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Abstract

Background: Rates of Potentially Preventable Hospitalizations (PPH) are used to evaluate access of territorially
delimited populations to high quality ambulatory care. A common geographic pattern of several PPH would reflect
the performance of healthcare providers. This study is aimed at modeling jointly the geographical variation in six
chronic PPH conditions in one Spanish Autonomous Community for describing common and discrepant patterns,
and to assess the relative weight of the common pattern on each condition.

Methods: Data on the 39,970 PPH hospital admissions for diabetes short term complications, chronic obstructive
pulmonary disease (COPD), congestive heart failure, dehydration, angina admission and adult asthma, between
2007 and 2009 were extracted from the Hospital Discharge Administrative Databases and assigned to one of the
240 Basic Health Zones. Rates and Standardized Hospitalization Ratios per geographic unit were estimated. The
spatial analysis was carried out jointly for PPH conditions using Shared Component Models (SCM).

Results: The component shared by the six PPH conditions explained about the 36% of the variability of each PPH
condition, ranging from the 25.9 for dehydration to 58.7 for COPD. The geographical pattern found in the latent
common component identifies territorial clusters with particularly high risk. The specific risk pattern that each
isolated PPH does not share with the common pattern for all six conditions show many non-significant areas for
most PPH, but with some exceptions.

Conclusions: The geographical distribution of the risk of the PPH conditions is captured in a 36% by a unique
latent pattern. The SCM modeling may be useful to evaluate healthcare system performance.

Keywords: Potentially preventable hospitalizations, Small-area analysis, Bayes theorem, Geographic information
systems
Background
The Potentially Preventable Hospitalizations (PPH), also
named Potentially Avoidable Hospitalizations, Ambulatory
Care Sensitive Conditions or Prevention Quality Indica-
tors (PQI), are hospital admissions –predominantly ex-
acerbation of chronic conditions– that conceptually may
be preventable with timely and appropriate outpatient care
[1,2]. The PPH are defined geographically (districts,
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municipalities, areas served by a primary care team or by a
hospital, regions, etc.) based on the location of the pa-
tient’s residence and, succinctly, PPH could be defined as
hospitalization rates for definite conditions from residents
of delimited geographical areas, regardless of whether the
hospital is located inside or outside the patient's area [2].
PPH rely on hospital discharge data, but are not intended
as measures of in-hospital quality. Rather, they were built
as indirect measures of accessibility problems to high
quality outpatient care [3].
PPH, mainly in its PQI form, have been adopted (and

adapted) by different national and international organiza-
tions [4-6] and currently are a common instrument for the
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evaluation of health care with expanded uses [7,8]. In
countries with health systems without universal coverage,
the interpretation of PPH has been oriented towards the
identification of gaps in insurance coverage, access to out-
patient care and the volume of primary care supply [9-14].
In Europe, where insurance tends to be universal and pri-
mary care is extensively developed, interpretations have
been directed towards the evaluation of the quality of am-
bulatory care, and often, specifically referred to the quality
of the primary care level, disregarding issues related with
the role of outpatient care provided by specialists, the hos-
pital responsibility in the control of chronic patients (dis-
charging patients more or less stable, deciding which
patients are admitted based on their own admission pol-
icies, etc.) and, also, the critical importance of a proper co-
ordination between the different levels of care [15].
In the Spanish National Health System context, with

an extended network of healthcare centres structured in
two levels (hospitals and specialized outpatient care,
and primary care) and geographically ordered (Hospital
Departments and Primary Care Basic Health Zones
(BHZ)), it is assumed that PPH represent largely a prob-
lem of coordination in the necessary chronic diseases
continuum of care, both between and within levels of
care [15,16]. This lack of coordination can affect simi-
larly the full range of preventable hospitalizations, or
may affect differently to each of the clinical conditions
comprising PPH. In the former case, a common geo-
graphic pattern of the full range of PPH would reflect
the quality and performance of healthcare providers,
and could help to identify territories that handle homo-
geneously -better or worse - the most common chronic
conditions causing PPH. In the latter, specific maps for
each PPH would point out idiosyncratic organizational
factors operating in the management of a particular
PPH. It is expected both features to be present in our
context, but in which extent has not been studied yet.
From a methodological perspective, given that the full

