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Abstract
Background: Meta-analysis can be used to pool rate measures across studies, but challenges arise
when follow-up duration varies. Our objective was to compare different statistical approaches for
pooling count data of varying follow-up times in terms of estimates of effect, precision, and clinical
interpretability.

Methods: We examined data from a published Cochrane Review of asthma self-management
education in children. We selected two rate measures with the largest number of contributing
studies: school absences and emergency room (ER) visits. We estimated fixed- and random-effects
standardized weighted mean differences (SMD), stratified incidence rate differences (IRD), and
stratified incidence rate ratios (IRR). We also fit Poisson regression models, which allowed for
further adjustment for clustering by study.

Results: For both outcomes, all methods gave qualitatively similar estimates of effect in favor of
the intervention. For school absences, SMD showed modest results in favor of the intervention
(SMD -0.14, 95% CI -0.23 to -0.04). IRD implied that the intervention reduced school absences by
1.8 days per year (IRD -0.15 days/child-month, 95% CI -0.19 to -0.11), while IRR suggested a 14%
reduction in absences (IRR 0.86, 95% CI 0.83 to 0.90). For ER visits, SMD showed a modest benefit
in favor of the intervention (SMD -0.27, 95% CI: -0.45 to -0.09). IRD implied that the intervention
reduced ER visits by 1 visit every 2 years (IRD -0.04 visits/child-month, 95% CI: -0.05 to -0.03),
while IRR suggested a 34% reduction in ER visits (IRR 0.66, 95% CI 0.59 to 0.74). In Poisson models,
adjustment for clustering lowered the precision of the estimates relative to stratified IRR results.
For ER visits but not school absences, failure to incorporate study indicators resulted in a different
estimate of effect (unadjusted IRR 0.77, 95% CI 0.59 to 0.99).

Conclusions: Choice of method among the ones presented had little effect on inference but
affected the clinical interpretability of the findings. Incidence rate methods gave more clinically
interpretable results than SMD. Poisson regression allowed for further adjustment for
heterogeneity across studies. These data suggest that analysts who want to improve the clinical
interpretability of their findings should consider incidence rate methods.
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Background
Meta-analysis has become recognized as an objective
means of summarizing evidence from disparate clinical
trials [1]. It is particularly useful when the trials are small
and the data are conflicting. Meta-analysis incorporates
statistical approaches to pool aggregate data from clinical
trials into a summary effect measure [2]. This measure
then reflects the effect of an intervention on average across
all studies. However, meta-analysis is limited by inclusion
of poor quality trials that are prone to report biased find-
ings and exclusion of unpublished trials that do not report
findings. Methods for assessing the effect of these limita-
tions on summary measures have been developed and are
available [3-5].

At times, data from clinical trials may conform to contin-
uous rate measures (events per person-time) in which the
numerator represents a count of total events "x" and the
denominator represents a given time duration multiplied
by the number of subjects, e.g. health care visits per per-
son-year. Data such as these are being reported more fre-
quently in clinical trials as evidenced by inclusion of rate
measures in recent Cochrane Systematic Reviews [6-9]. If
the reported length of follow-up is the same across stud-
ies, e.g. 12 months, then meta-analysis might involve
pooling the weighted within-study differences in the
mean number of events per person between intervention
and control groups, a method we will call the weighted
mean difference (WMD) [10]. The interpretation is
straightforward and reflects the change in "x" per unit
time. However, if the reported length of follow-up from
various studies is different, e.g. 6 months versus 1 year,
then meta-analysis could involve the conversion of the
study differences into a common metric prior to pooling.
This is often accomplished by dividing the per study dif-
ferences between groups by the pooled standard devia-
tion, a procedure known as the standardized weighted
mean difference (SMD) [10]. This method is robust to
assumptions of varying follow-up time. However, the
interpretation is more difficult, since it reflects the differ-
ence between intervention and control groups measured
in standard deviation units rather than natural time units.

In this paper, we examined data from a recently published
Cochrane Systematic Review that included continuous
rate measures as outcomes. We compared different statis-
tical approaches to pooling continuous rate measures
when they were reported with varying follow-up time.
Specifically, we examined the SMD, considered the stand-
ard approach, to two alternative methods, incidence rate
differences and incidence rate ratios. We examined the
results from the different approaches in terms of the point
estimates of treatment effect, their precision, and clinical
interpretability. We are unaware of previously published
studies that have attempted to address this problem.

