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Abstract

Background: A proportional hazards measure is suggested in the context of analyzing SROC curves that arise in the
meta–analysis of diagnostic studies. The measure can be motivated as a special model: the Lehmann model for ROC
curves. The Lehmann model involves study–specific sensitivities and specificities and a diagnostic accuracy parameter
which connects the two.

Methods: A study–specific model is estimated for each study, and the resulting study-specific estimate of diagnostic
accuracy is taken as an outcome measure for a mixed model with a random study effect and other study-level
covariates as fixed effects. The variance component model becomes estimable by deriving within-study variances,
depending on the outcome measure of choice. In contrast to existing approaches – usually of bivariate nature for the
outcome measures – the suggested approach is univariate and, hence, allows easily the application of conventional
mixed modelling.

Results: Some simple modifications in the SAS procedure proc mixed allow the fitting of mixed models for
meta-analytic data from diagnostic studies. The methodology is illustrated with several meta–analytic diagnostic data
sets, including a meta–analysis of the Mini–Mental State Examination as a diagnostic device for dementia and mild
cognitive impairment.

Conclusions: The proposed methodology allows us to embed the meta-analysis of diagnostic studies into the
well–developed area of mixed modelling. Different outcome measures, specifically from the perspective of whether a
local or a global measure of diagnostic accuracy should be applied, are discussed as well. In particular, variation in
cut-off value is discussed together with recommendations on choosing the best cut-off value. We also show how this
problem can be addressed with the proposed methodology.

Keywords: Diagnostic accuracy, Mixed modelling, Random effects modelling, Cut-off value modelling,
SROC modelling

Background
We are interested in the following setting occurring in the
field of meta-analysis of diagnostic studies (Hasselblad
and Hedges [1]; Sutton et al. [2]; Deeks [3]; Schulze
et al. [4]): a variety of diagnostic studies are available pro-
viding estimates of the diagnostic measures of specificity
q = P(T = 0|D = 0) as q̂i = xi/ni and of sensitivity
p = P(T = 1|D = 1) as p̂i = yi/mi, where D = 1
and D = 0 denote presence or absence of disease,
respectively, and T = 1 or T = 0 denote positivity
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or negativity of the diagnostic test, respectively, xi are
the number of observed true-negatives out of ni healthy
individuals, and yi are the number of observed true-
positives out of mi diseased individuals, for i = 1, . . . , k,
k being the number of studies. For more details on the
statistical modelling of the diagnostic data from a single
study, see Pepe [5,6]. For a more detailed introduction
to meta–analysis of diagnostic studies, see Holling et al.
[7]. In the following, we will look at several examples –
mainly from medicine and psychology – for this special
meta-analytic situation. In principle, however, applica-
tions could occur in all areas in which meta-analytic data
is encountered; Swets [8] considers mainly psychological
applications, but also mentions cases from engineering
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(quality control), manufacturing (failing parts in planes),
metereology (correctness of weather predictions), infor-
mation science (correctness of information retrieval), or
criminology (correctness of lie detection test). We illus-
trate the special meta-analytic situation mentioned above
with a meta-analysis on a diagnostic test on heart failure
(see also Holling et al. [7]).
Example 1: Meta-Analysis of diagnostic accuracy of

Brain Natriuretic Peptides (BNP) for heart failure. Doust
et al. [9] provide a meta-analysis on the diagnostic accu-
racy of the brain natriuretic peptides (BNP) procedure as a
diagnostic test for heart failure. According to the authors,
diagnosis of heart failure is difficult, with both overdiag-
nosis and underdiagnosis occurring. The meta-analysis
considers a range of diagnostic studies that use different
reference standards (where a reference standard defines
the presence or absence of disease). Here we only consider
the eight studies (see Table 1) using the left ventricular
ejection fraction of 40% or less as reference standard.
The cut–off value problem. A separate meta–analysis of

sensitivity and specificity using the meta–analytic tools
for independent binomial samples is problematic when
the underlying diagnostic test utilizes a continuous or
ordered categorical scale and different cut–off values have
been used in different diagnostic studies. A simple varia-
tion of the cut–off value from study to study might lead
to quite different values of sensitivity and specificity with-
out any actual change in the diagnostic accuracy of the
underlying test.
SROC curve. Due to this comparability problem for

sensitivity and specificity, interest is usually focussed on
the summary receiver operating characteristic (SROC)
curve consisting of the pairs (1 − q(t), p(t)) where q(t) =
P(T < t|D = 0) and p(t) = P(T ≥ t|D = 1) for a con-
tinuous test T with potential value t. For a given study i,
i = 1, · · · , k, with potentially unknown cut–off value ti,

Table 1 Meta-analysis of of diagnostic accuracy of brain
natriuretic peptides (BNP) for heart failure using the left
ventricular ejection fraction of 40% or less as reference
standard

