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Abstract
Background: We sought to improve upon previously published statistical modeling strategies for
binary classification of dyslipidemia for general population screening purposes based on the waist-
to-hip circumference ratio and body mass index anthropometric measurements.

Methods: Study subjects were participants in WHO-MONICA population-based surveys
conducted in two Swiss regions. Outcome variables were based on the total serum cholesterol to
high density lipoprotein cholesterol ratio. The other potential predictor variables were gender, age,
current cigarette smoking, and hypertension. The models investigated were: (i) linear regression;
(ii) logistic classification; (iii) regression trees; (iv) classification trees (iii and iv are collectively
known as "CART"). Binary classification performance of the region-specific models was externally
validated by classifying the subjects from the other region.

Results: Waist-to-hip circumference ratio and body mass index remained modest predictors of
dyslipidemia. Correct classification rates for all models were 60–80%, with marked gender
differences. Gender-specific models provided only small gains in classification. The external
validations provided assurance about the stability of the models.

Conclusions: There were no striking differences between either the algebraic (i, ii) vs. non-
algebraic (iii, iv), or the regression (i, iii) vs. classification (ii, iv) modeling approaches. Anticipated
advantages of the CART vs. simple additive linear and logistic models were less than expected in
this particular application with a relatively small set of predictor variables. CART models may be
more useful when considering main effects and interactions between larger sets of predictor
variables.

Background
Central adiposity is a predictor of cardiovascular disease
(CVD) independently of other major risk factors, includ-
ing body mass index (BMI) [1,2]. Part of the relationship
between central adiposity and CVD is mediated by a mod-

ification of the metabolism of insulin and lipids [3]. Dys-
lipidemic individuals are more frequently "centrally
obese" (e.g., with a high waist-to-hip circumference ratio
(WHR)) [4-6]. These observations have been made in a
variety of populations from developed [7-9] and less
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developed countries [9]. Apart from its interest for estab-
lishing a physiopathological causal link, this predictive
association suggests the possibility of employing one or
more anthropometric measurements of central adiposity
as a first step in population screening for dyslipidemia
[8,9]. Using inexpensive and readily obtainable anthropo-
metric measurements instead of more costly and time-
consuming wet- or even dry-chemistry laboratory choles-
terol measurements is relevant even in developed coun-
tries where an emerging epidemic of CVD is occurring
amidst rising health care costs.

One objective of the present study was to attempt to
improve upon previous statistical strategies for detecting
dyslipidemia in the general population, with specific
focus on the predictive power of the anthropometric
measurements WHR and BMI. A second objective was to
compare the performance of four statistical modeling
approaches that can be employed for binary classification:
linear regression [10], logistic classification [11], and clas-
sification and regression trees (CART) [12,13]. By can be
employed we mean: (a) with a modest amount of effort
using commercially available software (we used SAS [14]
and S-Plus [15]); and (b) that it is possible to apply clas-
sification-type methods for a binary outcome to the
results of regression-type methods for a continuous out-
come. We also wondered how well competing methods
perform in practice, as opposed to how well they are sup-
posed to perform in theory.

Methods
Study populations and samples
Subjects participated in the World Health Organization
(WHO) MONICA (MONItoring trends and determinants
in CArdiovascular disease) project described in detail else-
where [16]. Participating regions included Vaud-Fribourg
and Ticino in Switzerland. Vaud and Fribourg are adjacent
French-speaking cantons in the west/southwest, while
Ticino is an Italian-speaking canton in the southeast.
These regions had similar distributions of and correla-
tions between the predictor and outcome variables
employed in the statistical models (see Results). Accord-
ingly, the classification performance of region-specific
models was estimated by external validation on data from
the other region, as well as by (biased) resubstitution.