Methods
Data were taken from a recently published Cochrane sys-
tematic review on the effects of asthma self-management
education in children [11]. We selected the two outcomes
involving continuous rate measures with the greatest
number of contributing studies: days of school absence
and emergency room (ER) visits. Our goal was to compare
the standardized weighted mean difference with two alter-
native statistical approaches to pooling rate data, inci-
dence rate differences and incidence rate ratios.

The standardized weighted mean difference (SMD) repre-
sents a weighted average of the per study difference in
mean events per person between treatment and control
groups. We first calculated standardized effect sizes for
each study by subtracting the reported mean number of
events in the control group from the reported mean
number of events in the treatment group and dividing by
the pooled standard deviation [10]. The per study stand-
ardized effect sizes were then combined using both fixed-
and random-effects models [12,13]. The fixed-effects
model is essentially a weighted average of the study-spe-
cific results in which the weight for each study is propor-
tional to the inverse of the variance of the study-specific
SMD. The random-effects model allows for variability
among studies in the SMD by incorporating a term for the
among-study variability into the weights. Fixed- and ran-
dom-effects models will generally agree when there is lit-
tle heterogeneity among studies.

To estimate stratified incidence rate differences (IRD) and
stratified incidence rate ratios (IRR), we calculated inci-
dence rates taking time explicitly into account. For each
study, we knew the mean number of events (days absent
or emergency room visits) and the number of months of
observation according to the reported study design. We
multiplied the mean by the sample size for each treatment
arm to get the total number of events observed in each
arm, e.g. the total number of days absent for all partici-
pants in the control group. We rounded this to the nearest
whole number of events. To obtain the total person-time
of follow-up, we assumed that there was no loss to follow-
up during the study, i.e. all participants were observed for
the entire length of the study. We multiplied the number
of months of follow-up by the sample size for each arm to
obtain the total number of person-months of follow-up.
The study-specific rate of events per person-month for
each arm was then the total number of events (days absent
or emergency room visits) divided by the total number of
person-months of observation for each arm.

The analysis of the rates used stratified IRD and IRR meth-
ods estimated in STATA (version 7). To obtain a summary
stratified IRD, we used a program, co-written by one of us
(JAB) to implement a fixed-effects Mantel-Haenszel (M-
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H) procedure in STATA. Specifically, the program pro-
duced the estimates of IRD and its variance described in
Rothman and Greenland's textbook [14]. We also utilized
an inverse-variance weighted average approach to esti-
mate a random-effects models by first using STATA's "ird"
command, saving those study-specific results, then using
the STATA command "meta" to compute the weighted
average IRDs [13].

To obtain a summary stratified IRR, we used a fixed-effects
M-H type procedure as implemented in the "ir" command
in STATA, which should give results similar to fitting a
Poisson regression model with indicator variables for
"study." This M-H approach produces a summary esti-
mate stratified on study. To take study-to-study variability
into account, we also fit Poisson regression models allow-
ing for clustering of the data by study, both with and with-
out study indicator variables. The inclusion of indicator
variables forces the comparison between treatments to be
made within study, thereby mimicking the stratified anal-
ysis. In STATA, we also fit Poisson regression models using
the "cluster" option, which uses a robust (Huber-White
"sandwich") estimator of the variance [15]. The intent of
fitting these models that allowed for clustering was to
inflate the variance estimates to allow for among-study
variability, and (as will be demonstrated) would not affect
the point estimates of treatment effect.

Our interest was in comparing the qualitative and, where
possible, the quantitative results across the different meth-
ods. We were interested in differences in inference that
could be made from the various models, which integrate
information about the point estimates of treatment effects
and the precision of their estimation but may vary in their
assumptions. We also compared conclusions as to the het-
erogeneity of effects across studies. The methods based on
weighted averages use a test of heterogeneity similar in
principle to the Cochrane Q-statistic. The test for hetero-
geneity in the Poisson regression models is based on the
interactions between the treatment variable and the study
indicator variables. Most importantly, we were concerned
with the clinical interpretability of the results. All p-values
reported are two-sided and all confidence intervals are cal-
culated at the 95% level.