Diseased Healthy

Study i yi(TP) mi − yi(FN) xi(TN) ni − xi(FP) ni +mi

Bettencourt 2000 29 7 46 19 101

Choy 1994 34 6 22 13 75

Valli 2001 49 9 78 17 153

Vasan 2002a 4 6 1612 85 1707

Vasan 2002b 20 40 1339 71 1470

Hutcheon 2002 29 2 102 166 299

Landray 2000 26 14 75 11 126

Smith 2000 11 1 93 50 155

the pairs (1−q(ti), p(ti)) can be estimated by (1− q̂i, p̂i) =
(1−xi/ni, yi/mi) for i = 1, . . . , k. The SROC curve accom-
modates the cut–off value problem. Different pairs could
have quite different values of specificity and sensitivity,
but still reflect identical diagnostic accuracy. The SROC
diagram for the meta–analysis on BNP and heart failure is
given in Figure 1.
Clearly, there is a wide range of values for specificity

and sensitivity. Nevertheless, as Figure 1 shows, the pos-
sibility that the pairs might stem from a common SROC
curve (as given by the dashed curve in Figure 1) cannot
be discarded. Since the SROC approach accommodates
the cut-off value problem, it is commonly preferred to
summary measures like the Youden index [10] or the diag-
nostic odds ratio [11]. In the following, we focus our
analysis on the SROC curve.
Background of SROC modelling. SROC modelling has

received considerable attention in the field and experi-
enced several developments. An early model was sug-
gested by Littenberg and Moses [12], [13] and has been
used in practice frequently; Deeks [3] discusses its promi-
nent role in modeling meta-analytic diagnostic study
accuracy. Littenberg and Moses [13] suggest fitting D =
α + βS, where D = logDOR = log p

1−p − log 1−q
q is

the log-diagnostic odds ratio and S = log p
1−p + log 1−q

q
is a measure for a potential threshold effect. After α and
β have been estimated from the data, the SROC-curve
(p vs. 1 − q) is reconstructed from the estimated values of
α and β . The parameter α is interpreted as the summary
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Figure 1 SROC diagram for BNP and heart failure: circles are the
observed pairs of false positive rate and sensitivity, dashed
curve is lowess smoother.
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log-DOR, which is adjusted by means of S for potential
cut-off value effect.
A two–level approach has been suggested by Rutter and

Gatsonis [14], which is typically given in the following
notational form (Walter and Macaskill [15]): let Zij ∼
Bi(nij,πij), where Zij is the number of test-positives in
study i for arm j (j = 1 is diseased, j = 2 is non-diseased),
nij is the size of arm j in study i and πi1 is the sensitiv-
ity, πi2 is the false positive rate; the model is log πij

1−πij
=

(θi+αiDSij) exp(−βDSij), where θi is an implicit threshold
parameter for study i, αi is the diagnostic accuracy param-
eter in study i, andDSij represents a binary variable for the
disease status. The parameter β allows for an association
between test accuracy and test threshold.When β = 0, αi
is estimated byDi and θi is estimated by Si/2, whereDi and
Si are as for the Littenberg–Moses model. Furthermore,
to account for between-study variation, a random effect is
assumed for θi ∼ N(�, τ 2θ ) and αi ∼ N(�, τ 2α), with θi and
αi being independent. As an alternative, a bivariate nor-
mal random-effects meta–analysis has been suggested by
van Houwelingen et al. [16]; see also Reitsma et al. [17]
and Arends et al. [18]. Harbord et al. [19] show that these
models are closely related.
Paper overview. In the following, we propose a spe-

cific model, called the Lehmann model, which we believe
is very attractive for the analysis of SROC curves. The
model involves study–specific sensitivities and specifici-
ties and a diagnostic accuracy parameter which connects
the two. The Lehmannmodel achieves flexibility by allow-
ing the diagnostic accuracy parameter to become a ran-
dom effect. In this it is similar to the Rutter-Gatsonis
model, but differs in that it retains univariate dimen-
sionality in its outcome measure and, hence, allows a
mixed model approach in a more conventional way. In
section “The proportional hazards measure”, the propor-
tional hazards measure is motivated as a specific form
of SROC curve modelling and is compared to other
approaches. Section “A mixed model approach” intro-
duces the specific mixed model in which the log propor-
tional hazards measure forms the outcome measure, the
study factor is a normally distributed random effect (to
cope with unobserved heterogeneity), and other observed
covariates (such as gold standard or diagnostic test varia-
tion) are considered as fixed effects in the mixed model.
Section “Results” considers various applications includ-
ing a meta-analysis of the Mini-Mental State Examination
to diagnose dementia or mild cognitive impairment. It
also provides SAS-code for a simple execution of the sug-
gested approach. In section “Discussion”, the choice of
outcome is discussed and the difference between global
and local diagnostic accuracy measures highlighted. This
is particularly of interest if observed cut-off value varia-
tion occurs in the meta-analysis and needs to be assessed.

