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Abstract
Background: When subgroup analyses of a positive clinical trial are unrevealing, such findings are commonly used to argue that
the treatment's benefits apply to the entire study population; however, such analyses are often limited by poor statistical power.
Multivariable risk-stratified analysis has been proposed as an important advance in investigating heterogeneity in treatment
benefits, yet no one has conducted a systematic statistical examination of circumstances influencing the relative merits of this
approach vs. conventional subgroup analysis.

Methods: Using simulated clinical trials in which the probability of outcomes in individual patients was stochastically determined
by the presence of risk factors and the effects of treatment, we examined the relative merits of a conventional vs. a "risk-
stratified" subgroup analysis under a variety of circumstances in which there is a small amount of uniformly distributed
treatment-related harm. The statistical power to detect treatment-effect heterogeneity was calculated for risk-stratified and
conventional subgroup analysis while varying: 1) the number, prevalence and odds ratios of individual risk factors for risk in the
absence of treatment, 2) the predictiveness of the multivariable risk model (including the accuracy of its weights), 3) the degree
of treatment-related harm, and 5) the average untreated risk of the study population.

Results: Conventional subgroup analysis (in which single patient attributes are evaluated "one-at-a-time") had at best moderate
statistical power (30% to 45%) to detect variation in a treatment's net relative risk reduction resulting from treatment-related
harm, even under optimal circumstances (overall statistical power of the study was good and treatment-effect heterogeneity
was evaluated across a major risk factor [OR = 3]). In some instances a multi-variable risk-stratified approach also had low to
moderate statistical power (especially when the multivariable risk prediction tool had low discrimination). However, a
multivariable risk-stratified approach can have excellent statistical power to detect heterogeneity in net treatment benefit under
a wide variety of circumstances, instances under which conventional subgroup analysis has poor statistical power.

Conclusion: These results suggest that under many likely scenarios, a multivariable risk-stratified approach will have
substantially greater statistical power than conventional subgroup analysis for detecting heterogeneity in treatment benefits and
safety related to previously unidentified treatment-related harm. Subgroup analyses must always be well-justified and interpreted
with care, and conventional subgroup analyses can be useful under some circumstances; however, clinical trial reporting should
include a multivariable risk-stratified analysis when an adequate externally-developed risk prediction tool is available.
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Background
Although many types of "evidence" can help guide clinical
practice, [1-3] the randomized controlled trial (RCT) is
the standard by which we define "evidence-based" medi-
cine and is the preferred "evidence" when setting guide-
lines and policies for patient care [4-8]. It is well known,
however, that the average results of RCT's often do not
apply to all, or even most, individuals in a clinical trial,
since a small group of patients who receive substantial
benefit can heavily influence the average benefit (i.e.,
mean main effect) across all study subjects [2,3,9-14].
Therefore, subgroup analysis is often used in an attempt
to identify specific groups of patients who may receive
substantially more or less benefit compared to the average
effect of the study intervention[15].

Differences in the absolute benefit of treatment across sub-
jects arises even when a treatment has a homogeneous net
relative risk reduction (RRR), since in such instances abso-
lute risk reduction (ARR) will vary as a function of a per-
son's risk in the absence of treatment [2,9,10,14,16-20].
For example, if the RRR is 50% in all study subjects, treat-
ing someone with a 40% 5-year risk will result in a 20 in
100 ARR (number needed to treat [NNT] = 5) but some-
one with a 4% risk will receive only a 2 in 100 ARR (NNT
= 50)[20]. This heterogeneity in ARR will be further
amplified any time that there is treatment-related harm
that is, at least in part, independent of risk for the out-
come in the absence of treatment. There are many known
examples of this phenomenon. For example, amongst
middle-aged men, higher and lower cardiovascular (CV)
risk patients have similar risks of bleeding complications
from aspirin therapy. Therefore, as CV risk in the absence
of treatment decreases, at some point harm related to aspi-
rin therapy will exceed that of the benefits of aspirin ther-
apy. This phenomenon is almost ubiquitous when very
low-risk individuals can be identified, since most inter-
ventions have a non-negligible risk that is largely unre-
lated to the subject's risk for the targeted adverse outcome.

Conventional subgroup analysis may be poorly suited to
detect such heterogeneity in treatment benefit [2,9,11-
15,22,23]. In particular, conventional subgroup analysis
often has quite limited statistical power [15-21]. Since
there are usually multiple variables that merit subgroup
comparisons, the risk of false positive findings due to
multiple comparisons compounds the risk of false nega-
tive findings due to low statistical power.