Results
We illustrate the use of SMD, IRD, and IRR methods for
pooling continuous rate measures using data from a pub-
lished Cochrane systematic review and meta-analysis that
examined the effect of self-management education on
morbidity and health services outcomes in children and
adolescents with asthma [11]. The meta-analysis included
32 separate trials, involving 3706 children and adoles-
cents aged 2 to 18 years. The majority were small, rand-
omized controlled trials that enrolled children with severe

asthma. We abstracted data on two outcomes–days of
school absence and ER visits – from the original published
study. For each outcome, we abstracted the reported mean
number of events, standard deviation, sample size, and
observation time in months for treatment and control
groups. We contacted study authors to identify missing
data from published reports. If appropriate measures of
variance were not reported nor obtained by author con-
tact, we imputed pooled standard deviations using a con-
servative approach given the t-statistic or the p-value if the
t-statistic was not reported [16].

Table 1 lists the treatment and control group sizes, mean
number of events, standard deviations, rates (events/per-
son-month), duration of follow-up, and standardized
effect size for each of the 16 trials contributing data on
school absences. Sample sizes ranged from 19 to 404 par-
ticipants, and the duration of observation varied widely
from 1 to 12 months. Most of the trials favored the treat-
ment arm, i.e. negative effect sizes implied a reduction in
school absences. However, larger studies tended to have
standardized effect size estimates closer to the null.

Similarly, table 2 lists the treatment and control group
sizes, mean number of events, standard deviations, rates
(events/person-month), duration of follow-up, and
standardized effect size for each of the 12 trials contribut-
ing data on ER visits. Again, sample sizes ranged from a
low of 14 to a high of 232, but the duration of follow-up
was more homogenous with most trials reporting 12
months of observation. Again, most trials favored the
treatment arm. Similar to school absences, larger studies
tended to have standardized effect size estimates closer to
the null.

Table 3 presents the summary outcome measures for
school absences. Effect sizes from the 3 methods gave
qualitatively similar conclusions and suggest that treat-
ment reduces school absences. Both fixed- and random-
effects SMD gave identical estimates, since there was little
to no statistical heterogeneity present (p = 0.61). IRD
methods gave clinically interpretable results on the abso-
lute scale. The fixed-effects results suggest that treatment
results in an average reduction of 0.15 school absences per
child per month (1.8 absences per year). Random-effects
estimates were consistent with the fixed-effects results but
with wider confidence intervals. IRR methods gave clini-
cally interpretable results on the relative scale. These
results suggest that treatment results in a 14% reduction in
school absences. IRR estimates obtained using Poisson
regression with Huber-White sandwich estimators gave a
more conservative estimate than IRR estimates obtained
using M-H procedures. The IRR estimate obtained without
study indicators was similar to the IRR estimate with study
indicators, suggesting that confounding by study was not
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present for this outcome (see the Appendix for further dis-
cussion of this point). Heterogeneity was statistically
detected when data were pooled using IRD (p < 0.001)
and IRR methods (p < 0.001) but not SMD, suggesting
that treatment effects varied across studies when assessed
in terms of rates, but not when assessed in terms of stand-
ard deviation units.

Table 4 presents summary outcomes measures for ER vis-
its. Results were again qualitatively similar regardless of
method and suggest that treatment reduces ER visits. Ran-
dom-effects SMD gave a more conservative estimate with
wider confidence intervals than the corresponding fixed
effects SMD, due to heterogeneity in effects across the
studies (p = 0.05). IRD methods gave clinically interpret-
able results on the absolute scale: treatment results in an
average reduction of 0.04 ER visits per child per month

Table 1: Characteristics of Studies Reporting on School Absences.*

Study Intervention Group Control Group Duration (Months) Standardized Effect Size**
N Mean ± SD Rate N Mean ± SD Rate