The third independent 1992–93 MONICA surveys were
used. In Vaud-Fribourg, 3,299 individuals aged 25–74
years were invited to participate, and 1,742 (53%) did so.
In Ticino, 2,000 individuals aged 35–64 years were
invited and 1,510 (76%) participated. Analyses in the
present study were restricted to the age range 35–64 years
common to both regions (Vaud-Fribourg n = 1,182,
Ticino n = 1,510). In addition to WHR and BMI, the
potential predictor variables examined were Gender, Age,

current cigarette Smoking, and high blood pressure (HBP:
diastolic BP ≥ 90 mm Hg or under hypertension treated-
ment). Linear and logistic regression (but not CART)
models require complete data on the study subjects,
unless missing data imputation techniques are employed.
For convenience, we excluded subjects with missing data
on any of the predictor variables. This reduced the final
sample sizes by 5% in Vaud/Fribourg (n = 1,120) and by
6% in Ticino (n = 1,429).

Statistical models
Although the total serum cholesterol to high density lipo-
protein cholesterol (TC/HDL-C) ratio is a continuous var-
iable, we assumed that assessing the dyslipidemia
classification performance of a predictive model would
ultimately require comparing predicted binary values of
dyslipidemia status. We applied five modeling
approaches (Strategies 0–4) which reflected: no model
(0); algebraically specified (1, 2) vs. unspecified (3, 4)
models; and regression-(1, 3) vs. classification-based (2,
4) models. Strategies 1–4 were expected to outperform the
minimal benchmark Strategy 0.

Strategy 0: modal regional prevalence of dyslipidemia (no 
model)
Individuals in a given region were classified as dyslipi-
demic or not dyslipidemic, depending on the observed
modal (most frequent) dyslipidemia category either in the
whole region or stratified by gender. Strategy 0 repre-
sented a "no model" approach in the sense that the addi-
tional predictor variables were ignored.

Strategy 1: linear regression
Additive linear models,

Y = b0 + b1X1 + b2X2 + ··· + bkXk + e,

where Y = TC/HDL-C ratio, {X1, X2, ... , Xk} (k ≤ 6) = a sub-
set of the predictor variables {WHR, BMI, Gender, Age,
Smoking, HBP}, and e = Gaussian error with constant var-
iance, were fitted. TC/HDL-C, WHR, BMI, and Age were
analyzed as continuous variables, while Gender, Smok-
ing, and HBP were analyzed as binary variables. An indi-
vidual with estimated Y ≥ 5.0 was classified as
dyslipidemic, or classified as not dyslipidemic otherwise.

Including all the predictor variables was termed the full
model, while including only {WHR, BMI, Gender} was
termed the reduced model. Both types of model were fitted
separately by region. In addition, for women and men
separately, {WHR, BMI, Age, Smoking, HBP} "full" and
{WHR, BMI} "reduced " models also were fitted.

No formal predictor variable selection procedures, nor
models with predictor variable product-interactions were
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employed. We simply wished to magnify any differences
and facilitate comparisons between the algebraic linear
regression (Strategy 1) vs. non-algebraic regression tree
models (Strategy 3).

Strategy 2: logistic classification
For the same predictor variables as in Strategy 1, but with
binary Y = 1 if TC/HDL-C ≥ 5.0, Y = 0 otherwise, additive
logistic models

log[p/(1 - p)] = b0 + b1X1 + b2X2 + ··· + bkXk + e,

where p = probability that Y = 1 for given values of the pre-
dictors and e = binomial error term, were fitted. This
model assumes the relationship between log[p/(1-p)] and
the predictor variables is linear. An individual with esti-
mated p ≥ 0.50 was classified as dyslipidemic, or classified
as not dyslipidemic otherwise.

As in Strategy 1, neither predictor variable selection nor
specification of predictor variable product interactions
were employed to magnify differences and facilitate com-
parisons between the algebraic logistic classification
(Strategy 2) vs. non-algebraic classification tree models
(Strategy 4).