Multivariable risk-stratified analysis, an approach to sub-
group analysis that utilizes multivariable prediction tools,
has been advocated by some methodologists as a supple-
ment to or replacement for conventional subgroup analy-
sis [2,9,11,14,22,23]. A multivariable risk-stratified
approach does not conduct multivariable analysis directly

on the clinical trial data, but rather, risk-stratifies the study
population based upon their known risk factors using a
multivariable risk prediction tool, which should be devel-
oped and validated using previous observational and
experimental studies[22]. The multivariable prediction
tool is used to calculate each study subject's predicted risks
and benefits from treatment; then, a single statistical com-
parison is conducted to test for heterogeneity in net treat-
ment benefit (estimated treatment-related benefit minus
estimated treatment-related harm).

Some recent studies have used this type of multivariable
risk-stratified analysis and have uncovered major varia-
tions in net relative treatment benefit that were not iden-
tifiable by examining patient factors one at a time. For
example, The Global Utilization of Streptokinase and tPA
for Occluded coronary arteries (GUSTO) study, published
in 1993, found a statistically and clinically significant
decrease in mortality for acute myocardial infarction in
patients who were treated with accelerated tPA compared
to those treated with streptokinase ($33,000 per life-year
saved) and traditional subgroup analyses did not accu-
rately identify subgroups that did not benefit[24]. How-
ever, Kent et al[22] reanalyzed the GUSTO results but this
time stratified patients based upon an externally devel-
oped and validated model (a model not available at the
time of the original report) that predicted: 1) risk of death
due to myocardial infarction, 2) risk of thrombolytic-
related intracranial hemorrhage, and 3) differential bene-
fit from thrombolytics (as determined by time from onset
of chest pain to the time of thrombolytic administration).
They found that 25% of GUSTO subjects accounted for
more than 60% of the net benefit ($13,900 per life-year
saved) and that almost 100% of the net benefit of tPA
occurred in the half of patients with the highest predicted
benefit. No single variable or simple combination of var-
iables was able to discriminate between patients most
likely or unlikely to benefit from tPA. Although the
number of published risk-stratified analyses of clinical tri-
als remain few in number, similar anecdotes regarding the
superiority of a risk-stratified analysis have been reported
for other cardiac treatments[25] and for surgical and med-
ical treatments directed at stroke prevention and therapy
[26,27]. In most of these examples, conventional sub-
group analyses were unable to identify large variations in
treatment benefit that were identifiable using multivaria-
ble risk-stratification.

All sub-group analyses require cautious interpretation;
[15,21] however, there are several proposed reasons why
a multivariable risk-stratified approach might be a major
improvement on traditional subgroup analysis. First,
combining predictors of net benefit (risk factors for bad
outcomes in the absence of vs. in the presence of the treat-
ment) into a single prediction tool can greatly increase the
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degree of risk-stratification, since most common health
outcomes have multiple independent risk factors [22,28-
40]. Examples include predicting cardiovascular risk using
a single risk factor vs. using the Framingham 10-year risk
calculator[39] or predicting ICU death using any 1 or 2 of
APACHE's components vs. the full APACHE III
model[36]. Second, prediction tools often produce con-
tinuous estimates of risk. Previous work by Brookes et al
[21,41] has demonstrated how subgroup analyses that
utilize continuous independent variables and examine
interaction terms can produce substantial improvements
in statistical power, since such analytic approaches better
utilize the full sample size of the study by avoiding divid-
ing the sample up into discrete subgroups[22]. Finally, a
multivariable risk-stratified analysis reduces the chance of
false positive results because it represents a single statisti-
cal comparison (thereby avoiding the multiple compari-
sons of conventional subgroup analysis).

Although recent commentaries have advocated that mul-
tivariable risk-stratification should be employed more
routinely, [2,9,11,14,22] we can find no systematic statis-
tical evaluations trying to quantify the relative benefits of
a multivariable approach over conventional one-variable-
at-a-time subgroup analysis and circumstances that
impact their relative statistical power when trying to
detect heterogeneity in net relative risk reduction related
to treatment-related harm. Therefore in this paper we
examine the statistical power obtained using traditional
vs. risk-stratified subgroup analyses under a variety of
commonly occurring study circumstances.