range of preventable hospitalizations may share some of
the aforementioned features, the conjoint analysis of them
can be recommendable to gain in statistical power and in-
terpretation. Additionally, the geographically structured na-
ture of the data requires specific spatial methods to obtain
unbiased estimates. Under the disease mapping setting, the
Shared Component Model (SCM) [17] is a method that al-
lows both the joint analysis of several diseases and the in-
corporation of spatial correlation, and has also shown to
lead to improved inference over separate analysis of each
outcome [18-21].
The aim of this paper is to explore the underlying pattern

shared by six chronic PPH conditions in healthcare geo-
graphic BHZ of the Valencia Community (Spain) using
Bayesian joint modeling, and assuming that the geographic
areas serve as surrogate for a mix of the epidemiologic and
medical practice risk factors that underlie any spatial vari-
ation in the pattern of hospital admissions.

Methods
Design
Population based cross-sectional ecological study, using
the “Basic Health Zones” as unit of analysis.

Setting
The study was conducted in the Valencia Community, an
Autonomous Region on the Mediterranean coast of Spain,
with approximately five million inhabitants. Like all of the
healthcare system in Spain during the period studied,
[22,23] healthcare coverage is practically universal, being
97% of the population covered by the public Health Ser-
vice of the Valencia region (the Valencia Health Agency,
VHA). The VHA operates an extended network of hospi-
tals (84% of the hospital beds in the region) and primary
healthcare centres (PHC). Some key features of the health-
care system during the study period are the following:
health care in this network is free of charge (except for
drugs in non-retired people who have a 40% co-payment),
hospital and primary care is supported by Regional Govern-
ment budgets, and doctors and other healthcare workers,
who enjoy a civil servant-like status, are paid basically by
salary. In 2009, the VHA was organized in 23 Healthcare
Areas (three of them managed by private companies
through Public-Private Partnership agreements) and 240
Basic Health Zones. Healthcare Areas are geographical ter-
ritories between 75,000 and 500,000 people (most of them
between 150,000-250,000 people) served by one public hos-
pital that provides inpatient and outpatient specialized care
to the BHZs of its demarcation. BHZs are small geograph-
ical areas between 1,000 and 65,000 people (most of them
between 10,000 and 25,000 people) commonly served by
one Primary Healthcare Centre with a stable team of doc-
tors, nurses and other healthcare workers. Due to these
organizational characteristics (geographical planning, min-
imal accessibility barriers, and practical absence of eco-
nomic incentives to providers), patients receive most of
their primary care from the Primary Healthcare Center of
the BHZ where they belong, and most of their specialized
care, including outpatient consultations, from the hospital
of the corresponding Healthcare Area.

Sources of data
The Population Information System, called SIP, a record
of the population covered by the VHA that assigns an
identification number to each individual, supplied the
population denominator. Among other information,
this dataset provides the Healthcare Area, the BHZ and
Primary Healthcare Centre to which each individual be-
longs. The numerator (PPH admissions), was built using
anonymized data from the Minimum Basic Hospital
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Discharge Dataset of the VHA from 2007 to 2009. This
database, similar to the US Uniform Hospital Discharge
Dataset, provides clinical and sociodemographic informa-
tion on all hospital discharges in the VHA, and, basically,
it is a synopsis of the patient episode of care, including
diagnoses and procedures coded according to the Inter-
national Classification of Diseases 9th revision Clinical
Modification (ICD9CM). The VHA Hospital Discharge
Dataset includes the patient’s BHZ of residence and, once
anonymized, was transferred to the research team.

Population
The study population consisted of all residents 15 years
and over that were registered in the SIP register in the
period 2007–2009. The data was aggregated by five-year
age-sex groups and BHZ.

Main outcome measure
Age-sex standardized rates by 100,000 person-years in each
BHZ, of six chronic PPH: diabetes short-term complica-
tions, chronic obstructive pulmonary disease (COPD), con-
gestive heart failure (CHF), dehydration, angina admission
and adult asthma. All 2007 to 2009 hospital admissions
-readmissions included- of patients aged 15 years and over
with a main diagnosis one of these PPH were selected and
aggregated by age-sex groups and BHZ. For PPH operative
definitions, we used the criteria of the Spanish validation
[24,25] of the US Agency for Healthcare Research and
Quality (AHRQ) Prevention Quality Indicators [2]. This
Spanish version is similar to the US version, but some
ICD9CM codes were adapted to the codification patterns
most common in Spain and are fully described in a previ-
ous work [25,26].