Here a local criterion of diagnostic accuracy appears more
appropriate. The paper ends with some brief conclusions
and discussion in section “Conclusions”.

Methods
The proportional hazardsmeasure
Numerous summary measures for a pair of specificity
and sensitivity have been suggested: we mention here the
Youden index, Ji = pi + qi − 1 [10], and the squared
Euclidean distance to the upper left corner in the SROC
diagram, Ei = (1−pi)2 + (1−qi)2 . [A review of summary
measures is given in Liu [20].] Using an average over any
of these measures might be problematic: not only might
sensitivities and specificities be heterogeneous, this might
also be true for the associated summary measures such as
the Youden index or the Euclidean distance (as demon-
strated by Figure 2 using the data of the meta-analysis of
BNP and heart failure).
We suggest using the measure θ = log p

log(1−q) , which
relates the log-sensitivity to the log-false positive rate; we
call it the proportional hazards (PH)measure. In Figure 3
we see that this measure shows a reduced variability for
the meta-analysis of BNP and heart failure, making it
more suitable as an overall measure in the meta-analysis
of diagnostic studies or diagnostic problems. While the
measure appears to be like any other summary measure
of the pair sensitivity and specificity, it has a specific
SROC-modelling background and motivation. We have
mentioned previously the cut-off value problem: observed
heterogeneity might be induced by cut-off value variation
which could lead to different sensitivities and specifici-
ties – despite the accuracy of the diagnostic test itself not
having changed – and might also lead to an induced het-
erogeneity in the summary measure. Hence, it is unclear
whether the observed heterogeneity is due to heterogene-
ity in the diagnostic accuracy (authentic heterogeneity)
or whether it has occurred due to cut-off value variation
(artificial heterogeneity). This second form of hetero-
geneity can also occur when the background population
changes with the study.
One of the features of the SROC approach is that it

incorporates the cut-off value variation in a natural way;
hence a measuremodelling an ROC curve is favorable. We
suggest the PH measure based upon the Lehman family in
the following way:

p = (1 − q)θ . (1)

This model was suggested by Le [21] for the ROC curve.
It is an appropriate model since, for feasible q, (1 − q)θ
is also feasible as long as θ is positive. Note that (1) is
defined for all values of p ∈[ 0, 1] and q ∈ [0, 1] whereas
θ = log p

log(1−q) is only defined for p ∈ (0, 1) and q ∈ (0, 1).



Charoensawat et al. BMCMedical ResearchMethodology 2014, 14:56 Page 4 of 13
http://www.biomedcentral.com/1471-2288/14/56

1.00

0.75

0.50

0.25

0.00

86420

1.00

0.75

0.50

0.25

0.00

86420

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

p (sensitivity)

study

q (specificity)

Youden distance

Figure 2 Index plots for sensitivity, specificity, Youden index, and Euclidean distance showing the wide variability of these measures for
the data of the meta-analysis of BNP and heart failure.

Population values of sensitivity and specificity of 1 are
rarely realistic, although observed values of 1 for sensitiv-
ity and specificity do occur in samples . This can be coped
with by using an appropriate smoothing constant such as
estimating specificity as (ni − 1)/ni when xi = ni and
sensitivity as (mi − 1)/mi if yi = mi.
In Figure 4 we see a number of examples of the propor-

tional hazards family. It becomes clear now why θ is called
the proportional hazards measure. By taking logarithms
on both sides of (1) we achieve

θ = log p(t)/ log [1 − q(t)] , (2)

meaning if model (1) holds, the ratio of log-sensitivity
to log-false positive rate is constant across the range of
possible cut-off value choices t. Hence the name propor-
tional hazards model, which was suggested in a paper
by Le [21] and used again in Gönen and Heller [22].
The idea of representing an entire ROC curve in a sin-
glemeasure is illustrated in Figure 5.While sensitivity and
specificity vary over the entire interval (0, 1), the value of θ
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Figure 3 Index plots for the PHmeasures for the data of the meta-analysis of BNP and heart failure.
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Figure 4 Some examples of the proportional hazards model for various values of θ .

remains constant. Hence, log-sensitivity is proportional to
the log-false positive rate. This assumption is similar to an
assumption used for a model in survival analysis, where it
is assumed that the hazard rate of interest is proportional
to the baseline hazard rate; this might have motivated the

choice of name used by Le [21] and Gönen and Heller [22]
in this context.
However, it is not our intention to make the assump-

tion that an entire SROC curve can be represented by
model (1); the explanations above are instead meant as a

