the standard error/mean-square

error of 1 was larger in the BRMA (0.272/0.083) than

the URMA (0.268/0.081). This explains the BRMA results
for telomerase and CD4, where the standard errors of
pooled estimates were larger in the BRMA than the URMA
due to the inflated between-study variances.

The coverage of β1 and β2 was between 93% and 98% in

most scenarios assessed, and was often similar in URMA
and BRMA. It is hard, though, to make general conclu-

sions regarding coverage, as those situations where B is

often +1 or -1 are the same situations where the t-distribu-
tion with n-1 degrees of freedom is a poor approximation
to the true sampling distribution. The true degrees of free-
dom to use here are complex and account for the within-
study variances [12]; however this is rarely done in meta-
analysis and is beyond the scope of this paper.

BRMA versus URMA for estimating the pooled values

For complete data, in most scenarios the BRMA was mar-
ginally superior to URMA as the pooled estimates had
slightly smaller standard errors and mean-square errors,
especially given large correlations (Table 4 and Appendix
1 – see Additional file 1). However, the URMA sometimes
performed equally well, and occasionally even better in

those scenarios where B was often +1 or -1 as discussed

above. We also compared the subset of BRMA results

where B did not equal +1 or -1 with the corresponding

URMA results, and again found that BRMA was generally
slightly superior to URMA. This finding agrees with previ-
ous algebraic results [10], that given complete data there
is generally a very small benefit of BRMA over URMA for

estimating β1 and β2 themselves. Our focus here is on the

individual pooled estimates, but we note that there are
also broader reasons why a BRMA may be preferred over
URMA for complete data. These are summarised in the
Discussion to ensure a more complete picture for practi-
tioners considering BRMA.

For the missing data simulations, the pooled estimate for
endpoint j = 2 was of particular interest because of the
missing data for this endpoint. Encouragingly, the mean-

square error and mean standard error of 2 were much

smaller in the BRMA than the URMA, although the cover-
age was comparable (Table 4 and Appendix 1 – see Addi-

tional file 1). For example, in the n = 10 simulations of
scenario (xi) the mean standard error was 0.225 in the
BRMA compared to 0.262 in the URMA, and the MSE was
0.0708 in the BRMA compared to 0.0921 in the URMA.
The reduction in standard error and MSE was larger when
both the within- and between-study correlations were

high. Even when ρWi was zero there was still a reasonable

benefit if ρB was high; for example, in the n = 10 simula-

tions of scenario (viii) the mean standard error of 2 was

0.174 in the BRMA compared to 0.209 in the URMA. This
finding agrees with algebraic work regarding the benefits
of BRMA for when there are data missing at random [10].
Practitioners should again consider this benefit alongside
the other broader reasons for using BRMA rather than
URMA (see Discussion).

Extended simulations of the normal BRMA model
In our above simulations of the normal BRMA model we
used non-negative within- and between-study correla-
tions; however, in reality negative correlations may arise
as in the telomerase and CD4 examples. Also, our simula-
tions took the within-study correlations to be the same in
each study, while in reality their value may vary. Further
simulations were thus performed to assess negative corre-
lation and discrepant within-study correlations. These
gave findings consistent with those identified previously
(Appendix 2 – see Additional file 2); the BRMA was still
beneficial over URMA for estimating the pooled end-
points, and where the between-study correlation estimate
was often +1 or -1 there was again an upward bias in the
BRMA between-study variance estimates.

For simplicity, in all our simulations  and  were gen-

erated independently but in reality they are likely to be
correlated due to the sample size being similar for both

endpoints. We also generated the  s independent to the

Yij s, yet in many situations, such as the synthesis of log-

odds ratios, the size of  may be related to the size of Yij.