Charlton 42 2.10 ± 11.40 0.18 37 4.70 ± 15.50 0.39 12 -0.19
Christiansen 27 2.39 ± 2.90 0.20 15 2.98 ± 3.29 0.25 12 -0.19
Colland 45 0.98 ± 1.56 0.16 34 0.53 ± 1.08 0.09 6 0.32
Dahl 9 0.80 ± 0.32 0.8 10 0.90 ± 0.32 0.9 1 -0.30
Deaves 32 3.69 ± 4.80 0.31 31 5.19 ± 4.80 0.43 12 -0.31
Evans 117 19.40 ± 13.90 1.62 87 19.70 ± 12.60 1.64 12 -0.02
Fireman 13 0.50 ± 5.06 0.04 13 4.60 ± 5.06 0.38 12 -0.78
Hill 211 5.43 ± 4.07 1.36 193 6.23 ± 4.72 1.56 4 -0.18
Hughes 44 10.70 ± 6.90 0.89 45 16.00 ± 15.40 1.33 12 -0.44
Mitchell 133 7.92 ± 16.48 1.32 126 8.48 ± 26.69 1.41 6 -0.03
Perrin 29 0.24 ± 0.90 0.24 27 0.22 ± 1.00 0.22 1 0.02
Persaud 18 6.40 ± 4.60 1.28 18 7.60 ± 5.30 1.52 5 -0.24
Rubin 29 11.90 ± 7.80 0.99 25 15.40 ± 15.00 1.28 12 -0.30
Talabere 25 1.36 ± 2.52 0.45 25 2.60 ± 3.75 0.87 3 -0.38
Toelle 63 2.62 ± 3.28 0.44 51 2.67 ± 3.21 0.45 6 -0.02
Wilson 30 0.80 ± 2.29 0.80 29 1.40 ± 3.23 1.40 1 -0.21

* N refers to the sample size, Mean ± SD refers to the mean number of events ± standard deviation, and rate refers to the total events per person-
month. ** Standardized effect size was calculated for each study by subtracting control group mean from intervention group mean and dividing by 
the pooled SD.

Table 2: Characteristics of Studies Reporting on Emergency Room Visits.*

Study Intervention Group Control Group Duration (Months) Standardized Effect Size**
N Mean ± SD Rate N Mean ± SD Rate

Alexander 11 0.60 ± 0.90 0.05 10 2.40 ± 2.10 0.20 12 -1.09
Christiansen 27 0.30 ± 1.20 0.03 15 0.20 ± 0.43 0.02 12 0.10
Clark 159 1.72 ± 4.20 0.14 73 2.49 ± 6.26 0.21 12 -0.16
Fireman 13 0.08 ± 1.14 0.01 13 1.00 ± 1.14 0.08 12 -0.78
Hughes 44 0.45 ± 1.05 0.04 45 0.60 ± 1.05 0.05 12 -0.14
Lewis 48 2.30 ± 2.98 0.19 28 3.71 ± 2.98 0.31 12 -0.47
McNabb 7 1.90 ± 4.72 0.16 7 7.40 ± 4.72 0.62 12 -1.09
Persaud 18 0.27 ± 0.57 0.05 18 1.00 ± 1.20 0.20 5 -0.76
Ronchetti 114 0.07 ± 0.32 0.01 95 0.23 ± 0.78 0.02 12 -0.28
Shields 101 0.54 ± 1.68 0.05 104 0.38 ± 1.68 0.03 12 0.09
Talabere 25 0.44 ± 0.77 0.15 25 1.08 ± 1.32 0.36 3 -0.58
Toelle 63 1.51 ± 2.31 0.25 51 1.67 ± 2.40 0.28 6 -0.07

* N refers to the sample size, Mean ± SD refers to the mean number of events ± standard deviation, and rate refers to the total events per person-
month. ** Standardized effect size was calculated for each study by subtracting control group mean from intervention group mean and dividing by 
the pooled SD.
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(one ER visit every other year). The estimate obtained by
the random-effects model was consistent with that from
the fixed-effects model but with wider confidence inter-
vals. IRR methods gave clinically interpretable results on
the relative scale: treatment results in a 23 to 34% reduc-
tion in ER visits. IRR estimates obtained using Poisson
regression with Huber-White sandwich estimators gave a
more conservative estimate than IRR estimates obtained
using M-H procedures. The IRR estimate obtained without
study indicators was closer to the null than the IRR esti-
mate with study indicators, suggesting that confounding
by study was present for this outcome (see Appendix).
Heterogeneity was statistically present in IRD (p < 0.001)
and IRR (p < 0.001) methods as well as for SMD for this

outcome, suggesting that treatment effects varied across
studies.