Methods
There are 3 factors that can influence whether one sub-
group benefits more or less from an intervention than
another: 1) greater risk of adverse outcomes in the absence
of treatment (predictors of pre-treatment risk), 2) greater
probability of treatment complications (predictors of
treatment-related risk), and 3) greater chance of benefit-
ing from treatment (predictors of differential relative
treatment response) [22]. In this paper, we considered a
simplified case in which only predictors of pre-treatment
risk are known, which can be estimated in a clinical trial
by examining the event rate in the control group). There
are three reasons for choosing this approach. First, it is the
most common scenario. Unlike genetically engineered
mice used in laboratory experiments, people in most clin-
ical trials have substantial heterogeneity in the number
and type of risk factors present at baseline. There exist
published multivariable risk prediction tools for most
common major clinical outcomes, allowing us to risk-
stratify people, at least to some degree, into subjects with
lower vs. higher risk in the absence of the study treatment
[1,28-40] (although the predictiveness of these tools may
vary when used in different clinical situations and patient

populations). In contrast, risk prediction tools for treat-
ment-related complications are not as common. Further,
we know even less about biologic factors that may influ-
ence heterogeneity in subject's relative response to treat-
ment (although this may change in the future as genetic
mechanisms of treatment response are better delineated).
Second, varying parameters across all three domains
simultaneously (pre-treatment risk, treatment-related risk
and differential relative treatment response) requires the
combination of multiple models which greatly increases
the complexity of presenting and understanding what is
influencing the results. Since the basic principle is the
same whether you vary all three factors or just pre-treat-
ment risk, we felt that the increased complexity of varying
all three factors was not justified, especially since varying
only pre-treatment risk leads to a conservative estimate of
the degree of treatment-effect heterogeneity and our
results were already quite favorable to a multivariable
risk-stratified approach,.

Therefore, we examined the relative merits of conven-
tional sub-group vs. risk-stratified subgroup analysis
under a scenario in which there is a small annual proba-
bility of treatment-related complications that is independ-
ent of pre-treatment risk for the study's primary outcome.
Clinical examples include heterogeneity in the treatment-
effect of anti-coagulation for atrial fibrillation (since the
risk factors for anticoagulant-related bleeding complica-
tions differ from the risk factors for stroke), and heteroge-
neity in the benefits of aortic aneurysm surgery (since the
risk factors for the surgery differ from the risk factors for
aneurysm rupture).

In all examples reported in this paper, the study has the
following basic characteristics:

1. N = 8800 (n1 = 4400 and n2 = 4400), yielding 80% sta-
tistical power to detect a relative risk reduction of ≥ 25%
(two-tailed test; α = 0.05), and

2. The treatment decreases pre-treatment risk of major
adverse events (i.e., the control event rate [CER]) by 50%
over a 5-year period but at a cost of some uniform rate of
treatment related harm.

The base-case sets the treatment-related harm at 3 serious
treatment complications per year per 1000 patients
treated (0.3%). This results in a net treatment benefit
determined by the formula: net 5-year RRR = [control
event rate * .5] - [0.003 * 5]). This basic scenario provides
us with an example of a well-powered study for detecting
main effects in which the medication is very effective in
decreasing the risk of some bad outcomes but has sub-
stantial variation in the treatment's net RRR (treatment-
related benefit minus treatment-related harm) due to a
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small uniform rate of treatment-related harm (see Figure
1).

Next, we examined the statistical power of conventional
and multivariable risk-stratified analysis to detect the
presence of this treatment-effect heterogeneity under a
variety of study circumstances. First, we examined the
impact of varying the average pre-treatment risk of the
study population (CERs) and the number of independent
risk factors. We then examined the impact of the follow-
ing on conventional subgroup analysis: changes in 1) the
risk factor's odds ratio, and 2) the prevalence of the indi-
vidual risk factor being examined. Finally, we examined
the impact of the following on a multivariable risk-strati-
fied approach: 1) the number, prevalence and odds ratios
of the individual risk factors in the prediction model, 2)
the predictiveness of the model, 3) the accuracy of the pre-
diction model's weights, and 4) the probability of treat-
ment-related complications. The predictiveness of the
multivariable tool was summarized by the area under the
receiver operator characteristic (AUROC) curve from a
logistic regression model, also known as the C-statistic.