To address this, we also performed further simulations
where we firstly generated individual binary data for diag-
nostic studies, using simulation code kindly provided by
Chu and Cole [12]. From this realistic raw data we then

calculated the Yij s and their  s, before then fitting the

normal BRMA model as before. The results again show
that the between-study correlation estimate is often +1 or
-1 and the BRMA is still preferable to URMA, with
improved mean-square error, coverage and, especially,
bias of estimates (Table 5). However, the results also
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revealed some severe limitations of a normal model for
meta-analysis of binary data, as now discussed.

A generalised model for BRMA of proportions
So far in this paper we have modelled the summary statis-
tics across studies, i.e. the Yij s, and assumed they are nor-
mally distributed. Indeed, in our main simulations we
generated the Yij s directly from the normal BRMA model
of equation (1); thus, our conclusions are only valid for Yij
s that can truly be assumed normally distributed. This nor-
mality assumption is common in the meta-analysis field,
and will often be suitable (see Discussion). However, in
our two motivating examples it is more plausible for the
CD4 data than the telomerase data as the latter involves a
meta-analysis of proportions, for which the normality
assumption is not appropriate when some studies have a
small number of patients or the proportions are close to 0
or 1. For this reason recent articles [12] suggest that, rather
than modelling the logit-proportions using the normal
distribution, one should directly model the binary data
using a binomial distribution. This approach also avoids
the use of ad hoc continuity corrections in those studies
which have zero cells. In terms of diagnostic studies, this
generalised model for BRMA of sensitivity and specificity
can be written as follows [12]:

no. testing positivei~Binomial (total no. true positivesi,
sensitivityi) logit(sensitivityi) = β1 + u1

no. testing negativei~Binomial (total no. true negativesi,
specificityi) logit(specificityi) = β2 + u2

Equation (3) can be fitted using maximum likelihood
estimation in SAS NLMIXED. Chu and Cole [12] show
that where the true sensitivity and specificity are large, this
generalised BRMA model produces close to unbiased
pooled and between-study correlation estimates, whereas
the general normal BRMA model produces somewhat
biased estimates. This can also be seen in our simulations
results for meta-analysis of proportions in Table 5. The
mean-square error, coverage, and, most noticeably, bias of
estimates are far superior in the generalised BRMA than
the normal BRMA. Furthermore, the generalised BRMA is
also marginally superior in terms of bias to two separate
generalised URMAs (i.e. equation (3) where ρB = 0),
emphasising that the BRMA is also beneficial over URMA
in the generalised model framework. Note though that,
although it is the best method, the generalised BRMA
model is itself not without bias (Table 5); to rectify this,
extension to REML or other estimation techniques is
potentially important.

To conclude our research we applied the generalised
BRMA model to the telomerase data. Unfortunately the
model would not converge appropriately; different start-
ing values all produced a between-study correlation esti-
mate of -1 but gave markedly different parameter
estimates and caused spurious standard errors. For exam-
ple, for one set of starting values the model gave the stand-

ard error of 1 as 30.5, whereas for another set the

standard error was close to zero. Indeed SAS provides the
following warning: 'the final Hessian matrix is not posi-
tive definite, and therefore the estimated covariance
matrix is not full rank and may be unreliable'. The prob-
lem here is again due to the between-study correlation of

estimate -1 in Ω, as this causes the determinant of  to
be zero. This has greater implications in equation (3) than
for the normal BRMA model of equation (1). The maxi-
mum likelihood estimator for equation (1) involves the

determinant of δi +  in each study, which will not be

zero unless the within-study correlations are also +1 or -1.
However, in equation (3) the maximum likelihood esti-

mator involves the determinant of  itself, which causes
problems akin to dividing by zero, which is why spurious
estimates and standard errors are produced. It is clear that
there is simply little information to estimate the between-
study correlation for the telomerase dataset, due to the
small number of studies. This issue is also evident in our
n = 10 simulations of the generalised BRMA model (Table
5), where 397 of the 1000 simulations did not converge

appropriately. In such situations where estimating ρB is

difficult, application of two generalised URMAs may be
the most appropriate option available (Table 3), although
specifically for diagnostic studies other methods may also
be valuable [21].