Discussion
This paper presented three statistical methods of pooling
continuous rate measures in which the denominator
reflects varying duration of observation. All methods were
fairly easy to implement using standard statistical soft-
ware. Results were statistically consistent regardless of the
method employed and suggested a significant treatment
effect on average. All methods allowed for explicit adjust-
ment for individual studies. Failure to take stratification
by study into account, as illustrated in the Poisson models
without study indicators, resulted in a different estimate

Table 3: Summary Outcome Measures for Days of School Absence.

Measure Effect Size Confidence Interval Effect Size P-value Homogeneity Test P-value

SMDa

Fixed-effects -0.14 -0.23, -0.04 0.006 0.61
Random-effects -0.14 -0.23, -0.04 0.006 0.61

IRDb

Fixed-effects M-H -0.15 -0.19, -0.11 <0.001 <0.001
Random-effects -0.17 -0.25, -0.08 <0.001 <0.001

IRRc

Fixed-effects M-H 0.86 0.83, 0.90 <0.001 <0.001
PR + study indicators 0.86 0.77, 0.97 0.011 <0.001
PR - study indicators 0.86 0.75, 0.99 0.044 N/A

a SMD refers to standardized mean difference and was obtained using both fixed effects and random effects models. b IRD refers to the incidence 
rate difference, and was obtained using a Mantel-Haenszel procedure to estimate a fixed-effects model and an inverse-variance method to estimate 
a random-effects model. c IRR refers to the incidence rate ratio and was obtained using Mantel-Haenszel procedure to estimate a fixed effects 
model and Poisson regression models with Huber-White sandwich estimators with and without study indicators which is equivalent to a random-
effects model.

Table 4: Summary Outcome Measures for Emergency Room Visits.

Measure Effect Size Confidence Interval Effect Size P-value Homogeneity Test P-value

SMDa

Fixed-effects -0.21 -0.33, -0.09 <0.001 0.05
Random-effects -0.27 -0.45, -0.09 0.003 0.05

IRDb

Fixed-effects M-H -0.04 -0.05, -0.03 <0.001 <0.001
Random-effects -0.05 -0.08, -0.03 <0.001 <0.001

IRRc

Fixed-effects M-H 0.66 0.59, 0.74 <0.001 <0.001
PR + study indicators 0.66 0.54, 0.81 <0.001 <0.001
PR – study indicators 0.77 0.59, 0.99 0.039 N/A

a SMD refers to standardized mean difference and was obtained using both fixed effects and random effects models. b IRD refers to the incidence 
rate difference, and was obtained using a Mantel-Haenszel procedure to estimate a fixed-effects model and an inverse-variance method to estimate 
a random-effects model. c IRR refers to the incidence rate ratio and was obtained using Mantel-Haenszel procedure to estimate a fixed effects 
model and Poisson regression models with Huber-White sandwich estimators with and without study indicators which is equivalent to a random-
effects model.
Page 5 of 7
(page number not for citation purposes)



BMC Medical Research Methodology 2004, 4:17 http://www.biomedcentral.com/1471-2288/4/17
for one outcome, ER visits, but not the other, school
absences.

IRD methods gave clinically interpretable results on an
absolute scale. These results suggest that treatment results
in an average reduction of 0.15 school absences per per-
son-month or roughly 2 days per person-year. These
results also suggest that treatment results in an average of
0.04 fewer ER visits per person-month or roughly 1 fewer
visit per person every 2 years. IRR methods gave clinically
interpretable results on a relative scale. These results sug-
gest that treatment results in a 14% reduction in school
absences and a 34% reduction in ER visits.

The SMD results were not immediately clinically inter-
pretable. On a standard deviation scale, these results sug-
gest that treatment results in a modest reduction in school
absences and ER visits. Conversion back to the original
scale would allow for more clinically interpretable results
but would require making an assumption about the size
of the standard deviation and the event rate in the control
group across studies. For standard deviations, it is not
clear whether one should use a study-specific estimate of
the standard deviation or an estimate pooled across stud-
ies. Additionally, the data can be skewed, in which case
mean events might not appropriately represent the central
tendency of the data.

Heterogeneity was statistically present for both outcomes,
suggesting variability in treatment effects across studies
when incidence rate-based methods were used, and for
ED visits but not school absences when SMD was used. It
should be kept in mind that, although all of these analyses
are attempting to address the same underlying substantive
question (i.e., whether asthma education "works"), the
SMD analyses address this question on a fundamentally
different scale by converting measurements into standard
deviation units. This difference in scale could well account
for the different results of the heterogeneity tests.