Strategy 3: regression trees
For the same predictor variables and continuous Ys as in
Strategy 1, regression tree models also were fitted. At each
one-step-look-ahead of the "full" tree-growing process,
the Ys were examined within all possible binary splits of
each predictor variable to select the best single split for
creating homogeneous groups with maximal between-
group mean-squared errors. This process was continued
until "optimality" of the groups at the final nodes
("leaves") of the tree was achieved. In practice, the full tree
tends to be overly complex and idiosynchratic with
respect to the data employed to "grow" it. Thus, a com-
mon recommendation [e.g, [17]] is to "prune" the full tree
backwards through further criteria based on both maxi-
mal within-leaf homogeneity of the Ys and minimal tree
size in order to produce a smaller pruned tree that is less
subject to these drawbacks. It is also recommended [17]
that the process be internally cross-validated, e.g., by ran-
domly dividing the data into tenths, performing the prun-
ing on the full tree grown with nine tenths and evaluating
it on the remaining tenth of the data, and averaging the
classification performance criteria (see below) from all ten
9:1 partitions of the data.

After following these recommendations, the estimated
value of Y at each pruned tree leaf was taken to be the
mean among those subjects comprising the leaf. All indi-
viduals in the leaf were classified as dyslipidemic if the

estimated Y ≥ 5.0, or classified as not dyslipidemic
otherwise.

Strategy 4: classification trees
For the same predictor variables and binary Ys as in Strat-
egy 2, classification tree models also were fitted. The
rationale, algorithms, and recommendations employed
were similar to those for regression trees, with one impor-
tant difference. An appealing recommendation [17] to
employ both minimal misclassification rate (instead of.
maximal within-leaf homogeneity of the Y 's) and mini-
mal tree size optimality criteria to prune the full tree back-
wards was followed and internally cross-validated as
described in Strategy 3.

The estimated value of Y at each pruned tree leaf was taken
to be the modal category (dyslipidemic or not) among
those subjects comprising the leaf. All individuals in a leaf
were then classified in accord with the modal category.

Classification performance criteria
The classification performance of all models were com-
pared in terms of five measures: (1) overall correct classi-
fication (total % agreement between observed and model-
classified dylipidemia status); (2) sensitivity (% with
observed TC/HDL-C ≥ 5.0 and classified as such); (3) spe-
cificity (% with observed TC/HDL-C < 5.0 and classified
as such); (4) positive predictive value (PPV, % classified as
TC/HDL-C ≥ 5.0 and observed as such); (5) negative pre-
dictive value (NPV, % classified as TC/HDL-C < 5.0 and
observed as such). For the Vaud-Fribourg and Ticino
region-specific models, all five classification performance
measures were estimated by resubstitution of the data
from the same region as well as by external validation on
the subjects from the other region.

Results
Descriptive comparisons of the two study samples
The predictor and outcome variables in the Vaud-Fribourg
and Ticino MONICA study samples are summarized in
Table 1. Switzerland has a relatively high prevalence of
dyslipidemia (especially among men) compared to other
countries [18]. The Ticino subjects were on average two
years older, had a slightly higher TC/HDL-C ratio and thus
a higher prevalence of dyslipidemia, and had more cur-
rent cigarette smokers (predominantly among men) than
the Vaud-Fribourg subjects. On the other hand, the distri-
butions of WHR and BMI were similar in both regions.

The correlation matrices for both regions indicated that
the bivariate relationship patterns also were similar (Table
2). WHR, BMI, and Gender had the highest correlations
with the TC/HDL-C ratio (continuous or binary), with
noticeable attenuation of the gender-specific correlations
between WHR and TC/HDL-C. Further, the correlations
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Table 1: Comparisons of Swiss MONICA samples (ages 35–64 yrs).