Discussion
Multivariate meta-analysis models are increasingly used
to synthesise multiple, correlated endpoints of interest,
especially in studies of diagnosis [5,21] and surrogate out-
comes [7,8]. The Campbell Collaboration suggests that
meta-analysts 'should not ignore the dependence among
study outcomes'; however, they also note that 'the conse-
quences of accounting for (modelling) dependence or
ignoring it are not well understood' [22]. To therefore aid
practitioners considering the approach, in this paper we
have examined two models for BRMA and compared
them to separate univariate syntheses, the traditional
approach. We now discuss the main conclusions from our
work and suggest future research priorities.
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Table 5: simulation results for meta-analysis of proportions

Meta-analysis 
model

n No. of the 1000 
simulations 

that converged

Bias of 
mean 

1

Mean 
s.e. of 

1

MSE 
of 

1

Coverage of 
the 95% CIs 

for 1

Bias of 
mean 

2

Mean 
s.e. of 

2

MSE 
of 

2

Coverage of 
the 95% CIs 

for 2

Bias of mean 

(no. of = 0)

Bias of mean 

(no. of = 0)

Bias of 
mean 

B

% of B = -1 % of B = 1

Complete data – we set 25 true positives and 25 true negatives in each study, with the pooled logit-sensitivity and pooled logit-specificity set at 1.386 (i.e. a sensitivity and specificity of 0.8). The between-study 
correlation was set as -0.8, and the between-study variation was set as 1 for both sensitivity and specificity. Simulations were performed as in Chu and Cole [12].

Normal URMA 10 995 -0.152 0.311 0.120 93.1% -0.174 0.310 0.119 93.2% -0.313 (17) -0.309 (5) - - -

Normal BRMA 10 995 -0.124 0.318 0.118 93.8% -0.144 0.317 0.115 94.5% -0.245 (7) -0.245 (2) 0.067 53.7% 0%

Generalised URMA 10 1000 -0.013 0.330 0.124 93.8% -0.037 0.328 0.116 94.0% -0.186 (20) -0.189 (21) - - -

Generalised URMA 10 603* -0.012 0.339 0.119 94.9% -0.030 0.342 0.118 95.8% -0.136 (0) -0.114 (0) - - -

Generalised BRMA 10 603 -0.009 0.339 0.119 95.4% -0.029 0.341 0.116 96.2% -0.134 (0) -0.113 (0) -0.084 0% 0%

Normal URMA 50 1000 -0.175 0.141 0.049 77.2% -0.182 0.141 0.050 75.5% -0.337 (0) -0.335 (0) - - -

Normal BRMA 50 1000 -0.151 0.142 0.042 81.4% -0.157 0.143 0.043 81.3% -0.285 (0) -0.282 (0) 0.087 17.0% 0%

Generalised URMA 50 1000 -0.018 0.157 0.024 95.1% -0.026 0.157 0.023 96.1% -0.091 (0) -0.084 (0) - - -

Generalised URMA 50 973* -0.019 0.157 0.024 95.1% -0.022 0.157 0.023 96.1% -0.087 (0) -0.080 (0) - - -

Generalised BRMA 50 973 -0.016 0.157 0.024 96.0% -0.020 0.158 0.023 96.2% -0.078 (0) -0.071 (0) 0.019 0% 0%

MSE = mean-square-error, n = number of studies in each meta-analysis, CIs = confidence intervals, s.e. = standard error;
Restricted maximum likelihood estimation was used for the normal models, whereas maximum likelihood estimation was used for the generalised models.
* These were a subset of the 1000 URMA simulations that converged and were the same ones that converged in the equivalent BRMA; this helps fairly compare the URMA and BRMA results.
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The general normal model for BRMA
A normal meta-analysis model is appropriate when the Yij
s can be assumed normally distributed; this assumption is
commonly used, for example where the Yij s are log-odds
ratios [15], log-hazard ratios [10], mean differences [1]
and log-event rates [11].