Ethical aspects
This study, observational in design, uses retrospective
anonymized non-identifiable and non-traceable data
provided upon request by the Health Department of the
Valencia Regional Government (not the similar and freely
available MBDS from the Spanish Ministry of Health). The
authors declare that the transfer of the data to the research
team met the requirements of the provider and, according
to the CIOMS-WHO International Ethical Guidelines for
Epidemiological Studies [27] and the Spanish personal data
protection [28] and patients rights’ laws, [29] did not re-
quire Ethics Committee approval.

Statistical Analysis
First, age-standardized rates were obtained for each
BHZ and each single condition, together with global
PPH frequencies and global age-standardized PPH
rates. Variability among rates was quantified using the
Extremal Quotient, excluding areas outside the percen-
tiles 5 and 95 (EQ5-95), and the Empirical Bayes
statistic (EB). Standardized Hospitalization Ratios (SHR)
were estimated for each condition using the ratio of
observed-to-expected cases (oij/eij, being oij and eij the ob-
served and expected number of cases for BHZ i and PPH
condition j), and correlations among these were also
assessed. The expected number of cases per BHZ unit
for each PPH, estimated by applying the rate for the
whole region to the population at risk of each BHZ, repre-
sents the number of admissions for the condition under
study that would have been observed in each BHZ under
the hypothesis of constant rate across the whole Valencia
region.
To assess the geographical variation in standardized

hospitalization ratios, we used the Shared Component
Model, which allows to analyze jointly several conditions by
decomposing the spatial pattern of each one into two com-
ponents: one shared by all conditions, and the other that is
specific to each one. The SCM has as first-level assumption
for the observed counts: Oij ~ Poisson (μij = eijρij), being ρij
the unknown relative risk for the BHZ i in the condition j.
The second level stage assumes a common structure of
risks using a random effect that is shared by the six PPH
conditions plus random effects specific to each of them.
This is achieved assuming log(μij) = log(eij) + αj + δjφi + εij,
where αj values are the intercepts for each j-th PPH condi-
tion, εij are the corresponding specific effects, and φi the
random effect representing the shared component of the
risk. The δj parameter is a scaling parameter that can be
interpreted as a measure of the strength of the association
between the shared term and the j-th PPH condition, which
is comparable among PPH.
For the specific random effects εij, we assumed an ex-

changeable distribution, whereas for the common ran-
dom effect φi, we assessed two different specifications: an
exchangeable distribution, and a conditional autoregres-
sive distribution (CAR). The hyper-prior specifications
used to carried out the Bayesian estimation procedure
were: a dflat distribution for αj and a normal distribution
N(0,5.9) for log(δj) [21,30]. For comparison purposes, we
also fitted the so-called BYM model [29] for each condi-
tion, which has the same first-level assumption as the
SCM models, but use independent random effects for
each condition that take into account the spatial correl-
ation through a CAR structure [31]. Model comparisons
between the two competing shared component models,
based on DIC statistics, [32] suggested the superiority of
the exchangeable distribution (DIC(pD) = 8156.3(887.1))
over the CAR prior assumption (DIC(pD) = 8205.5
(937.5)). The SCM exchangeable distribution model has
also better DIC than the sum of the DIC values of the in-
dividual BYM models, with a difference of 61.5 points,
showing a clear advantage of the joint over the individual
modeling. Therefore, we selected the SCM exchangeable
specification as a definitive SCM model.
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All models were implemented in R, version 2.13.1,
via the library R2WinBUGS (R Development Core team,
2007), which connects with the software WinBUGS [33].
The estimation procedure was carried out using Monte
Carlo methods based on three Markov chains. A total of
49,500 iterations per chain were used, and after a burning
period of 12,000 iterations, we kept every 75th for poster-
ior inference. Convergence was determined using the
Brooks and Gelman statistic and sequential and autocor-
relation graphs. Scripts for SCM and BYM models are
given in ‘Additional file 1’.