Study Variable Vaud-Fribourg a Ticino b

Male Gender 48.9% 48.2%
Age (yrs) c 47.8 ± 8.5 49.5 ± 8.2

Women 47.9 ± 8.5 49.7 ± 8.3
Men 47.8 ± 8.4 49.2 ± 8.1

TC/HDL-C ratio c 4.9 ± 1.7 5.1 ± 1.8
Women 4.2 ± 1.3 4.4 ± 1.6

Men 5.7 ± 1.8 5.8 ± 1.9
Dyslipidemia d 41.6% 44.4%

Women 22.4% 25.9%
Men 61.7% 64.4%

WHR c 0.85 ± 0.09 0.85 ± 0.08
Women 0.78 ± 0.05 0.80 ± 0.06

Men 0.92 ± 0.06 0.91 ± 0.05
BMI (kg/m2) c 25.6 ± 4.0 26.0 ± 4.3

Women 24.6 ± 4.2 25.4 ± 4.9
Men 26.5 ± 2.6 26.6 ± 3.4

Current Cigarette Smoking 25.6 % 31.1 %
Women 24.7% 26.5%

Men 26.6% 36.2%
Hypertension e 21.7% 22.9%

Women 14.7% 17.0%
Men 29.0% 29.2%

a n = 1,120 (572 Women, 548 Men) b n = 1,429 (741 Women, 688 Men) c Mean ± SD. d TC/HDL-C ratio ≥ 5.0. e Diastolic blood pressure > 90 
mmHg and/or treated hypertension.

Table 2: Correlations among study variables in two Swiss MONICA samples (ages 35–64 yrs).

WHR BMI Age Current Smoking Hypertension d Gender

TC/HDL-C ratio 0.53 a/0.49 b 0.41/0.36 0.14/0.09 0.11/0.13 0.19/0.20 0.43/0.38
Women 0.37/0.42 0.36/0.41 0.27/0.30 0.15/0.14 0.20/0.23 -

Men 0.32/0.27 0.36/0.34 0.06/-0.07 0.08/0.07 0.09/0.09 -
Dyslipidemia c 0.46/0.48 0.36/0.35 0.13/0.13 0.09/0.10 0.15/0.19 0.40/0.39

Women 0.37/0.35 0.34/0.35 0.24/0.29 0.13/0.08 0.18/0.22 -
Men 0.21/0.27 0.27/0.32 0.07/0.03 0.06/0.05 0.02/0.09 -

WHR 0.53/0.49 0.19/0.21 0.03/0.10 0.24/0.24 0.77/0.72
Women 0.51/0.52 0.29/0.32 0.05/0. 02 0.20/0.28 -

Men 0.61/0.53 0.31/0.34 0.00/0.05 0.13/0.12 -
BMI 0.23/0.23 -0.08/-0.07 0.27/0.26 0.24/0.13

Women 0.31/0.31 -0.08/-0.11 0.28/0.33 -
Men 0.15/0.13 -0.10/-0.04 0.21/0.17 -

Age -0.12/-0.09 0.18/0.19 -0.00/-0.03
Women -0.15/-0.08 0.20/0.26 -

Men -0.09/-0.10 0.17/0.15 -
Current Smoking d -0.02/-0.04 0.02/0.11

Women -0.03/-0.06 -
Men -0.01/-0.06 -

a, b Pearson correlations (r) in Vaud-Fribourg a/Ticino b. c 1 = (TC/HDL-C ratio ≥ 5.0), 0 = otherwise. d 1 = Yes, 0 = No.
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between TC/HDL-C and Age, Smoking, and HBP were
markedly stronger (albeit still low) among women than
men. The highest correlation (r > 0.7) among the predic-
tor variables was between WHR and Gender (see also
Table 1). The next highest was between WHR and BMI (r
≥ 0.49, overall and gender-specific). These results indi-
cated that WHR, BMI, and Gender would probably be the
most important of the predictor variables examined.

Accordingly, 3-D perspective plots of TC/HDL-C ratio vs.
WHR and BMI were obtained to visualize what the

anthropometric measures were expected to predict (Fig-
ures 1, 2). The irregularities in the figures are striking; i.e.,
the surfaces are not very "smooth". Hence, smooth predic-
tive functions for binary classification such as the additive,
algebraically specified linear regression or logistic classifi-
cation models might not have been expected to perform
so well. On the other hand, the non-additive, non-alge-
braically specified CART models might have been
expected to perform relatively better.

3-D perspective plots of TC/HDL-C ratio vs. WHR and BMIFigure 1
3-D perspective plots of TC/HDL-C ratio vs. WHR and BMI. a: Vaud-Fribourg women (n = 572). b: Vaud-Fribourg men (n = 
548).