For each of the instances above, we calculated the statisti-
cal power based upon standard simulation tech-
niques[41]. When trying to represent the complexities of
the real world, there is often not an appropriate analytic
method or closed form expression for determining sample
size requirements. Under such circumstances, simulation
is the best method for exploring important questions
about study design and power [21,41-44]. Simulation
techniques can allow for consideration of the heterogene-
ity of treatment effects and interactions and correlations
between patient factors. For each iteration of the simula-
tion, a sample was generated by randomly drawing obser-
vations, with replacement, from a population with the
specified study characteristics. The parameters were esti-
mated by logistic regression with the occurrence of the pri-
mary outcome (1 = yes, 0 = no) as the dependent variable
for each of two thousand iterations of the specified sam-
ple size (N = 8800). The overall treatment effect was tested
using treatment arm (1 = treated, 0 = control) as the inde-
pendent variable. The significance of subgroup effects
were tested using an interaction term, as proposed by
Brookes, et al [21,41]. This model included a variable for
the subgroup (either for the individual risk factor [RF] or
a multivariable risk index), the variable for treatment arm
and an interaction term between the two
(RF*intervention_group) in the regression model. A test
statistic was calculated for the parameters of interest for
each iteration and the proportion of the 2000 iterations
for which the p-value of the test statistic is less than .05
represents the power for the test of that parameter[41].
The 2000 iterations resulted in 95% confidence interval
half-widths of ≤ 2 percentage points for all power calcula-

tions reported. Further details on this method can be
found elsewhere [21,41-44].

Results
Heterogeneity of treatment benefit
Panel A of the Figure shows the functional relationship
between net RRR (treatment benefit minus treatment
harm) and pre-treatment risk (which in a clinical trial is
equivalent to the true CER control event rate [CER]) in a
hypothetical clinical trial when a treatment decreases 5-
year pre-treatment risk by 50% but at a cost of 3 serious
treatment-related complications per year per 1000 people
treated. As can be seen, even with this relatively large rela-
tive treatment-effect and the relatively modest treatment-
related harm, net harm will result when the 5-year pre-
treatment risk of a study subject is lower than 3%, as the
absolute treatment benefit is offset by the absolute treat-
ment-related harm. Thus, net benefit of treatment arises
only at pre-treatment risks above 3%. However, there are
diminishing improvements in net RRR as pre-treatment
risk increases. Note how there is a dramatic improvement
in net RRR as pre-treatment risk increases from 2% to 5%,
but that further improvements in net RRR above 5% pre-
treatment risk are more modest. This is important since
subgroup analyses test for differences in net RRR, not dif-
ferences in ARR.

Panel B shows the statistical power to detect this heteroge-
neity in net RRR when using conventional subgroup anal-
yses vs. a multivariable risk-stratified approach. As can be
seen, if there are 4 independent RF's (OR = 2 for each),
adding these 4 RF's into a simple risk index (0-4 RF's) sub-
stantially improves statistical power over conventional
("one-variable-at-a-time) subgroup analysis. The
improved statistical power of the multivariable approach
is merely a by-product of improved risk-stratification.
Since a multi-variable model stratifies patients into sub-
groups with a much wider range of pre-treatment risks,
there is more variation in net RRR across treatment
groups, and hence, it is easier to detect the underlying het-
erogeneity in net treatment benefit. In particular, since a
multivariable prediction tool is often required to identify
low-risk study subjects, [22,28-40] net treatment harm in
lower-risk patients can be completely missed if we rely
solely on conventional subgroup analysis [22,26].

The impact of the pre-treatment risk of the study 
population
Panel B of Figure 1 also shows how the overall pre-treat-
ment risk of the study population increases, the likeli-
hood of detecting treatment-effect heterogeneity
diminishes for both the conventional and multivariable
approach. However, this is not really due to a change in
statistical power, per se, but rather a change in the magni-
tude of true heterogeneity in net RRR within the study
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Panel A shows how overall treatment benefit (net RRR is a function of [treatment benefit] – [treatment harm]) varies as a func-tion of pretreatment risk (as estimated by the control event rate [CER] of an RCT) when a treatment decreases pre-treatment risk by 50% but at a cost of 0.003 treatment-related adverse events per treatment-yearFigure 1
Panel A shows how overall treatment benefit (net RRR is a function of [treatment benefit] – [treatment harm]) varies as a func-
tion of pretreatment risk (as estimated by the control event rate [CER] of an RCT) when a treatment decreases pre-treatment 
risk by 50% but at a cost of 0.003 treatment-related adverse events per treatment-year. As a result, lower risk patients are 
harmed by treatment and higher risk patients benefit from treatment. Panel B demonstrates two statistical phenomena: (1) that 
statistical power can be greatly enhanced by combining risk factors (RF's) into a risk index, and (2) statistical power is greatest 
when the study population includes more low risk patients
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population. That is, even if there is substantial variability
in pre-treatment risk, if few subjects are close to the point
where net RRR is zero (in this case, a pre-treatment risk of
3%), there can be relatively low heterogeneity in net RRR
across the study population (once again note the small
difference in net RRR between subjects with a 6% vs. a 9%
pre-treatment risk).