Results
Considering the six PPH conditions all together, there
were 39,970 hospital admissions in the Valencia Commu-
nity between 2007 and 2009, ranging from 1 to 801 per
BHZ. The person-years at risk were 13,131,836 (4,377,279
in annual average, ranging from 4,065 to 250,616 per
BHZ). The highest admission rates (Table 1) corresponded
to COPD (155 per 100,000 person-years [py]) and CHF
(88.9 per 100,000 py), and the lowest to dehydration (3.9
per 100,000 py) and diabetes (11.3 per 100,000 py). Vari-
ability between Basic Health Zones was moderate for CHF
(EB = 0.14), but high for the rest of conditions, especially
for Dehydration (EB = 0.73), Angina (EB = 0.61) and
Asthma (EB = 0.47). Correlation amongst the BHZ SHRs
was high between COPD and CHF (r = 0.51), Asthma (r =
0.44) and Angina (0.34), but the remaining pair-wise com-
binations (except for CHF and Asthma; r = 0.33) showed
low correlations (r < 0.30).
According to the results of the Shared Component

Model (Table 2), the estimates for the specific components
vary greatly among PPH, CHF being the lowest (σspecific =
0.079) and Dehydration the highest (σspecific = 0.673). The
estimate for the shared component was σshared = 0.121
(95CI: 0.046-0.269). The proportion of variance for each
PPH explained by the common patterns of the SCM was
high for COPD (58.7%) and CHF (46.4%), and moderate
for the rest (from 25.9 to 30.2%), which is also in agree-
ment with the correlations among PPH Standardized
Table 1 PPH standardized rates by 100,000 person-years, var
between PPH standardized hospitalization ratios of the differ

Summary data Variability

PPH n Rates EQ5–95 EB Diab. COP

Diabetes 1490 11.3 - 0.30 1.00 0.26 (<0

COPD 20357 155.0 6.12 0.26 1.00

CHF 11680 88.9 4.78 0.14

Dehydration 512 3.9 - 0.73

Angina 3141 23.9 34.24 0.61

Asthma 2790 21.2 34.43 0.47

PPH: Potentially Preventable Hospitalizations; BHZ: Basic Health Zones; COPD: Chron
Quotient; EB: Empirical Bayes Statistics. EQ5–95 for Diabetes and Dehydration were n
Ratios shown in Table 1. In any case, credible intervals
show a great imprecision. Comparing the strength of the
association between each of the PPH-specific admissions
risks patterns and the latent shared admission risk pattern,
the factor loadings (δ) seems higher for Dehydration,
COPD, Angina and Asthma than for Diabetes and CHF,
although all 95% posterior credible intervals for the factor
loadings include the unit and, therefore, the level of im-
portance that the share component has on each PPH does
not differ significantly among PPH (see ‘Additional file 2’
for a graphic illustration of the correlations between the
spatial pattern relative risk for individual PPH and the
spatial pattern relative risk shared by all conditions).
The shared component (term σShared = exp(φi)) is mapped

in Figure 1, together with the map of the posterior prob-
ability that this shared component was above 1. The spatial
pattern picks out three main clusters where the common
pattern is particularly high, which coincides with three
urban areas of the Valencia Region: the metropolitans area
of the capital’s of the Valencia (in the middle) and Alicante
(southern) provinces, and an area bordering these two
provinces. In contrast, the whole province of Castellón
(north) and one Healthcare Area in the southwest were the
areas with lowest PPH admission risk. This spatial structure
suggests a non-random pattern, which is confirmed by the
Moran’s I estimate, which is 0.431 (p = 0.010).
Figure 2 shows the maps for the posterior probabilities

of the smoothed SHRs for each condition. Systematic
similarities among maps are clearly depicted, such as the
lower probability of higher risks in the northern third and
the south-western side of the province. Nevertheless, high
differences are also found, such as the strong spatial struc-
ture observed for Angina, or the high risk observed for
Angina and Asthma in the west region, which has low risk
for other PPH. Figure 3 plots the maps of the PPH-
specific components, that is, the risk patterns that each
PPH does not share with the common pattern. Maps are
much smoother compared with the common pattern pos-
terior maps, with many non-significant areas for most
PPH, bearing out the important effect of the shared
iability among Basic Health Zones and correlation
ent conditions; Valencia Community, 2007-2009

Correlation (p-value) between standardized ratios

D CHF Dehyd. Angina Asthma

.001) 0.16 (0.014) −0.02 (0.805) 0.10 (0.107) 0.09 (0.159)

0.51 (<0.001) 0.24 (<0.001) 0.34 (<0.001) 0.44 (<0.001)

1.00 0.22 (0.001) 0.21 (0.001) 0.33 (<0.001)

1.00 0.23 (<0.001) 0.20 (0.002)

1.00 0.22 (<0.001)

1.00

ic Obstructive Pulmonary Disease; CHF: Congestive Heart Failure. EQ: Extremal
ot computable because BHZ with 0 cases.