3-D perspective plots of TC/HDL-C ratio vs. WHR and BMIFigure 2
3-D perspective plots of TC/HDL-C ratio vs. WHR and BMI. a: Ticino women (n = 741). b: Ticino men (n = 688).
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Overall classification models
The classification performance of the overall(both gen-
ders) models which included Gender as a predictor is
summarized in Table 3. Each pruned regression and clas-
sification tree model listed was the smallest whose classi-
fication performance was equivalent to that of any larger
tree. There were only minor differences in the predictor
variables retained and the numbers of leaves between the

CART models selected for the Vaud-Fribourg and Ticino
samples (not shown). Likewise, the rankings of the pre-
dictor variables by their relative (nominal) statistical sig-
nificance in the linear and logistic regression models
differed slightly for two samples and between model types
(not shown). As expected, WHR and BMI were among the
two or three most important predictor variables in all
models. On the whole, the classification results for all

Table 3: Classification performance of overall (both genders) reduced {WHR, BMI, Gender} models for Vaud-Fribourg, with cross-
validation on Ticino subjects.

(Strategy) Fitted Model Total % Correct Sensitivity Specificity + Predictive Value 
(PPV)

- Predictive Value 
(NPV)

Classifications of both genders

(0) No 58 c 0 100 0 58
Model a (56) d (0) (100) (0) (56)

(1) Linear 71 73 69 63 78
Regression (72) (78) (68) (66) (79)

(2) Logistic 71 63 77 66 74
Classification (72) (67) (77) (70) (74)

(3) 2-Node 72 58 82 69 73
Reg. Tree e (70) (56) (82) (71) (70)

(4) 7-Node 74 70 77 69 78
Class. Tree f (71) (68) (73) (67) (74)

Classifications of women only

(0) No 78 c 0 100 0 78
Model a (74) d (0) (100) (0) (74)

(1) Linear 78 26 94 54 81
Regression (75) (39) (88) (53) (80)

(2) Logistic 78 13 96 52 79
Classification (76) (27) (94) (60) (79)

(3) 2-Node 78 8 98 59 79
Reg. Tree e (76) (16) (97) (65) (77)

(4) 7-Node 81 41 93 63 84
Class. Tree f (76) (48) (85) (53) (82)

Classifications of men only

(0) No 62 c 100 0 62 0
Model b (64) d (100) (0) (64) (0)

(1) Linear 63 91 18 64 54
Regression (69) (95) (22) (69) (70)

(2) Logistic 64 81 35 67 54
Classification (68) (84) (38) (71) (57)

(3) 2-Node 65 77 46 70 55
Reg. Tree e (65) (74) (48) (72) (50)

(4) 7-Node 67 81 44 70 59
Class. Tree f (65) (77) (44) (71) (51)

a All classified as non-dyslipidemic (modal category). b All classified as dyslipidemic (modal category). c Resubstitution estimate for Vaud-Fribourg 
data (n = 1,120 (572 women, 548 men)). d (Cross-validation estimate based on Ticino data (n = 1,429 (741 women, 688 men))). e Used (WHR) only; 
same classifications as 4-node, 5-node, 6-node, 7-node, and 9-node regression trees, which used (WHR, BMI), and same variable and classifications 
as 3-node regression tree. (Also same variable and classifications as for 2-node, full model regression tree.) f Used (WHR, BMI) only. (Also same 
variables and classifications as for 7-node, full model classification tree.)
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models were consistent between the two regions. Thus for
brevity, only the resubstitution results for the Vaud-Fri-
bourg models with external validation on the Ticino sub-
jects are shown.

For both genders combined, regardless of measure, classi-
fication performance was a modest 60–80% for all mod-
els, and no clear preference among different models was
discernible. Moreover, the reduced models performed
nearly as well as the full models. Again for brevity, only
results for the reduced models are shown. Kappa measures
of agreement were also calculated, indicating 70–80%
classification concordance between models, with a slight
tendency for the linear and logistic models on the one
hand, vs. CART models on the other, to agree more among
themselves (75–80%) than with models of the other type
(70%) (not shown otherwise). This tendency was not evi-
dent for the regression-per se vs. classification-per se mod-
els.