Since the pre-treatment risk (CER) for the lowest risk sub-
group is such an influential factor, for the remainder of
our analyses we held the 5-year CER for those with no risk
factors constant at 0.75%, so as to examine the influence
of other factors.

The impact of the prevalence and predictiveness of a risk 
factor on conventional subgroup analysis
The results presented in Table 2 quantify two well known
statistical phenomena. First, that there is only a small mar-
ginal gain in statistical power when comparison groups
have equal sample size (prevalence of a risk factor = 50%)
vs. when one group has 3 times the sample size of the
other group (prevalence of a risk factor = 25%). For exam-
ple, for a risk factor with an odds ratio of 2, the statistical
power to detect heterogeneity in net RRR had statistical
power that was only slightly better when the prevalence of
the RF was 50% vs. 25% (power was .22 vs. .21, respec-
tively). However, as the prevalence of a RF falls below
25%, statistical power begins to decline rapidly. Second,
Table 2 demonstrates how rare it will be for a conven-

tional subgroup analysis to have good statistical power to
detect treatment benefit heterogeneity due to treatment
complication rates. For example, even under a near-ideal
circumstance (a well powered study in which net RRR var-
ies dramatically between lower vs. higher risk subjects), a
subgroup analysis for a RF with an odds of 3.0 and a prev-
alence of 50% still only has a 44% statistical power. A
review of risk prediction tools for commonly occurring
outcomes shows that it is rare for a single risk factor to
have an independent impact on risk that is greater than 2-
fold [22,28-40]. This lack of statistical power is a major
reason that most trials attempt to only qualitatively com-
pare the relative risks in the overall trial populations and
various subgroups.

Caveat: conventional subgroup analyses may be useful for 
detecting heterogeneity in RRR due to differential 
treatment response
The above conclusion does not suggest that looking at
individual patient factors in isolation will always have
poor statistical power. Although it appears that conven-
tional subgroup analysis will rarely be robust in evaluat-
ing the phenomenon being examined in this paper (i.e.,
heterogeneity in net RRR due to treatment-related harm),
examining individual patient factors can be quite impor-
tant if the variable is a measure of or marker for something
that directly modifies the likelihood of treatment
response (i.e., directly influences the treatment's RRR).
Examples of circumstances in which individual patient

Table 1: Results of conventional vs. risk-stratified analyses when treatment decreases pre-treatment risk by 50% but at a cost of 3 
serious adverse events per year of treatment (6 independent risk factors (RF's) exist, each with a prevalence of 25%)

True Control Event Rate 
(CER)

True Relative Risk 
Reduction (RRR)

True Number Needed 
to Treat (NNT)

Statistical Power of 
Subgroup Comparison*

N = 8,800 (% of study population) For 5-Year Follow-up P < 0.05

Conventional Subgroup Comparison
Risk factor absent (75%) 2.2 -.19† -239† .23
Risk factor present (25%] 4.2 .13 183

Risk Index (Dichotomized measure)
0–1 Risk factors (53.4%) 1.4 -.57† -125† .72
≥ 2 Risk factors (46.6%) 4.4 .16 143

Risk Index (continuous measure)‡
0 Risk factors (17.8%) 0.75 -1.59† -88† .83
1 Risk factors (35.6%) 1.5 -.51† -132†
2 Risk factors (29.7%) 3.0 -.02 -1936
3 Risk factors (13.2%) 6.0 .21 83
≥ 4 Risk factors (3.7%) 12.8 .35 24

* For the subgroup comparisons, the statistical comparison tests whether the subgroup with the risk factor receives more or less benefit (two-
tailed testing) than the subgroup without the risk factor (testing for an interaction between the risk factor and intervention [treatment vs. control] 
in a logistic regression model. 21 For example, the conventional subgroup comparison had a statistical power of 23% for detecting that those with 
the risk factor had a greater relative benefit from treatment than those without the risk factor.
† The minus sign denotes that treatment had net harm, rather than benefit.
‡ Area Under the Receiver Operator Characteristic (AUROC) curve for the Risk Index was 0.65.
Page 6 of 11
(page number not for citation purposes)