Another alternative that we tried but abandoned because
of its non-standard nature was simply to convert the time
units from the various studies into a common scale and
pool the data using WMD. We found (data not shown)
slight but noticeable differences depending on whether
we multiplied up for the shorter studies or down for the
longer studies to achieve the common scale. For example,
studies with 6-month follow-up and 12-month follow-up
could be put on a common scale, by either multiplying
the 6-month study means and standard deviations by 2 or
dividing the 12-month study means and standard devia-
tions by 2. These different approaches changed the per-
study weights and produced slight differences in summary
measures. We believe that the fundamental problem with
this approach is that it rests on the assumption that the

event rates stay constant over the entire time period of
observations. This is also true for the rate models we did
use, but unlike those models, multiplying up essentially
imputes data beyond the actual period of observation.
This has implications not only for the mean number of
events, but possibly also for the variance estimates. For
these reasons, we chose not to consider this approach any
further.

There are limitations to these findings. First, we explored
differences in the three approaches using only data from a
single systematic review. However, the outcomes we chose
had a sufficient number of contributing studies to assess
for small differences among the approaches. Second, in
the calculation of event rates using the incidence rate-
based methods, we assumed complete follow-up of par-
ticipants in each study. However, this method is robust to
incomplete follow-up if the number of events and the
amount of time contributed by each participant are
known or it can be assumed that individuals lost to fol-
low-up contribute no events or follow-up time and loss to
follow-up is not differential between the treatment
groups.

Conclusions
In this study, we demonstrated that choice of method
among the ones presented here for continuous rate meas-
ures had little effect on inference. SMD, IRD, and IRR
methods all gave qualitatively similar estimates of effect
and suggest that the intervention was effective for both
outcomes. However, choice of method clearly affected
clinical interpretability. SMD, reportedly the standard
method employed for analysis of rate measures of varying
time duration, was not immediately interpretable. Strati-
fied IRD allowed for clinical interpretability on an abso-
lute scale. Stratified IRR or Poisson models allowed for
clinical interpretability on a relative scale. For further dis-
cussion of the merits of absolute versus relative effects, we
recommend that the reader consult additional references
[10]. In addition as we have shown, failure to incorporate
study indicators in the Poisson analysis may produce dif-
ferent (and inappropriate) estimates of treatment effect.
(For an explanation of why we consider this an inappro-
priate approach, see the Appendix). We recommend that
statistical software packages used for meta-analysis con-
sider the addition of stratified IRD and IRR procedures.

Appendix
Table 5 demonstrates the need to perform analyses strati-
fied by study when comparing event rates between treat-
ments. A similar argument would apply to the
comparison of risks. The principle demonstrated, among
epidemiologists, would be called "confounding by
study," and among statisticians might be more familiar as
an example of "Simpson's Paradox." In brief, we have gen-
Page 6 of 7
(page number not for citation purposes)



BMC Medical Research Methodology 2004, 4:17 http://www.biomedcentral.com/1471-2288/4/17
erated a hypothetical example, in the table, of a situation
in which the baseline (control) rates differ markedly
between studies. In addition, the feature that generates the
problem is that there is imbalance in the amount of per-
son-time in the treatment and control groups in the sec-
ond study, perhaps as a result of unequal allocation of
subjects to the two conditions.

Within each study, the estimate of the relative risk is 0.5.
Thus, any reasonable analysis that takes stratification by
study into account (and averages the within-study treat-
ment effects) would necessarily produce an average treat-
ment effect of 0.5. Because of the associations noted
above, the analysis ignoring study produces an estimated
treatment effect of 0.32. This result clearly is not at all rep-
resentative of the results within either of the individual
studies. Note that this concept is not the same as the usual
concept of "heterogeneity," which is generally used to
refer to situations in which the treatment effect varies
across studies. In our example, the treatment effect is con-
stant across studies (on the relative rate scale), although
the baseline rate varies dramatically between the studies.
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Table 5: Example of Confounding by Study.

Control Treated

Study Events Person-time Rate Events Person-time Rate Relative Rate

1 10 100 0.10 5 100 0.05 0.50
2 40 100 0.40 5 25 0.20 0.50
Total (ignoring "study") 50 200 0.25 10 125 0.08 0.32
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