The overall classification rates in Table 3 were not uniform
by gender. For Vaud-Fribourg women, the models had

higher specificity and NPV, but lower sensitivity and PPV;
for Vaud-Fribourg men these tendencies were reversed.
Apparently, this "interaction" by gender was not
"automatically detected" consistently nor particularly well
by the overall tree-based models, none of which retained
the Gender variable.

Gender-specific classification models
Classification performance for models fitted separately to
each gender is shown in Table 4. The differences in classi-
fication rates relative to those of the corresponding overall
models were at best uneven. The "improvements" of the
3-node, reduced model regression tree over the 2-node,
reduced model regression tree (Table 3) for Vaud-Fribourg
women notwithstanding, on balance any small to moder-
ate gains in classification here (e.g., in sensitivity) were
met by losses there (e.g., in specificity) for all types of
model for both regions.

There were more inconsistencies in the predictor variables
retained by the gender-specific CART models compared to
the overall CART models between the two regions,

Table 4: Classification performance of gender-specific reduced {WHR, BMI} predictive models.

(Strategy) Fitted Model Total % Correct Sensitivity Specificity + Predictive Value 
(PPV)

- Predictive Value 
(NPV)

Model based on Vaud-Fribourg women (n = 572), cross-validated on Ticino women (n = 741).

(0) No 78 c 0 100 0 78
Model a (74) d (0) (100) (0) (74)

(1) Linear 78 19 95 53 80
Regression (76) (33) (91) (55) (79)

(2) Logistic 78 19 95 53 80
Classification (75) (32) (91) (54) (79)

(3) 3-Node 80 40 92 59 84
Reg. Tree d (75) (45) (86) (52) (82)

(4) 3-Node 81 38 93 62 84
Class. Tree e (75) (44) (86) (53) (82)

Model based on Vaud-Fribourg men (n = 548), cross-validated on Ticino men (n = 688)

(0) No 62 c 100 0 62 0
Model b (64) d (100) (0) (64) (0)

(1) Linear 63 88 24 65 55
Regression (69) (91) (30) (70) (65)

(2) Logistic 64 86 29 66 55
Classification (68) (88) (33) (70) (60)

(3) 3-Node 65 78 45 70 56
Reg. Tree d (66) (76) (47) (72) (52)

(4) 5-Node 68 78 51 72 59
Class. Tree f (67) (78) (47) (73) (54)

a All women classified as non-dyslipidemic (modal category). b All men classified as dyslipidemic (modal category). c Resubstitution estimate. d 

(Cross-validation estimate). d Same variables and classifications as 3-node, full model regression tree. e Same variables and classifications as 3-node, 
full model classification tree. e Same variables and classifications as 5-node, full model classification tree.
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especially for men (not shown). These inconsistencies
were due in part to the necessarily smaller gender-specific
sample sizes, as well as to idiosynchrasies in the observed
sample data for the two regions (Figures 1, 2).

Discussion
In another study comparing Swiss and Seychelles Islands
populations [9], several indicators of central adiposity
(i.e., waist circumference and WHR) worked reasonably
well when employed in logistic regression models for pre-
dicting dyslipidemia, either as individual predictors or in
conjunction with other variables such as those employed
in the present study. The predictive value of WHR for the
Swiss populations served to corroborate the findings of
Reeder et al. [8] in a Canadian population in the sense that
similar variables and logistic models were employed in
both studies.

Both of the latter studies attempted to quantify the predic-
tive power of anthropometric measurements as first stage
population screening indicators of dyslipidemia. How-
ever, neither study was particularly thorough in choosing
the statistical methodology for the predictive models. For
example, the (main) dependent variable, TC/HDL-C,
although continuous, was analyzed as a binary variable
with additive logistic regression models. Likewise, WHR
and BMI, also continuous, were coded and employed in
the logistic models as so-called "action level" dichotomies
[1] (e.g., WHR ≥ 0.90 for men or WHR ≥ 0.80 for women
was coded as "high" WHR by gender, BMI ≥ 27 was coded
as "high" BMI for both genders, and "high" was contrasted
with "low" WHR or BMI in the models). Thus, we won-
dered if more comprehensive statistical models would
have led to improved classification.