BMC Medical Research Methodology 2006, 6:18 http://www.biomedcentral.com/1471-2288/6/18
attributes would be anticipated to possibly modify treat-
ment effects would include hormone receptor status in a
tamoxifen trial, or baseline renin-angiotension measures
in a study of ACE inhibitors, instances in which the sub-
group variable is related to the treatment's mechanism of
action and therefore directly modifies responsiveness to
the treatment.

The impact of adding RF's into a risk index
Table 3 further explores how adding RF's into a risk index
(a simple version of a multivariable risk-stratified
approach) affects statistical power. We find that combin-
ing 3 RF's with effect sizes of RR = 1.5 has poor statistical
power for detecting the heterogeneity in net RRR shown in
Figure 1; however, this risk index also has very poor discri-
minant (predictive) ability (area under the ROC [AUROC]
= 0.55). As the predictiveness of the risk index is improved
(by adding together more risk factors or having RF's of
greater effect size), the statistical power for detecting het-
erogeneity in net RRR increases. In all instances combin-
ing risk factors into a risk index substantially improves
statistical power compared to looking at RF's individually;
however, in this example using a risk index with an

AUROC <.6 does not achieve even moderate statistical
power. Therefore, it is encouraging that for most common
major clinical outcomes, we have validated risk prediction
tools with an AUROC ≥ 0.65 [22,28-40]. Since obtaining
moderate levels of risk prediction (AUROC > 0.6) usually
requires combining at least 4–6 RF's into a prediction
tool, [22,28-40]. Table 3 also provides additional evi-
dence suggesting that it will be quite rare for conventional
subgroup analysis to have even moderate statistical power
for detecting this type of treatment benefit heterogeneity.

The importance of the accuracy of the weights used for the 
prediction tool
There is reason to be concerned that the weights used in
published prediction tools might be poorly generalizable
to different clinical settings or to different patient popula-
tions. Therefore, we examined the effect of varying the
accuracy of the weights used to construct the prediction
tool. As expected the accuracy of the weights used in the
risk index substantively affect statistical power; however,
the impact was less than we had anticipated (see Table 4).
For example, going from perfect weighting of the risk tool
to reverse weighting (i.e., those risk factors with a true RR

Table 3: Table 3. Statistical power when risk factors are combined into a risk score

Number of Risk Factors in the Risk Score

1 3 6

Statistical Power for Risk Index (AUROC) †
Risk Factor Effect Size (Odds Ratio) 1.5 .12 (.53) .27 (.55) .45 (.58)

2.0 .21 (.54) .61 (.59) .83 (.65)
3.0 .41 (.57) .92 (.67) .93 (.76)

* In each instance all risk factor have a prevalence of 25% and the 5-year CER for those without any risk factors is .75% (see Table 1 and Figure).
† Statistical subgroup comparisons tests the power to detect whether the treatment's relative benefit varies as a function of the risk score. The 
Area Under the Receiver Operator Characteristic (AUROC) curve is a measure of the overall predictiveness of a model for predicting a 
dichotomous outcome (i.e, event occurred vs. event did not occur).

Table 2: Statistical power when subgroup analysis is done for each risk factor one-at-a-time

Risk Factor Prevalence *

10% 25% 50%

Statistical Power of Subgroup Comparison †
Risk Factor Effect Size (Odds Ratio) 1.5 .08 .12 .13

2.0 .13 .21 .22
3.0 .26 .41 .44

* Risk Factor is one of six independent risk factors, with the other five risk factors having a prevalence of 25% and an odds ratio of 2 when the 5-
year CER for those without any risk factors is .75% (see Table 1 and Figure).
† Statistical subgroup comparisons tests the power to detect whether those with the risk factor had a greater relative benefit from treatment than 
those without the risk factor.
Page 7 of 11
(page number not for citation purposes)



BMC Medical Research Methodology 2006, 6:18 http://www.biomedcentral.com/1471-2288/6/18
of 1.5 are given a weight of 2.5 and those with a true RR
of 2.5 are given a weight of 1.5), decreases statistical
power from 82% to 69%. Although this is a meaningful
decrease in statistical power, conventional subgroup anal-
ysis for an individual RF's with a RR of 2.5 only has a sta-
tistical power of 37%. Reverse weighting with the
omission of two of the RF's further decreases statistical
power, but the decrement is similar to what would be
expected given the association between risk model predic-
tiveness (AUROC) and statistical power seen in Table 3.
Therefore, under the scenarios studied, the absolute pre-
dictiveness of the model and the degree of risk stratifica-
tion (Figure) appear to be much more important than
whether the poor predictiveness is due to: 1) not many
RF's known, 2) known RF's missing from the model, or 3)
suboptimal weighting of the relative importance of differ-
ent RF's.