Figure 5 Proportional hazards model and associated PHmeasure.
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motivation that the PH-measure is not just another sum-
mary measure, but can be derived from a ROC modelling
perspective. We envisage that each study, with associated
pair of sensitivity and specificity, can be represented by a
specific PH-model, as illustrated in Figure 6.
We see indeed that each pair of sensitivity and speci-

ficity can be associated with its own ROC curve provided
by

p = (1 − q)θ̂i (3)

where θ̂i = log p̂i/ log [1 − q̂i], so that the curve (3) passes
exactly through the point (1 − q̂i, p̂i).
Comparison to other approaches. It remains to be

seen how appropriate the suggested proportional haz-
ards model is and how it compares to other existing
approaches. We emphasize that in our situation we have
assumed that there is only one pair of sensitivity and false
positive rate (p̂i, 1 − q̂i) per study i. Situations where sev-
eral pairs per study are observed (such as in Aertgeerts
et al. [23]) are rare. Hence, on the log-scale for sensi-
tivity and false-positive rate, we are not able to identify
any straight line model within a study with more than
one parameter, since this would require at least two pairs
of sensitivity and specificity per study; see also Rücker
and Schumacher [24,25]. However, any one-parameter
straight line model, such as the proposed proportional

hazards model, is estimable within each study, although
within-model diagnostics is limited since we are fitting the
full within study model. Given that sample sizes within
each diagnostic study are typically at least moderately
large it seems reasonable to assume a bivariate normal dis-
tribution for log p̂ and log(1 − q̂) with means log p and
log(1 − q) as well as variances σ 2

p and σ 2
q , respectively,

and covariance σ with correlation ρ = σ/(σpσq). This
is very similar to the assumptions in the approach taken
by Reitsma et al. [17] (see also Harbord et al. [19]), with
the difference that we are using the log-transformation
whereas in Reitsma et al. [17] logit-transformations are
applied. Then, it is a well-known result that the mean
of the random variable log p̂ (having unconditional mean
log p) conditional upon the value of the random vari-
able log(1 − q̂) (having unconditional mean log(1 − q)) is
provided as

E(log p̂| log(1− q̂)) = log p+ρ
σp

σq
[log(1− q̂)− log(1−q)] ,

(4)

which can be written as α + θ [log(1 − q̂)] where α =
log(p) − θ log(1 − q) and θ = ρ

σp
σq
. This is an important

result since it means that, in the log-space, sensitivity and
false–positive rate are linearly related. Furthermore, if α is
zero, the proportional hazards model arises.
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Figure 6Meta-analysis of BNP and heart failure: each study is represented by its own PHmodel (1) – illustrated for 3 studies.



Charoensawat et al. BMCMedical ResearchMethodology 2014, 14:56 Page 7 of 13
http://www.biomedcentral.com/1471-2288/14/56

The question then arises why not work with a straight
line model

log p| log(1−q) = α + θ log(1 − q). (5)

The answer is that such a model is not identifiable
since we have only one pair of sensitivity and speci-
ficity observed in each study and it is not possible to
uniquely determine a straight line by just one pair of
observations since there are infinitely many possible lines
passing through a given point in the log p – log(1 − q)
space. However, the proportional hazards model as a
slope-only model is identifiable and it is more plausible
than other identifiable models such as the intercept–only
model. Clearly, a logistic-transformation would be more
consistent with the existing literature [14,15] than the
log-transformation. However, both models would give a
perfect fit (within each study) since there are no degrees
of freedom left for testing the model fit. The situation
changes when there are repeated observations of sensi-
tivity and specificity per study available. However, these
meta-analyses with repeated observations of sensitivity
and specificity according to cut-off value variation are
extremely rare.

Amixedmodel approach
With the motivation of the previous sections in mind,
we assume that k diagnostic studies are available with
diagnostic accuracies θ̂1, · · · , θ̂k where

θ̂i = log p̂i
log(1 − q̂i)

. (6)

We assume the following linear mixed model for log θ̂i:

log θ̂i = βTxi + δi + εi (7)

where xi is a known covariate vector in study i, δi is a
normally distributed random effect δi ∼ N(0, τ 2) with τ 2

being an unknown variance parameter, and εi ∼ N(0, σ 2
i )

is a normally distributed random error with variance σ 2
i

known from the i−th study.
There are several noteworthy points about the mixed

model (7). The response is measured on the log-scale,
where the transformation improves the normal approxi-
mation and also brings the diagnostic accuracy into a well-
known link function family: the complementary log-log
function. The difference of the probability for a positive
test in the groups with and without the condition is mea-
sured on the complementary log-log scale. The fixed effect
part involves a covariate vector x which could contain
information on study level such as gold standard varia-
tion, diagnostic test variation, or sample size information.
It should be noted that there are two variance compo-
nents, τ 2 and σ 2

i . It is important to have information on
the second variance component. If the second component
is unknown, even under the assumption of homogeneity