The present findings are based on juxtaposing the results
for the very simplest additive, algebraic, linear and logistic
regression vs. the non-additive, non-algebraic CART mod-
els based on the relatively small set of predictor variables
examined. They serve to some degree to indicate the limits
of predictability of dyslipidemia by first stage population
screening programs based on statistical models which
focus primarily or exclusively on anthropometric meas-
urements such as WHR and BMI. The observed relation-
ships between the latter and our TC/HDL-C ratio-based
dyslipidemia continuous or binary variables were at best
moderately strong, hence dyslipidemia was only moder-
ately predictable therefrom. Nonetheless, although their
predictive power is far from perfect, even the models for
first stage population screening purposes such as those
studied here could lead to potential cost savings. This con-
clusion did not seem to depend on the TC/HDL-C ≥ 5.0
cutpoint we employed to define dyslipidemia, as the data
suggested that the relationship is stable within the limits
of a reasonable change.

Our reliance on the composite WHR and BMI measures in
our models instead of the individual waist, hip, weight,
and height measurements may not have optimally or even
adequately captured the relationship between the latter
variables and the TC/HDL-C ratio. However, our rationale
was to investigate and attempt to improve upon the types
of classification rules intended for use in population dys-
lipidemia screening that have been obtained in previous
studies employing similar but more limited analytical
approaches. BMI and WHR are routinely employed
because they are directly related to clinical entities (i.e.
peripheral overweight, central obesity, etc.). Moreover,
the issue of partial relationship was addressed by examin-
ing models using waist circumference alone instead of
WHR, but we found little difference in the results (not
shown). These potential limitiations notwithstanding,
external validation has recently been shown to be crucial
for judging the merits of any predictive model [19,20].
The external validations of the various models estimated
from the two different Swiss MONICA samples did pro-
vide some evidence of their predictive stability in these
populations.

The overall (both genders) sensitivities and specificities of
the various predictive models for the Swiss samples in this
study were comparable to those obtained using only logis-
tic regression models with WHR and BMI as coded by
Reeder et al. [8] in Canadian samples, and by Paccaud et
al. [9] in samples from Switzerland and the Seychelles.
However, discrepancies in these measures and reversals by
gender were more pronounced in the present study. It
may be that our use of continuous versions of these varia-
bles in the models led to these differences.

The forward (backward) variable selection process inher-
ent in full (pruned) CART modeling differs in an impor-
tant way from the stepwise selection procedures that are
commonly used with linear and logistic models. That is, a
predictor variable selected for binary splitting at a given
step may be "re-selected" at subsequent steps, or even "re-
removed" as at previous steps. In essence, this difference
is what makes tree-based models so-called "automatic
interaction detectors" [21], and also why it is difficult to
pre- or even post-specify tree-based models algebraically,
but fortunately (perhaps) it is not necessary to do so to
apply them in practice. A major feature of this approach is
that no assumption of linearity between Y and the predic-
tor variables (which can be categorical (binary or poly-
chotomous), ordinal, or continuous) is required. Tree-
based models are obviously appealing because of these
features.

Despite the expected advantages of CART models over
their linear and logistic counterparts (also see [22]), as
well as the evidently modest ability of WHR and BMI to
Page 8 of 10
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predict dyslipidemia, we were somewhat disappointed
with the comparative classification performance of the
CART models for these particular data, especially because
we had deliberately "handicapped" the linear and logistic
modeling strategies by not applying any formal predictor
variable selection methodology and by considering only
strictly additive models.