The impact of the degree of treatment-related 
complications
Table 5 examines how the probability of treatment-related
complications will influence the amount of heterogeneity
in net RRR, and thus, the statistical power of subgroup
analyses. As expected, the heterogeneity in net RRR

increases as the rate of treatment-related complications
increases, thus making it easier to detect the underlying
phenomenon. However, even a very low rate of treatment-
related complications (1–2 adverse events per year per
1000 people treated) can result in important and detecta-
ble differential benefit. Of course, the heterogeneity in net
RRR will decrease as the pre-treatment risk of the lowest
risk study subject's increases, as was demonstrated in the
Figure previously.

Discussion
Although several investigators have laid out a general the-
oretical justification for multivariable risk-stratified sub-
group analysis of clinical trials, [9,11-14,22,23,45] this is
the first paper to systematically quantify the degree to
which it improves statistical power for detecting heteroge-
neity in net RRR. In particular, we examined the common
circumstance in which multiple risk factors for the main
study outcome are known and some portion of treatment-
related harm is independent of predicted risk in the
absence of treatment (resulting in a more uniform distri-
bution of treatment related complications). We found
that when such a phenomenon occurs, that conventional
subgroup analyses will rarely have even moderate statisti-

Table 5: How does the degree of treatment-related risk influence the statistical power of the subgroup analysis? *

Annual Risk of Treatment-Related 
Adverse Events

Conventional "One-RF-at-a-Time" 
Subgroup Comparison*

Multivariable Risk Stratified Analysis*

(Events per 1000 patient-years) Statistical Power †

1 6% 39%
2 11% 59%
3 21% 83%
4 28% 92%

* There are 6 risk factors (RF's) that each have a prevalence of 25% and a relative risk of 2, and the 5-year CER for those without any risk factors is 
.75% (see Table 1 and Figure).
† Statistical subgroup comparisons tests the power to detect whether the treatment's relative benefit varies as a function of the presence of the RF 
(for conventional subgroup analysis) or the risk score (for the multivariable risk-stratified analysis)

Table 4: The importance of the accuracy of the weighting of the risk prediction tool

RF's #1 & #2* RF's #3 & #4* RF's #5 & #6* Risk Index's Predictiveness 
(AUROC) †

Statistical Power 
(p < 0.05)‡

True Predictiveness 1.5 2.0 2.5 - -
Perfect Weighting 1.5 2.0 2.5 .69 .82
Uniform Weighting 1 1 1 .66 .75
Reverse Weighting 2.5 2.0 1.5 .63 .69
Incomplete Reverse Weighting 2.5 0.0 1.5 .60 .51

* Each of the 6 risk factors (RF's) has a prevalence of 25% and the 5-year CER for those without any risk factors is .75% (see Table 1 and Figure). 
The true predictiveness (relative risk) of the risk factor is shown as well as the relative weight used in the risk index.
† The Area Under the Receiver Operator Characteristic (AUROC) curve is a measure of the overall predictiveness of a model for predicting a 
dichotomous outcome (i.e, event occurred vs. event did not occur).
‡ Statistical subgroup comparisons tests the power to detect whether the treatment's relative benefit varies as a function of the risk score.
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cal power to detect heterogeneity in net RRR and that a
multivariable approach will generally substantially
improve statistical power. Although having at least a mod-
erately predictive tool is important (AUROC > .6),
another highly influential factor is whether there are a suf-
ficient number of study subjects who have relatively low
risk in the absence of treatment. When the phenomenon
studied in our analyses occurs (substantial reduction of
pre-treatment-related risk but at a cost of a set amount of
serious treatment-related complications), there will usu-
ally be greater heterogeneity of net RRR within the moder-
ate-to-low risk subjects, therefore, our ability to detect this
phenomenon is heavily influenced by whether we have an
adequate number of study subjects spanning this range of
risk. This finding has two important implications. First, it
reinforces the caution to clinicians about not extrapolat-
ing net RRR of a treatment to patients whose risk for the
primary outcome is substantially lower than that of the
people evaluated in the clinical trial. For example, statin
therapy is known to have an excellent risk-benefit ratio
(i.e., net RRR) in high CV risk subjects; however, caution
should be used in extrapolating those results to low CV
risk patients[23]. Second, since low risk subjects can often
only be identified by multivariable risk models, these
results suggest that multivariable risk-stratified analyses
should be conducted routinely whenever an adequate
externally-developed prediction tool is available. Other-
wise, safety problems occurring in low-risk subjects could
be missed. Given potential undetected safety problems
and the strong rationale for risk-stratified analysis, we also
feel that post hoc risk-stratified analyses should be con-
ducted on previously completed clinical trails when such
analyses are feasible.