σ 2
1 = · · · = σ 2

k , the variance component model would not
be identifiable. Hence, we need to devote some effort to
derive expressions for the within study variances; this can
be accomplished using the δ−method as discussed in the
next section.
Within study variance. Let us consider (ignoring the

study index i for the sake of simplicity)

log θ̂ = log(− log p̂) − log [− log(1 − q̂)] (8)

and apply the δ−method. Recall that the variance
Var T(X) of a transformed random variable T(X) can
be approximated as [T ′(E(X))]2 Var(X) assuming that the
variance Var(X) of X is known. Applying this δ−method
twice gives

Var log(− log p̂) ≈ p̂(1 − p̂)/m
p̂2(log p̂)2

(9)

and

Var log(− log(1 − q̂)) ≈ q̂(1 − q̂)/n
(1 − q̂)2(log(1 − q̂))2

(10)

so that the within study variance for the i-th study is
provided as

σ 2
i = mi − yi

miyi(log yi/mi)2
+ xi

ni(ni − xi)(log(1 − xi/ni))2
.

(11)

We acknowledge that the above are estimates of the
variances of the diagnostic accuracy estimates, but are
used as if they were the true variances.
Some important cases. If there are no further covariates,

two important models are easily identified as special cases
of (7). One is the fixed effects model

log θ̂i = β0 + εi (12)

and the other is the random effects model

log θ̂i = β0 + δi + εi (13)

which have gained some popularity in the meta-analytic
literature.

Results
Case study on MMSE and dementia
We illustrate the approach with an example and revisit
a meta–analysis by Mitchell [26] on the diagnostic accu-
racy of the mini-mental state examination (MMSE) as a
diagnostic test for the detection of dementia and, more
recently, mild cognitive impairment (MCI). In this meta–
analysis 38 studies were included and the entire data are
reproduced in Table 2.We are interested in the question: is
there a difference in diagnostic accuracy of the MMSE in
the detection of dementia and MCI, as Figure 7 suggests.
We use proc mixed from the SAS software, version

9.2 for Windows [27], for the analysis (see also Table 3).
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Table 2 Meta-analysis of the diagnostic accuracy of the
mini-mental state examination (MMSE) and dementia or
mild cognitive impairment (MCI) as reference standard;
TP = true positives, FN = false negatives, FP = false
positives, TN = true negatives

Study Condition TP FN FP TN

1 Dementia 65 3 240 870

2 Dementia 117 12 10 110

3 Dementia 48 19 63 989

4 Dementia 134 8 28 152

5 Dementia 24 5 44 292

6 Dementia 67 15 48 153

7 Dementia 64 17 1 71

8 Dementia 281 64 20 286

9 Dementia 13 1 44 286

10 Dementia 262 20 29 177

11 Dementia 143 18 29 123

12 Dementia 183 33 33 51

13 Dementia 22 1 152 140

14 Dementia 112 1 590 2091

15 Dementia 152 81 126 1009

16 Dementia 29 26 26 236

17 Dementia 31 6 3 247

18 Dementia 10 3 12 333

19 Dementia 707 88 1438 10447

20 Dementia 181 108 17 184

21 Dementia 59 29 23 74

22 Dementia 74 23 16 143

23 Dementia 27 12 26 209

24 Dementia 40 6 75 528

25 Dementia 317 52 173 578

26 Dementia 387 116 16 54

27 Dementia 118 65 1 44

28 Dementia 44 7 34 396

29 Dementia 123 46 98 309

30 Dementia 25 43 3 171

31 Dementia 73 32 2 225

32 Dementia 37 45 1 440

33 Dementia 78 34 45 376

34 MCI 72 12 53 214

35 MCI 106 23 410 379

36 MCI 37 36 22 118

37 MCI 67 30 22 75

38 MCI 17 77 1 90

The values of the dependent variable log θ̂i are easily con-
structed from Table 2. We are interested to see if there
are differences in accuracy for diagnosing MCI compared
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Figure 7 SROC diagram for the meta–analysis of MMSE and
dementia or MCI as reference standard.

to diagnosing dementia. Hence we have constructed a
covariate condition which takes the value 1 if the
study concerns MCI as condition and 0 if the study is on
dementia. Since we have fixed within-study variances, we
need to tell proc mixed to incorporate this appropri-
ately; this can be accomplished by using a weight, wi =
1/σ 2

i . The random option induces a random effect (here
study) with associated variance component τ 2, which
is estimated. However, SAS proc mixed will automat-
ically fit a within-study variance component (on top of
the provided variances). To circumvent this mechanism,
the option parms (1) (1) /hold=2 is used where
the term hold=2 fixes the second variance component,
corresponding to the within-study variance multiplier, to
one. Note that the random effect modelling between-
study variation is described by a free variance parameter,
τ 2. For this a starting value needs to be given: we have
τ 2 = 1, although other choices are possible, e.g. τ 2 = 0,
corresponding to the case of no heterogeneity between
studies.
The results of the analysis are provided in Table 4.