Table 2 Results of the shared component modelling

PPH σ (specific pattern variability) δ (factor loadings) % Variance explained by the shared component

Diabetes 0.243 (0.102 - 0.377) 0.92 (0.46 - 1.68) 29.8 ( 5.7 - 70.6)

COPD 0.112 (0.040 - 0.211) 1.12 (0.77 - 1.68) 58.7 (22.0 - 84.7)

CHF 0.079 (0.035 - 0.117) 0.74 (0.47 - 1.47) 46.4 (22.3 - 75.2)

Dehydration 0.673 (0.249 - 1.111) 1.42 (0.80 - 2.52) 25.9 (5.3 - 73.1)

Angina 0.489 (0.116 - 0.697) 1.11 (0.62 - 2.82) 26.1 (4.1 - 83.4)

Asthma 0.353 (0.107 - 0.529) 1.09 (0.49 - 2.08) 30.2 (4.1 - 78.7)

PPH: Potentially Preventable Hospitalizations; COPD: Chronic Obstructive Pulmonary Disease; CHF: Congestive Heart Failure. The σ parameter describes the specific
patterns for each condition of the Shared Component Model. The δ parameter is a measure of the strength of the association between the shared pattern for all
6 conditions and the specific pattern for each condition.
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component. Nevertheless, some PPH such as Angina have
a marked discrepant high-risk pattern, with significant
high-risk areas in the middle-interior regions.

Discussion
Our study shows, primarily, the possibility of modeling
the geographical distribution of the risk of admission for
several Potentially Preventable Hospitalizations concomi-
tantly, providing the latent pattern shared by all the PPH
conditions analyzed and quantifying how well each PPH is
represented on it. The distribution of this common latent
Figure 1 Map of the pattern shared jointly by all six PPH conditions (
were higher than1 (right). Valencia Community, 2007–2009. Thin lines rep
between Healthcare Areas. In the map of PPH shared pattern (left) colours
shared pattern of PPH admissions. In the map of posterior probability (righ
having a relative risk of PPH admissions (shared pattern) higher than 1 is >
PPH: Potentially Preventable Hospitalizations; BHZ: Basic Health Zones.
pattern captures about the 36% of the total variability, and
may be used to evaluate healthcare systems performance,
as it allows detecting areas with homogeneously low or
high risk of PPH admissions that may suggest hypotheses
about possible causes (and possible interventions) to reduce
the volume of PPH. In the case studied (Valencia region),
for example, the spatial structure of the PPH common pat-
terns shows a non-random pattern, with local effects and
rural–urban trends, practically defining the borders of some
Healthcare Areas, which suggests that PPH may have an
important relationship with specialist care common to all
left) and map with posterior probabilities that shared pattern
resent the boundaries between BHZ and thick lines the boundaries
represent relative risks regarding the jointly Valencia Community
t) dark-brown coloured territories are BHZ for which the probability of
0.8, and green ones are BHZ for which this relative risk is below <0.2.



Figure 2 Maps of posterior probabilities that the relative risk for the respective Potentially Preventable Hospitalization was higher
than 1. Dark-brown coloured territories are BHZ for which the probability of having a relative risk of PPH admissions higher than 1 for the
respective condition is >0.8, and green ones are BHZ for which this relative risk is below <0.2. PPH: Potentially Preventable Hospitalizations;
BHZ: Basic Health Zones.
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BHZ of the same Area. Although this hypothesis cannot be
tested with the current design, as it does not explicitly con-
sider the possible role of Healthcare Areas, it is important
to highlight it, because it weakens the common belief that
PPH are almost exclusively a problem of primary care, in-
corporating specialist care (without excluding hospitalization,
emergency departments and some intermediate units such
as hospital at home) to the definition of the problem, and
shifting the attention to the coordination between the two
levels of care.
The analysis of the single PPH divergence distribution