Between-study covariance parameters

It is clear from our work that maximum likelihood estima-
tion of a normal random-effects meta-analysis model will

often truncate the between-study covariance matrix, Ω, on
the boundary of its parameter space. For URMA this is
observed by a between-study variance estimate of zero,
whilst in BRMA it is more likely observed by a between-
study correlation of +1 or -1. Practitioners are likely to be
familiar with the concept of zero variance, but are perhaps
less likely to appreciate why a correlation is estimated at
unity. However, both arise for the same reason, namely

that Ω must be a non-negative definite matrix such that

 is not < 0 and ρB is not > +1 or < -1. Our simulations

show that, especially when the number of studies is small
and/or the within-study variance is large relative to the
between-study variance, such truncation is often necessary
to ensure the sensible restrictions are met. In the normal

BRMA, we have also shown that a consequence of B

being truncated at +1 or -1 is an upward bias in between-
study variance estimates, which are inflated upwards to

compensate for the restriction on B. Practitioners

should not, though, be overly concerned by this. We have
shown it does not cause any systematic bias in the pooled
estimates from BRMA, and it leads to conservative stand-
ard errors and mean-square errors.

The benefits over URMA for the pooled estimates

Our simulation results highlight that a normal model for
BRMA is preferable to two separate URMAs for estimating
the pooled endpoints, and our results are consistent with
previous findings that show how the inclusion of correla-
tion allows the 'borrowing of strength' across endpoints
[1,10,19]. We thus recommend practitioners use a BRMA
rather than two separate URMAs where possible. In partic-
ular, when some data are missing at random the BRMA is
likely to produce a much smaller standard error and
mean-square error of pooled estimates than URMA, even
for moderate correlations. Riley et al. [10] give an applied
example that shows this. For complete data, practitioners
should not expect to see much gain in statistical efficiency
over URMA; the mean-square error and standard error of
pooled estimates are generally only marginally smaller in

BRMA than URMA, and on the occasion of B = +1 or -1

they may even be slightly worse in BRMA (due to the
inflated between-study variances, as in the telomerase and
CD4 examples). However, there are broader reasons why
BRMA may still be preferable in this situation (see below).

The generalised model for BRMA
In equation (3) we extended our work to a generalised
BRMA model for meta-analysis of two proportions. For
synthesis of two proportions, like sensitivity and specifi-
city, this approach is preferable to the general normal
BRMA model (Table 5) because the normality assumption
breaks down when the proportions are close to 0 or 1 and
when there are small patient numbers [12]. It also avoids
the use of ad-hoc continuity corrections when there are
zero cells in some studies. Practitioners synthesising diag-
nostic studies are thus encouraged to use the generalised
BRMA model, rather than the normal model or indeed
two separate generalised URMAs. However, they should
also be aware that a between-study correlation estimate of
+1 or -1 in the generalised BRMA model is likely to be
associated with non-convergence and unstable pooled
estimates, as discussed for the telomerase data. In such sit-
uations there may be little information to estimate the
correlation, and so practitioners may wish to consider
other methods for synthesising diagnostic studies, such as
the hierarchical summary receiver operating characteristic
(HSROC) method [21]; if this is also not possible then the
best option may be a generalised URMA for sensitivity and
specificity separately (Hamza et al., personal communica-
tion).