On the other hand, the CART models did provide some
corroboration of and further insights regarding the above-
mentioned "action levels" for WHR and BMI employed in
the logistic models of Reeder et al. [8] and Paccaud et al.
[9]. For example, consider the 3-node classification tree
for Vaud-Fribourg women shown in Figure 3, and the 3-
node regression tree for Vaud-Fribourg men shown in Fig-
ure 4. A woman whose WHR ≥ 0.81 and (then) whose
BMI ≥ 27.6 would be classified as dyslipidemic (i.e., esti-
mated Y = 1). A man whose BMI ≥ 28.9 would immedi-
ately be classified as dyslipidemic (i.e., predicted Y = 6.73
≥ 5.0), while a man whose BMI < 28.9 but (then) whose
WHR ≥ 0.89 would also be classified as dyslipidemic (i.e.,

predicted Y = 5.68 ≥ 5.0). The cutpoints in these 3-node
CART models are similar to the previous "action-levels",
but are employed a bit differently for classification pur-
poses depending on gender. Such details were much less
apparent in the linear and logistic models.

Some additional improvements might have been
obtained by incorporating differential costs of misclassifi-
cation into the classification-tree (also logistic) models.
However, these costs are not always easy to specify. This
issue can alternatively be addressed indirectly by changing
the (usual default) classification cut-off point from 0.50
to (say) ps = sample prevalence of dyslipidemia, and (in
effect) classifying an individual as dyslipidemic only if
their model-estimated posterior probability of being dysli-
pidemic exceeds their prior probability of being dyslipi-
demic (i.e., ps). This latter approach was examined in the
present study, but on balance the corresponding classifi-
cation performance results were not much different from

3-node classification tree for Vaud-Fribourg women (n = 572) (gender-specific reduced {WHR, BMI} model in Table 4)Figure 3
3-node classification tree for Vaud-Fribourg women (n = 
572) (gender-specific reduced {WHR, BMI} model in Table 
4). Ovals: interior nodes; rectangles: terminal nodes (leaves). 
Numbers inside nodes are predicted values (+ corresponding 
misclassification rates). Binary classification rule: 1: predict 
dyslipidemia; 0: predict no dyslipidemia.

0
    (54/404)

0
(26/91)

0
 (128/572)

0
(74/168)

1
      (29/77)

BMI < 27.6 

WHR > 0.81WHR < 0.81

 BMI > 27.6

3-node regression tree for Vaud-Fribourg men (n = 548) (gender-specific reduced {WHR, BMI} model in Table 4)Figure 4
3-node regression tree for Vaud-Fribourg men (n = 548) 
(gender-specific reduced {WHR, BMI} model in Table 4). 
Ovals: interior nodes; rectangles: terminal nodes (leaves). 
Numbers inside nodes are estimated mean values of TC/
HDL-C (+sums of squares about the mean values). Binary 
classification rule: TC/HDL-C ≥ 5.0, predict dyslipidemia; TC/
HDL-C < 5.0, predict no dyslipidemia).

  5.67
  (1797.0)

  5.34
  (1152.0)

    6.73
       (459.4)

   4.86
     (362.3)

   5.68
     (722.3)

BMI < 28.9 

WHR > 0.89WHR< 0.89 

BMI > 28.9
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those based on the usual 0.50 cut-off point (not shown
otherwise). This was due at least in part to the fact that the
observed values of ps (see Table 1) were not close to the
extremes of 0 or 1. Of course, changing the cut-off point
in this manner simply implies trade-offs between sensitiv-
ity and specificity, which may or may not be warranted
depending on the actual costs of misclassification.

Conclusions
At least for binary prediction of dyslipidemia from waist-
to-hip ratio and body mass index in the context of the rel-
atively small set of other predictor variables examined, the
simple additive logistic models obtained in previous stud-
ies were about as effective as the more comprehensive sta-
tistical models investigated here. Indeed, for the data at
hand, perhaps even an old standby such as linear discri-
minant analysis [23], the forerunner of logistic
classification, would have sufficed. In all fairness, CART
models may be of more value when much larger sets of
predictor variable main effects and interactions than the
one considered in this study are considered in the statisti-
cal modeling process.
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