Although there are published risk-prediction tools for
most major clinical outcomes, there are some reasons to
be concerned about the adequacy of these prediction
tools, especially for use in clinical practice. These tools
have reported AUROC's that are usually greater than .65;
[22,28-40] however, it is unclear how often these tools
will maintain their predictiveness when used in other clin-

ical settings and patient populations. Greater attention to
developing, adapting and validating risk prediction tools
will undoubtedly be needed if risk-stratified analysis is to
realize its full impact on improving our understanding of
variations in treatment benefits. The challenge of adapting
the results of risk-stratified analysis to clinical practice will
be even more daunting[9]. A thorough discussion of this
topic is beyond the scope of this paper, but it should be
understood that conducting and reporting risk-stratified
analysis is only a first step in the more complex issue of
how best to implement more nuanced and appropriate
use of increasingly expensive clinical interventions in day-
to-day clinical practice [2,9,11-14].

As mentioned earlier, readers should not assume that our
results suggest that conventional subgroup analysis
should be abandoned. Conventional subgroup analysis
may be poorly suited to detect the phenomenon exam-
ined in this study; however, we recommend that conven-
tional subgroup analyses focus on situations in which
there is reason to believe that an individual patient
attribute may influence the treatments mechanism of
action (such as hormone receptor status in breast cancer
patients or time since onset of chest pain for heart attack
patients). With the advent of pharmocogenetics, highly
influential individual factors might increasingly be found
that modify treatment effects. However, for examining the
impact of treatment-related risk, risk factors should be
combined together using a previously developed and val-
idated risk prediction tool whenever possible, with special
attention to the net RRR in lower risk subjects. Even when
net RRR is homogeneous across the study population,
such analyses will highlight how absolute risk reduction
and number needed to treat vary across the study popula-
tion.

Conclusion
Although all subgroup comparisons require sound justifi-
cation and cautious interpretation, the improvements in
statistical power of a risk-stratified approach for detecting
significant heterogeneity in treatment efficacy and safety

Table 6: Glossary

Risk-Benefit Prediction Model – Same as a Risk Prediction Model except factors that predict benefit of a specific treatment and those that 
predict harm from the treatment are also included.
Control Event Rate (CER) – Rate of bad outcomes in the control group.46

Pre-treatment risk – Risk of bad outcomes in the absence of treatment. In a clinical trial, pre-treatment risk is equivalent to the true control 
event rate (CER).
Experimental Event Rate (EER) – Rate of bad outcomes in the intervention group. 46

Relative Risk Reduction (RRR) – The proportional reduction in the rate of bad events between experiment (experimental event rate [EER]) 
and control (control event rate [CER]) patients in a trial, calculated as |EER – CER|/CER. 46

Absolute Risk Reduction (ARR) – The absolute arithmetic difference in event rates, |EER – CER|. 46

Number Needed to Treat (NNT) – The number of patients who need to be treated to prevent 1 additional bad outcome; calculated as 1/ARR.

Risk Prediction Model – Predicting overall risk based upon combining information from multiple risk factors. Prediction models can be presented as 
full regression prediction model (such as predicted probability of death using APACHE), as a simple risk index (such as predicting birth outcomes 
using a 10 point APGAR score) or condensed into risk categories (low, medium, high peri-operative risk).
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appear to be quite substantial under many likely clinical
scenarios. We conclude that if an adequate externally-
developed risk prediction tool is available that a multivar-
iable risk-stratified analysis should be conducted and
reported along with the main results of the clinical trial.
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