It can be seen that there is a significant effect of con-
dition (dementia/MCI) on the diagnostic accuracy, with
diagnostic accuracy being significantly higher in stud-
ies with patients having dementia in comparison to the
diagnostic accuracy in studies with patients having mild
cognitive impairment. Nevertheless, not all heterogene-
ity is explained by this covariate as the random effect
(study effect) still remains significant, as the bottom part
of Table 4 shows.
The inference is based here on a procedure called the

Wald test. The estimated parameter value is divided by its
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Table 3 SAS proc mixed adapted for meta–analysis of diagnostic accuracy study data

SAS statement Explanation

proc mixed data=MMSE method=ml covtest; procedure mixed of SAS, data contains the data file, method

specifies estimation

class study condition; defines the categorical variables used

model logtheta = condition/s; defines the model: LHS outcome, RHS covariates used

weight w; w contains inverse variance as weight

random study(condition); factor study nested in condition

parms (1) (1)/hold=2; specifies starting values, hold=2 fixes the residual variance component

run; executes the program

estimated standard error, and the result is given in column
four in Table 4. The likelihood ratio testmay be considered
as an alternative. It is defined as two times the differ-
ence of the log-likelihood including the effect of interest
and the log-likelihood not including the effect of interest.
For the effect of condition in Table 4, we find a value of
6.8 for the likelihood-ratio test. The Wald test is asymp-
totically standard normal under the null-hypothesis of
absence of effect, whereas the likelihood ratio test statis-
tic is asymptotically chi-squared distributed with degrees
of freedom equal to the number of parameters associ-
ated with the effect considered (in this case one). It is
well-known that the likelihood ratio test is more powerful.
Here, both tests provide similar p-values, with 0.0091 for
the likelihood ratio test and 0.0069 for the Wald test; this
confirms the significance of the effect (dementia/MCI) on
the diagnostic accuracy.
It is trivial to construct the associated SROC curves

from Table 4. We find

for dementia: p = (1 − q)exp(−2.2878),

for MCI: p = (1 − q)exp(−2.2878+0.8605).

Note that the likelihood ratio test as well as theWald test
need modification in situations where the null hypothe-
sis is part of the boundary of the alternative such as when

Table 4 Analysis of effects for themeta-analysis of the
diagnostic accuracy of themini-mental state examination
(MMSE) and dementia or mild cognitive impairment (MCI)
as reference standard

Effect Parameter SE Z-value
estimate

fixed

Intercept -2.2878 0.1208 -18.94

condition 0.8605 0.3187 2.70

random

τ 2 (study) 0.3078 0.1049 2.90

testingH0 : τ 2 = 0. In this case, the asymptotic null distri-
bution of the likelihood ratio test statistic is no longer χ2

with 1 df but rather a mixture of a two-mass distribution
giving equal weights 0.5 to the one-point mass distribu-
tion at 0 and a χ2 with 1 df [28]. Practically, this means
that standard 2-sided p-values have to be divided by 2.

Case study on MOOD and depressive disorders
The MOOD module of the Patient Health Questionnaire
(PHQ-9) has been developed to screen and to diagnose
patients in primary care with depressive disorders. The
instrument consists of 9 questions, each scored from 0
to 3 points with a total score ranging from 0 to 27. In
a meta–analysis of the diagnostic accuracy of MOOD,
Wittkampf et al. [29] included 12 studies. These studies
used either a cut-off of 10 (referred to here as “sum-
mary score”) or a more complex evaluation algorithm
(“algorithm”). The complete data are listed in Table 5 and
the associated SROC diagram is given in Figure 8. The
impression from the graph is that the cut-off of 10 used by

Table 5 Meta-Analysis of the diagnostic accuracy of the
MOODmodule and depression in patients in primary care
as reference standard; TP = true positives, FN = false
negatives, FP = false positives, TN = true negatives

Study Cut-off TP FN FP TN

1 algorithm 65 26 104 1192

2 algorithm 70 13 74 846

3 sum score 62 10 27 429

4 sum score 36 5 65 474

5 sum score 55 11 43 392

6 algorithm 6 8 12 144

7 sum score 121 103 80 720

8 algorithm 11 5 5 76

9 algorithm 6 5 0 3

10 algorithm 85 31 9 460

11 sum score 15 1 4 42

12 sum score 96 10 23 187
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Figure 8 SROC diagram for the meta–analysis of MOOD and
depression in patients in primary care.

the summary score has a higher diagnostic accuracy than
the alternative.
The presence or absence of a cut-off value effect is now

more formally investigated using a covariate cut-off,
which is zero when the summary score with a cut-off value
of 10 is used and one otherwise. The results are presented
in Table 6. It can be seen that the covariate cut-off
level “summary score” is associated with a higher diag-
nostic accuracy, although, as seen from theWald statistics
provided in column four of Table 6, the effect is not signif-
icant. We see a significant random effect (study; adjusted
p-value 0.0274; see comment at the end of section
“Case study on MMSE and dementia”), which indicates
that the random study effect is needed in the analysis. It
is not really surprising that the covariate cut-off is not
significant, since the concept of the SROC is designed to
accommodate the cut-off value variation. We will take up
this point in the next section.

Table 6 Analysis of the cut-off effect for themeta-analysis
of theMOODmodule and depression in patients in
primary care

Effect Parameter SE Z-value

estimate

fixed

Intercept -2.5332 0.2817 -8.99

cut-off 0.4804 0.3966 1.21

random

τ 2 (study) 0.3239 0.1690 1.92

Discussion
Global versus local criteria
We have focussed on the PH measure so far, as it pro-
vides an appropriatemeasure for comparing SROC curves
globally, in the sense that cut-off value variation will not
necessarily effect the estimate of the SROC curve. The
situation is illustrated in Figure 9.
Evidently, different cut-off values are associated with the

same value of log θ , hence, the PH measure log θ is not
the best measure to discriminate different cut-off values.
This is not surprising, since the SROC curve is a concept
designed for assessing the diagnostic accuracy of a diag-
nostic test globally, in the sense that it adjusts for different
cut-off values. Hence, a measure that assesses local per-
formance of the diagnostic is needed. Assuming that every
cut-off value used in the meta–analysis is clinically mean-
ingful, we suggest use of the (squared) Euclidean distance
to the upper left corner (0, 1) of the ROC diagram as a
more meaningful measure to compare cut-off values:

Êi = (1 − p̂i)2 + (1 − q̂i)2, (14)

where p̂i = yi/mi and q̂i = xi/ni. Each point in the
SROC diagram has a unique circle with center (0, 1) that
passes through this point. In Figure 9, one such circle is
illustrated which also has the smallest Euclidean distance
among the three available points (since it has smallest
radius among the three possible points with associated
circles). In the following, we will consider the criterion
(14) as an alternative criterion to choose the cut-off value.

1.00.80.60.40.20.0

1.0

0.8

0.6

0.4

0.2

0.0

1-q

p

Figure 9 Different cut-off values with associated sensitivities
and specificities on the same SROC curve with different
Euclidean distances; the point on the circle has shortest
Euclidean distance to the upper left vertex of the SROC diagram
as indicated by the circle.
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Since we have changed the criterion, we need to deter-
mine the associated within-study variances. This can be
accomplished easily, using the δ-method once more, to
obtain

Var(Ê) ≈ 4(1− p̂)2p̂(1− p̂)/m+4(1− q̂)2q̂(1− q̂)/n, (15)

where we have ignored study indexes for the the sake
of simplicity. Using this criterion, we see in Figure 9
that cut-off values can vary considerably in their diag-
nostic accuracy, despite having identical diagnostic
accuracy at a global level. We re-analyze the meta–
analysis of MOOD and depression with respect to the
(squared) Euclidean distance and provide the results in
Table 7.
Evidently, both criteria lead to the same conclusion,

namely that using the summary score with a cut-off value
of 10 leads to the higher diagnostic accuracy (although
the effect is not significant). It might also be worthwhile
looking at the results of the likelihood ratio test: for the
PH-measure as the outcome variable, the likelihood ratio
test provides a value of 1.5; for the Euclidean distance, the
value of the likelihood ratio test is 1.7, confirming the non-
significance of the effect. Nevertheless, the analysis shows
that the cut-off value of 10 provides the higher diagnsotic
accuracy.

Meta–analysis of magnetic resonance spectroscopy and
prostate cancer.
This case study provides an example where the use
of a global or local criterion leads to a different
conclusion. Magnetic resonance spectroscopy has the
ability to discriminate between prostate cancer and
benign prostatic hyperplasia, based on reduced citrate
and elevated choline in the cancerous region. The diag-
nostic test works on a voxel of signal intensity ratios
of (choline+creatine)/citrate. Two cut-off points are in
use: < 0.75 and < 0.86. The results collected in a
meta–analysis by Wang et al. [30] include 12 studies, as
presented in Table 8; the associated SROC diagram is pre-
sented in Figure 10. From the graph, there is no obvious
choice for the “best” cut-off value.
The fixed effects parts of the mixed model analysis,

using the global PHmeasure and the local Euclideanmea-
sure as criteria, are presented in Table 9. It is interesting
to note that the focus of the analysis, global or local,

Table 7 Analysis of the cut-off effect for themeta-analysis
of theMOODmodule and depression in patients in
primary care

Criterion Effect Parameter SE Z-value
estimate

PH measure cut-off 0.4804 0.3966 1.21

Euclidean distance cut-off 0.0563 0.0430 1.31

Table 8 Meta-analysis of themagnetic resonance
spectroscopy and prostate cancer; TP = true positives,
FN = false negatives, FP = false positives, TN = true
negatives

Study Cut-off TP FN FP TN

1 0.75 122 30 35 55

2 0.75 73 8 80 219

3 0.75 75 6 92 207

4 0.75 123 39 38 50

5 0.75 134 21 40 39

6 0.75 12 12 7 75

7 0.86 81 71 24 59

8 0.86 56 25 32 267

9 0.86 52 29 20 59

10 0.86 98 57 20 59

11 0.86 6 9 15 266

12 0.86 44 8 32 264

is an important part of the analysis. Globally, the better
diagnostic accuracy is given by the cut-off value of 0.75,
whereas better local performance is achieved with a cut-
off value of 0.86, although neither analysis is significant.

PHmeasure and positive likelihood ratio
Another frequently used diagnostic measure is the posi-
tive likelihood ratio, defined as the ratio of sensitivity to
false positive rate P(T = 1|D = 1)/P(T = 1|D = 0)
or p/(1 − q). It is different to the PH measure in that
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Figure 10 SROC diagram for the meta-analysis of the magnetic
resonance spectroscopy and prostate cancer.
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Table 9 Analysis of the cut-off effect for themeta-analysis
of themagnetic resonance spectroscopy and prostate
cancer

Criterion Effect (reference) Parameter SE Z-value
estimate

PH measure cut-off (< 0.75) 0.2049 0.3516 0.58

Euclidean distance cut-off (< 0.75) -0.0212 0.0573 -0.37

the ratio is taken on the log-scale: θ = log p/ log(1 − q).
Furthermore, if re-expressed as models, the positive-
likelihood ratio corresponds to p = θ ′(1 − q), a straight
line with no intercept, whereas the the PH measure cor-
responds to p = (1 − q)θ , a straight line on the log-scale
with no intercept. The positive likelihood ratio is a natu-
ral measure since it transfers the concept of relative risk
(risk of a positive test in the diseased group to the risk of
a positive test in the non-diseased group) to the diagnos-
tic setting. However, it is less suitable as an (S)ROCmodel
since it does not provide a function which connects the
lower left vertex with the upper right vertex in the ROC
diagram (which, in contrast, the PH-model does provide).

Conclusions
The approach presented here is attractive since it is based
on a simple measure of diagnostic accuracy per study,
namely the ratio of log-sensitivity to log-false-positive
rate. It also embeds the diagnostic meta-analysis problem
into the well-known and much used mixed model setting.
In particular, the analysis of effects of observed covariates
on the diagnostic accuracy can easily be incorporated.
Controversies in the meta–analysis of diagnostic stud-

ies usually focus on comparability of studies. Study types
might be case–control, cohort, cross–sectional or other.
Studies might differ in the gold standard, severity of dis-
ease, or in the application of the diagnostic test. Patient
populations might differ across studies, as might the cut-
off value (defining positivity of the diagnostic test). All
these different aspects, if observed, can be easily incorpo-
rated and analyzed as fixed effects in the special mixed
model suggested here.
The occurrence of heterogeneity in the meta-analysis of

diagnostic studies is more the rule than the exception; it is
thus important to quantify the heterogeneity across stud-
ies due to the different sources. The approach provided
here offers a more detailed investigation of heterogeneity
according to the various observed sources and a resid-
ual heterogeneity (measured by τ 2). This might allow us
to construct a measure of relative residual heterogeneity,
which might help to assess how trustworthy the results of
a given meta-analysis may be. This will be investigated in
future research.
In a recent study on the meta-analytical evaluation

of coronary CT angiography studies, Schuetz et al. [31]

investigated the problem of non-evaluable results that
occur in the individual studies. They conclude that diag-
nostic accuracy measures change considerably depending
on how non-evaluable results are treated. In fact, they
conclude that

parameters for diagnostic performance significantly
decrease if non-evaluable results are included by a 3×2
table for analysis (intention to diagnose approach).

Twenty-six studies were included in their meta-analysis
with a wide range of non-evaluable results from 0 to 43.
Using the approach suggested here, it would be very easy
to analyze the effect of non-evaluable results on the diag-
nostic accuracy by including the amount of non-evaluable
results per study as a fixed effect in the proposed mixed
model.
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