The broader benefits of BRMA
Our simulations focused mainly on the benefits of BRMA
over URMA for estimating the pooled endpoints. How-
ever, there are also broader reasons why a BRMA may be
preferable to URMA, for either complete or missing data.
For example, BRMA allows one to describe the bivariate
relationship between endpoints [4,5], model, test or make
predictions from their association [7], and estimate some
function of the two pooled endpoints, like β1 - β2 [10], β1
+ β2 [5], or β1/β2 [6]. For instance, for the telomerase data,
a BRMA enables a single framework to estimate the
pooled sensitivity, pooled specificity, and the pooled
diagnostic odds ratio (exp(β1 + β2)) [21]. Furthermore,
Reitsma et al. [5] show that a BRMA of diagnostic studies
enables the correlation between pooled endpoints to be
estimated, which allows one to measure the shape of their
bivariate relation and construct confidence ellipses. It also
allows calculation of the conditional variance in one
parameter given a fixed value of the other parameter, and
allows drawing of the summary ROC curve. In terms of
the CD4 data, the estimated correlation between pooled
endpoints from a BRMA enables one to predict the time of

τ j
2

ρ̂

ρ̂

ρ̂
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onset of AIDS or death from a future patient's CD4 level.
Thus the BRMA can help establish whether CD4 should be
used as a surrogate of disease-free survival [7,8], and fur-
ther research of multivariate meta-analysis in this context
is recommended. A BRMA may also be extended to a
bivariate meta-regression by including additional study-
level covariates that explain the between-study heteroge-
neity. For example, one may wish to include a covariate
for study quality in meta-analysis of diagnostic studies
[23]. Berkey et al [1] show that a bivariate meta-regression
is more efficient than separate univariate meta-regressions
for assessing such study-level covariates, again due to the
inclusion of correlation.

Further research suggestions

For the general normal BRMA model, the role of estima-
tion techniques other than REML would be interesting to
consider, especially as other potentially better options
have just been proposed [24]. For the generalised BRMA
model, SAS NLMIXED currently only allows maximum
likelihood estimation and so extension to REML is
required, especially as the maximum likelihood estimates
are not without bias (Table 5). Further research of multi-
variate meta-analysis within a Bayesian framework is also
potentially important, as it would enable the incorpora-
tion of prior knowledge about the parameters, which may
be valuable when the number of studies is small [15,25].

It would also allow the uncertainty of the  s,  s and

ρWi s to be taken into account, as in practice they will only

be estimates themselves as mentioned by Daniels and
Hughes [7]. Further assessment of the role of the within-
study correlations is also required, in particular what
should we do when they are non-zero but unavailable?
For the meta-analysis of surrogate endpoints it has been
suggested that the within-study correlations are likely to
be small (between 0 and 0.2) and can plausibly be consid-
ered constant across studies [7], or even zero [26]. How-
ever, this is not necessarily true in other fields; for
example, in a multivariate meta-analysis of longitudinal
data the within-study correlations varied between 0.48
and 0.97 (Jones et al., personal communication).

The use of individual patient data (IPD) in multivariate
meta-analysis should also be considered, especially as IPD
is the gold-standard for meta-analysis [27] and it would
allow any unavailable within-study correlations to be cal-
culated directly [7]. In practice though, IPD may only be
available for a proportion of studies, and so methods for
multivariate meta-analysis are required that combine IPD
and aggregate data [27,28]. There has also be little consid-
eration of how to assess dissemination bias using a multi-

variate meta-analysis framework [29,30], and this
warrants attention as meta-analysis datasets are often
fraught with such issues as publication bias [31] and
within-study selective reporting [32,33]. In such scenarios
some of the missing endpoints may not be missing at ran-
dom, and so sensitivity analyses to assess how the meta-
analysis results change under a variety of missing data
assumptions would be potentially valuable [34].

Conclusion
In this paper we have used analytic reasoning, two applied
examples and a realistic simulation study to highlight the
benefits of a normal model for BRMA over two separate
URMAs, and explain why the between-study correlation is
often estimated as +1 or -1. For meta-analysis of propor-
tions, we also extended our work to a generalised model
for BRMA, to ensure the binary data is modelled correctly.
Our work adds to a growing body of literature indicating
the rationale and benefits of a multivariate approach to
meta-analysis, and we encourage meta-analysts to con-
sider the approach in practice.
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