
RESEARCH ARTICLE Open Access

Multiple imputation of missing covariates with
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Abstract

Background: Multiple imputation is often used for missing data. When a model contains as covariates more than
one function of a variable, it is not obvious how best to impute missing values in these covariates. Consider a
regression with outcome Y and covariates X and X2. In ‘passive imputation’ a value X* is imputed for X and then X2

is imputed as (X*)2. A recent proposal is to treat X2 as ‘just another variable’ (JAV) and impute X and X2 under
multivariate normality.

Methods: We use simulation to investigate the performance of three methods that can easily be implemented in
standard software: 1) linear regression of X on Y to impute X then passive imputation of X2; 2) the same regression
but with predictive mean matching (PMM); and 3) JAV. We also investigate the performance of analogous methods
when the analysis involves an interaction, and study the theoretical properties of JAV. The application of the
methods when complete or incomplete confounders are also present is illustrated using data from the EPIC Study.

Results: JAV gives consistent estimation when the analysis is linear regression with a quadratic or interaction term
and X is missing completely at random. When X is missing at random, JAV may be biased, but this bias is generally
less than for passive imputation and PMM. Coverage for JAV was usually good when bias was small. However, in
some scenarios with a more pronounced quadratic effect, bias was large and coverage poor. When the analysis
was logistic regression, JAV’s performance was sometimes very poor. PMM generally improved on passive
imputation, in terms of bias and coverage, but did not eliminate the bias.

Conclusions: Given the current state of available software, JAV is the best of a set of imperfect imputation
methods for linear regression with a quadratic or interaction effect, but should not be used for logistic regression.

Background
In most medical and epidemiological studies some of
the data that should have been collected are missing.
This presents problems for the analysis of such data.
One approach is to restrict the analysis to complete
cases, i.e. those subjects for whom none of the variables
in the analysis model are missing. Data are said to be
missing completely at random (MCAR), missing at ran-
dom (MAR) or missing not at random (MNAR) [1].
MCAR means that that the probability of the pattern of
missing data being as it is depends on neither the
observed nor the missing data. MAR is the weaker

condition that the probability does not depend on the
missing data given the observed data. MNAR means
that it depends also on the missing data. When data are
MCAR, the complete cases constitute a representative
subsample of the sample, and so the complete-case ana-
lysis is valid. However, when data are MAR, using only
complete cases can yield biased parameter estimators.
Furthermore, even when data are MCAR, this approach
is inefficient, as it ignores information from incomplete
cases.
A method for handling missing data that gives valid

inference under MAR and which is more efficient than
just using complete cases is multiple imputation (MI)
[1]. Here a Bayesian model with non-informative prior
is specified for the joint distribution of the variables in
the analysis model, as well as possibly other (‘auxiliary’)

* Correspondence: shaun.seaman@mrc-bsu.cam.ac.uk
1MRC Biostatistics Unit, Institute of Public Health, Forvie Site, Robinson Way,
Cambridge CB2 0SR, UK
Full list of author information is available at the end of the article

Seaman et al. BMC Medical Research Methodology 2012, 12:46
http://www.biomedcentral.com/1471-2288/12/46

© 2012 Seaman et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:shaun.seaman@mrc-bsu.cam.ac.uk
http://creativecommons.org/licenses/by/2.0


variables. This model is fitted to the observed data
assuming that they are MAR. A single imputed dataset
is now created by sampling the parameters of the impu-
tation model from their posterior distribution, in order
to account for the uncertainty in this model, and then
randomly generating (’imputing’) values for the missing
data using these sampled parameter values in the speci-
fied model. This procedure is repeated multiple times,
so generating multiple imputed datasets, and then the
analysis model is fitted to each of these in turn. Finally,
the complete-data parameter and variance estimates
from each imputed dataset are combined according to
simple formulae called Rubin’s Rules. