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Abstract

R, and other packages.

control for confounding is by fine stratification.

Background: The time stratified case cross-over approach is a popular alternative to conventional time series
regression for analysing associations between time series of environmental exposures (air pollution, weather)

and counts of health outcomes. These are almost always analyzed using conditional logistic regression on data
expanded to case—control (case crossover) format, but this has some limitations. In particular adjusting for overdispersion
and auto-correlation in the counts is not possible. It has been established that a Poisson model for counts with stratum
indicators gives identical estimates to those from conditional logistic regression and does not have these limitations,

but it is little used, probably because of the overheads in estimating many stratum parameters.

Methods: The conditional Poisson model avoids estimating stratum parameters by conditioning on the total event
count in each stratum, thus simplifying the computing and increasing the number of strata for which fitting is feasible
compared with the standard unconditional Poisson model. Unlike the conditional logistic model, the conditional Poisson
model does not require expanding the data, and can adjust for overdispersion and auto-correlation. It is available in Stata,

Results: By applying to some real data and using simulations, we demonstrate that conditional Poisson models were
simpler to code and shorter to run than are conditional logistic analyses and can be fitted to larger data sets than
possible with standard Poisson models. Allowing for overdispersion or autocorrelation was possible with the conditional
Poisson model but when not required this model gave identical estimates to those from conditional logistic regression.

Conclusions: Conditional Poisson regression models provide an alternative to case crossover analysis of stratified time
series data with some advantages. The conditional Poisson model can also be used in other contexts in which primary
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Background

Case crossover analysis is widely used to estimate acute
associations of pollutants or other time-varying expo-
sures with mortality or other health outcome from daily
time series data from a community. Virtually all recent
applications have used the more robust time stratified
variant, with strata being months or day-of-week within
month [1]. We focus on that variant. The strata are used
to control for slow or regular (e.g. day-of-week) changes
in underlying risk which might confound associations
with the exposure of interest. In most applications, and
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those which we focus on here, pollution measurements
are available only for a city or at least district, so are not
unique to each individual. We call this an aggregated ex-
posure case crossover study in contrast to an individual
exposure study where exposure series are distinct for each
individual. With aggregate exposures the original data are
a time series of counts and environmental variables.

The standard analysis of case crossover studies is by
conditional logistic regression on an expanded data set,
in which for every death occurring on a day with at least
one death, the day of death is entered as a “case” and
other days in the same stratum as “controls” [1]. How-
ever, this is somewhat computationally intensive, and
cannot allow for overdispersion or auto-correlation in
the original counts, which can distort estimates. It has
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been established that a Poisson model for counts with
stratum indicators gives identical estimates and can allow
for these phenomena [2], but it is little used, probably
because of the overheads in estimating many stratum
parameters.

This paper describes the conditional Poisson model
and demonstrates its use to simplify analysis and/or
relax the assumptions of the conditional logistic regres-
sion analysis conventionally used for case cross-over
studies. The aim is to give a heuristic and practical guide
to the epidemiological analyst rather than a rigorous
statistical exposition, for which references are given. We
also compare the conditional Poisson model with the
conditional logistic and also the unconditional Poisson
models applied to an example dataset and some simu-
lated data. In the discussion section we also briefly re-
view applications of the conditional Poisson model other
than for case cross-over studies.

Methods

Our main purpose is to describe the conditional Poisson
model, but before doing this we introduce the illustrative
data and terminology, and briefly review the conditional
logistic regression and unconditional Poisson regression
formulations for case cross-over studies.

lllustrative data

To aid understanding the models we describe their ap-
plication to a study of daily air ozone pollution in rela-
tion to counts of deaths from London from 2002-6,
using data previously published [3]. Primary confounder
control is by stratifying time by month and day-of-week,
a typical case crossover approach. A summary of the
data is given in Table 1. We illustrate each method dis-
cussed using these data, which are also provided with R
and Stata code reproducing the results in Additional file 1
and Additional file 2.

Notation common to all model descriptions

We suppose that data are available on counts Y; of deaths
(or any adverse health outcomes), a (row) vector x; of vari-
ables of interest (here air pollution concentration) and

Table 1 Description of example daily data: London
2002-2006

Variable Mean Mimimum Maximum
Date (YMD) 2002.1.1 2006.12.31
Mean temperature 1.7 -14 282
Mean ozone 348 183 119.2
Number of deaths (all cause) 149.5 99 280
Strata: year X month X day-of-week 2002.1.tues  2006.12.sun
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covariates (here temperature) pertaining to each day i
The confounder control time strata (month and day-of-
week) are denoted s = 1,...,S.

Conditional logistic model for case cross-over data
Since the model formulation is standard and can be
found elsewhere [2], only a summary is given here. Data
are expanded to include each case and all other days in
the stratum as if a matched set in a case—control study
or risk set in Cox regression. Thus if there are k deaths
in a stratum, the stratum data must appear k times in
the expanded data set. If there are on average K deaths
in a stratum, the dataset size will be multiplied by K.
With this expanded data and the notation described
above, the conditional logistic model can be written

exp{B"x;}
Zjes(i) exp{Bx;}

Where D; ¢ is the event that the death in stratum s oc-
curs on day i, B is a row vector of parameters, and super-
script T denotes transpose.

The data duplication is reduced (say “semi-expanded”)
if there are multiple deaths on the same day by multiply-
ing the likelihood contribution from that day by the
number of deaths on the case day (weighting). However,
even in the semi-expanded form strata with deaths on
more than one day must be repeated in the data as many
times are there are days with cases, with different “case”
days each time replicated.

Excerpts from the London data in the original count
and semi-expanded case crossover format are presented
in Tables 2 and 3. In the semi-expanded format each day
is repeated four (or five) times, once as a “case” day and
three (or four) times as a control day.

D; s ~Bernoulli | m; =

(1)

The unconditional Poisson regression model

It has been shown that a standard (unconditional) Pois-
son model applied to data in the original time series for-
mat (top Table 2) with indicator variables for strata give
identical estimates and inference to conditional logistic
regression on expanded data — the two models are

Table 2 Excerpt from example daily data in original
format

Stratum Date Ozone Temp-erature n. of deaths
2002 1 Sun 06 jan 2002 24 7.1 198
2002 1 Sun 13 jan 2002 17.6 82 204
2002 1 Sun 20 jan 2002 499 89 167
2002 1 Sun 27 jan 2002 425 105 169
2002 1 Mon 07 jan 2002 4.1 52 180
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Table 3 Excerpt from example data in semi-expanded
format for case crossover conditional logistic analysis

Stratum Case-con Date Ozone Temp- Case Weight
set erature day

2002 1 2002 1 06 jan 24 7.1 1 198
Sun Sun 1 2002

2002 1 2002 1 13 jan 176 8.2 0 198
Sun Sun 1 2002

2002 1 2002 1 20 jan 499 89 0 198
Sun Sun 1 2002

2002 1 2002 1 27 jan 425 10.5 0 198
Sun Sun 1 2002

2002 1 2002 1 06 jan 24 7.1 0 204
Sun Sun 2 2002

2002 1 2002 1 13 jan 17.6 8.2 1 204
Sun Sun 2 2002

2002 1 2002 1 20 jan 499 89 0 204
Sun Sun 2 2002

2002 1 2002 1 27 jan 425 10.5 0 204
Sun Sun 2 2002

2002 1 2002 1 06 jan 24 7.1 0 167
Sun Sun 3 2002

2002 1 2002 1 13 jan 17.6 8.2 0 167
Sun Sun 3 2002

2002 1 2002 1 20 jan 499 89 1 167
Sun Sun 3 2002

2002 1 2002 1 27 jan 425 10.5 0 167
Sun Sun 3 2002

2002 1 2002 1 06 jan 24 7.1 0 169
Sun Sun 4 2002

2002 1 2002 1 13 jan 176 8.2 0 169
Sun Sun 4 2002

2002 1 2002 1 20 jan 499 89 0 169
Sun Sun 4 2002

2002 1 2002 1 27 jan 425 10.5 1 169
Sun Sun 4 2002

2002 1 2002 1 07 jan 4.1 52 1 180
Mon Mon 1 2002

2002 1 2002 1 14 jan 18.7 9.3 0 180
Mon Mon 1 2002

2002 1 2002 1 21 jan 38.1 10.8 0 180
Mon Mon 1 2002

2002 1 2002 1 28 jan 56.1 10.3 0 180
Mon Mon 1 2002

equivalent [2,4]. The association of pollution with mor-
tality can be thought to be inferred from the extent to
which WITHIN STRATA daily death counts are ex-
plained by daily exposure concentrations. Because it pro-
vides a familiar starting point from which we can
describe the conditional Poisson regression model we
describe this model algebraically here.

Because control of factors changing across strata
is no longer achieved by design, in addition to the
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regressors x; we also include stratum indicator variables
(a vector z,):

E(Y;) = p; = exp{a"z + B x;}, Y ~Poisson(;) (2)

l

It helps understand the conditional variant of this model
to re-write the term a’z; as ag where day i falls in stratum
s (thus vector a = (ay,..., &g)) . Then the model is

E(Yis) = p; = exp{ag + B'x;}, Y ~Poisson(u;)

(3)

The conditional Poisson regression model

The conditional Poisson model is the same as model
(3), except that instead of the parameters {o} being
estimated they are “conditioned out”, by conditioning on
the sum of events Y ; = Z Y in each stratum. Technic-

i

ally, the conditional Poisson model is actually a multi-
nomial model, with

exp{BTxi}
Zjes exp{ Bij}
(4)

However, describing it as a conditional Poisson model em-
phasizes its connections with the Poisson model and has
proved convenient in formulating algorithms for packages to
fit the parameters, so it is generally implemented under the
conditional Poisson name. Where both can be fit, the condi-
tional Poisson model gives identical estimates and inferences
to the unconditional Poisson model and hence to the condi-
tional logistic model (illustrated in the Results section).

The conditional Poisson model was first proposed in
the econometrics literature, illustrated by a study of the
dependence of annual number of patents registered by
companies on their R&D expenditure [5]. It has been
proposed for the self-controlled case series design in the
first place for vaccine safety studies in a series of papers
by Farrington and co-workers [6-8]. In this literature
“exposure” typically varies between study subjects as well
as over time, but a special case is where many subjects
share the same exposure series, as in a typical case cross-
over study [9]. We are not aware of published use of the
model for environmental stratified time series analyses,
where the overwhelming preponderance is of conditional
logistic analyses in a case crossover formulation.

The authors are familiar with implementations of the
conditional Poisson model in Stata (xtpoisson with fe op-
tion) and in R (gnm with eliminate option). Examples of
using these two implementations are given in Additional
file 1. Strata that have no cases may be dropped, because
they do not contribute to the likelihood. The EPICURE
AMEFIT package [10] implements the conditional Poisson

Yis|Y s ~Multinomial({m;}), m; =
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model for stratified survival data under the label back-
ground stratified Poisson and this has been used quite ex-
tensively in studies of cancer effects of ionizing radiation.
Richardson [11] comments that the AMFIT implementa-
tion has an unnecessary limitation in the number of strata,
and proposed a method without that limitation using SAS
procedure nlp or mlmixed. Xu [12] presents an approach
to fit conditional Poisson models in SAS, but as this is ef-
fectively by re-formulating as a conditional logistic model
we class this a conditional logistic formulation (discussed
below). Many packages have programs that fit multinomial
models, but these do not allow exposures x to vary within
in each stratum s (e.g. pollution to vary within strata), so
they cannot be used as an alternative for case crossover
analyses or others that concern us here.

The conditional Poisson model, like the unconditional
Poisson and conditional logistic formulations, can in-
corporate potentially confounding covariates not homo-
geneous within strata for example temperature (if air
pollution is the focus). All the models can also explore
modification of associations of exposure with outcomes
by either such covariates or those homogeneous in
strata. In the case crossover context, modifiers may be
individual (e.g. age) or in multi-city studies ecological
(city-level). Analyses of multi-city studies may be single-
step (pooling all strata across cities) as well as the
conventional multi-step (city-specific at step 1, meta-
analysis at step 2). The simplicity of the conditional
Poisson formulation makes the single step approach
straightforward to apply (simply pool all cities into one
dataset and make the strata by city as well as month and
day-of-week). However, the implicit assumptions of this
approach (no random or systematic between-city effects)
would need investigating. A single-step analysis is par-
ticularly attractive when exposure series are available for
small areas within cities.

The original event counts may have variation greater
than that predicted by a Poisson distribution, so be
“overdispersed” in a Poisson model. This overdispersion
is not apparent in a conditional logistic analysis because
in each “case—control” set in the expanded data out-
comes are binary (0 or 1) for which overdispersion has
no meaning. However, the assumption of independence
between case—control sets in a conditional logistic model
implicitly assumes no overdispersion of counts. If the
binary outcomes (in the case crossover formulation) are
clustered by day, then the variance of observed daily
counts around the value predicted from that model will be
overdispersed Poisson [2]. Where there is such overdisper-
sion in counts a conditional logistic regression will there-
fore underestimate uncertainty in estimated coefficients.

Like the unconditional Poisson model with strata, the
conditional model can be extended to a quasi-Poisson
(overdispersed Poisson) variant, in which scale over-

Page 4 of 6

dispersion within strata is allowed for. In either case the
over-dispersion ¢ is best estimated from the Pearson
chi-squared statistic, though neither this nor other esti-
mates are consistent when data are sparse (few events
per stratum) [13]. Quasi-Poisson is an option in the R
implementation, and can be implemented in Stata with
some post-processing (see Additional file 1).

Similarly, the methods discussed by Brumback [14] for
allowing for autocorrelation for count time series in gen-
eral can be applied to the conditional as well an uncon-
ditional Poisson models. We are not aware of any off the
self-software implementation but ad hoc implementa-
tions in Stata and R are described in additional file 1. As
with overdispersion, it is sometimes thought that a case
crossover analysis, especially if stratified by day of week,
is not affected by autocorrelation. However, the case
crossover formulation assumes that observations (in the
expanded data format) are independent both within and
across strata — an assumption that is violated if there is
residual autocorrelation in counts.

The Poisson models can also accommodate studies
where rate denominators (durations of time intervals or
numbers of subjects at risk) vary between study units
(“days”) by using an appropriate offset. Residual and in-
fluence analysis is also possible with the Poisson models.

The conditional logistic formulation does not easily
allow any of these extensions apart from the incorpor-
ation of covariates.

Comparing processor time taken in fitting each model

To compare processor time taken to fit each of the three
models described above we simulated datasets with a
range of sizes, corresponding to possible scenarios. For
each scenario we simulated ten years of daily data.
Baseline mortality rates of 1,10, and 100 deaths/day rep-
resented small, medium, and large cities. Three more
data-sets included multiples of this baseline number of
days to illustrate multi-city or multi-area studies ana-
lysed in one stage. Outcome counts were generated to
follow a Poisson distribution with mean given by the ex-
ponent of a linear sum of seven covariates (exposures
and confounders). The covariates were distributed as
multivariate normal, mutually correlated at r = 0.25, and
scaled so that one standard deviation of each covariate
was associated with a rate ratio of 1.05. Two types of case
cross-over stratification were considered: by month and
day-of-week, as described above, and by month only.

Results

Using our illustrative data set, we estimated the coeffi-
cient for ozone (per 10 ug/m3) using each of the three
models described above (conditional logistic, uncondi-
tional Poisson and conditional Poisson), controlling for
temperature, rather crudely to simplify the illustration,
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as a linear term at lag 0. The estimates were, as ex-
pected, identical whether analysed using standard condi-
tional logistic, unconditional Poisson or conditional
Poisson models (Table 4). Programming was simpler for
the Poisson models than for the conditional logistic for-
mulation because no data expansion was necessary
(Additional file 1). The unconditional Poisson model fit-
ted coefficients for the 420-1 =419 extra coefficients for
the stratum indicator variables, giving somewhat cum-
bersome output but in this data set not a serious in-
crease in computation time.

Scale overdispersion, estimable using the quasi-
Poisson models, was y = 1.37 (probably large due to fail-
ure to control well for temperature), and the CI for
the coefficient estimated by quasi-Poisson consequently
wider than that estimated by Poisson or conditional
logistic model (-0.03,0.70 compared to 0.03,0.65). Allow-
ing for first order autocorrelation (using the method of
Brumback) changed the estimated ozone coefficient
from 0.34% (0.03,0.65) to 0.27% (-0.05,0.58).

The table in Additional file 3 summarises the practi-
calities of using these three types of model and com-
puter time for a range of hypothetical data sets obtained
by simulation. Where all models can be fit they gave
identical estimated coefficients and standard errors, as
we saw in the example data and anticipate from theory
[2,15]. With large number S of strata (500-1000 depend-
ing on hardware and software) fitting the unconditional
Poisson model becomes impossible because it depends
on inverting a matrix somewhat larger than S squared.
The conditional Poisson model was faster than the un-
conditional Poisson or conditional logistic formulation,
though times for the latter were not prohibitively long
unless the numbers of strata were very large indeed, or
fitting the model is embedded in an iterative algorithm,
for example in a Bayesian model fit by MCMC [16,17].

Discussion

The conditional Poisson model is a little known alterna-
tive to the conventional conditional logistic model op-
tion for analysis of time stratified counts in a case
crossover formulation, with some attractive features. In
particular the conditional Poisson model can allow for

Table 4 Fitting the models to the London 2002-6 data

Model Coefficient Overdispersion N. of
(9%% estimate) coefficients

Conditional logistic  0.34% (0.03,065) 1 2

Unconditional 0.34% (0.03,065) 1 421

poisson

Conditional poisson  0.34% (0.03,0.65) 1 2

+ overdispersion 0.34% (—0.03,0.70) 137 2

+ auto-correlation 0.27% (—0.05,0.58) 1 3
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overdispersion, autocorrelation and varying rate denomi-
nators, which are not options for conditional logistic re-
gression. It also simplifies coding and reduces processor
time.

We have considered aggregated exposure time series
data, which are the most common application of case
crossover analyses. Where exposure series are individual
or close to it and outcomes occur only once in an indi-
vidual conditional Poisson offers little advantage, leaving
the conditional logistic case crossover formulation the
natural choice.

The description of the conditional Poisson model as a
“fixed effect” model suggests the possibility of fitting a
random stratum effect (mixed model) rather than fixed
effect. If the variable of interest (say “exposure”) varies
over strata then the coefficient of exposure in the random
effects model will have greater precision that that from
the fixed effect (i.e. conditional Poisson) model. However
this is bought at the expense of the assumption on
distributional form (typically Gaussian) for the random ef-
fect, and some degree of vulnerability to confounding by
between- as well as within- stratum variation in risk fac-
tors (for example seasonal). We urge caution in assuming
random stratum effects for this reason.

Application of the conditional Poisson model outside of
case cross-over studies

There are several applications of conditional Poisson
models other than as an alternative to conventional con-
ditional logistic case crossover analysis, which we men-
tion briefly in this and the next three paragraphs.

One use is in injury research for matched cohort stud-
ies [18]. One such application which comes close to the
stratified time series context sought to identify whether
the imposition of 20 mph speed restrictions on London
residential streets reduced injuries [19]. The data com-
prised dated injury records referenced by street segment
and dates at which speed restrictions were imposed. This
could be thought of as a multiple interrupted time series
study, with each street segment (of approximately 300,000)
providing multiple time series of about 900,000 injuries in
total. The pre- and post-intervention periods contributed
the exposed and unexposed days. Other factors changing
over time assumed to have the same affect across London
were controlled by covariate terms in the conditional
Poisson model, while conditioning on road segment.

Another potential area of application is where the aim
is to identify if adverse event counts vary over time in
concert with (numerical) exposure in multiple short
series in small areas. For example Tonne [20] considered
the association of changes over four years in exposure to
air pollutants with changes in hospitalization counts
(about 400,000 admissions) in 638 small areas (electoral
wards) in London. In the original analysis the time
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interval was aggregated to just two sub-periods, so as to
allow a binomial regression, which is a special case of
multinomial and thus as noted above is equivalent to
conditional Poisson regression. Conditional Poisson ana-
lysis could have provided more power by obviating the
need to aggregate into two periods and retaining the ori-
ginal four years as separate study units.

The last range of applications we will mention is to
panel studies of count outcomes. Much of the econo-
metric literature on conditional Poisson models (and the
Stata documentation) is framed in this context, in which
“panels” of repeated observations of counts comprise the
strata. Many of the designs we have described above can
be formulated in terms of panels, but more directly we
might envisage explicit epidemiological panel studies
using conditional Poisson regression. These generally
comprise panels of patients with exposures and out-
comes repeated over several time periods, making the
context similar to that considered in Farrington’s papers
under the self controlled case series label. If the outcomes
are counts (e.g. numbers of inhaler uses in a day in asth-
matics), a conditional Poisson model seems natural, and is
indeed proposed by Farrington and colleagues [21].

Conclusions

The conditional Poisson model offers an alternative to
the conditional logistic model with expanded data for
time stratified case crossover and related analysis, offer-
ing extra flexibility by allowing for overdispersion, auto-
correlation, and varying rate denominators.
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