may allow the identification of areas where more specific
organizational factors could influence the rates of a par-
ticular PPH. This would be probable if some of these con-
ditions were managed under shared, and divergent, care
between primary and specialty care. In any case, the
marked differences for some BHZ in specific PPH rates
regarding the predominant pattern of their corresponding
Healthcare Area suggest that in these cases the attention
should be focused on the primary care teams responsible
for these deviating BHZ.
A different approach for analyzing different PPH con-

jointly was proposed by a working group from AHRQ in
2006 [34] and included in later versions of the AHRQ PQIs
[35]. These composite PQIs were planned to improve the
statistical precision of the individual PQIs (increasing the
numerator, even at the cost of losing internal homogeneity)
allowing for greater discrimination in performance among
areas and improved ability to identify differences and po-
tential determining factors in performance. The final pro-
posal included three composite indicators (acute, chronic
and all PQIs) by summing the hospitalizations across differ-
ent conditions and dividing by the population (the number
of hospitalizations is used as the “weight” for combining



Figure 3 Maps of posterior probabilities that the discrepant component (exp(εij)) regarding the shared pattern for the respective
Potentially Preventable Hospitalization was higher than 1. Dark-brown coloured territories are BHZ for which the probability of having a
relative risk of PPH admissions higher than 1 for the respective discrepant component is >0.8, and green ones are BHZ for which this relative risk
is below <0.2. PPH: Potentially Preventable Hospitalizations; BHZ: Basic Health Zones.
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the different entities). In the latent variable method pro-
posed in the present study, the shared pattern could also be
considered as a composite measure, being the most preva-
lent conditions (COPD, CHF) more represented. Addition-
ally, the SCM method allows the identification of causes of
avoidable hospitalizations whose behaviour is significantly
discrepant regarding this “composite indicator”, opening
the possibility to new hypotheses, but at the expense of a
more complex analysis than the composite AHRQ PQI
measures.
Our study has some strengths and some limitations.

Among the strengths it should be noted the organizational
characteristics of the VHA, with hospital and primary care
service areas administratively defined, facilitating the ana-
lysis of small areas and their interpretation in terms of
healthcare providers and levels of care. Also, the use of a
three-year period, allows having enough statistical power
for low incidence PPH, improving the stability of the es-
timates. From a methodological point of view, besides
providing separate maps for the shared and specific
components of the risk surface, [19] and advantage of
this approach is the ability of the model to pool data
and borrow strength among multivariate health out-
comes and across neighbouring geographical areas for
more reliable small area risks prediction and inference
[20]. Among the limitations, first, hospitalizations in
private hospitals were not included, and even though
we excluded populations with private insurance, we
could not exclude patients with a double insurance. The
significance and direction of this bias is difficult to
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estimate, but given the expected better socioeconomic
situation of people with additional private insurance, and
that Valencia private hospitals are relatively more special-
ized in elective surgery and deliveries than in chronic con-
ditions, we think it may not be important. Nor were there
included hospitalizations occurred outside the VHA be-
cause of inaccessibility of data, but we think this could
only affect to a relatively small number of admissions on
the causes under study. Second, hospital admission rates,
as some authors have pointed out, [36,37] even standard-
ized by age and sex, do not fully account for the differ-
ences in disease prevalence between areas, or in the
distribution of particularly vulnerable subpopulations, this
last an aspect that has already been proved to be associ-
ated with PPH in many regions of Europe [38,39] and
USA [40]. Third, the quality of the information of the
Minimum Basic Hospital Discharge Dataset has not been
exhaustively analysed in the literature, and may not be op-
timal for research. Nevertheless, after having undergone a
standardization procedure, it is considered one of the ad-
ministrative information datasets with greatest scope and
usefulness for research [41]. And last, the PPH definitions
used were recently validated in Spain, [24,25] an aspect
which increases its internal validity, however this same
consideration limits the contrast of our results with stud-
ies that used other lists (including other lists in Spain).

Conclusions
In summary, this paper shows that the shared component
modelling offers useful information when analyzing PPH at
community level. It provides a global picture of the geo-
graphical pattern shared by different PPH, improving our
ability to evaluate healthcare systems performance, and at
the same time it depicts the particularities of each PPH, an
aspect that could be connected with particular organizational
factors affecting specific territories.
Additional files

Additional file 1: Script for SCM and BYM models.

Additional file 2: Correlations between the SCM relative risks for
individual PPH and the SCM estimated relative risk shared by
all conditions.
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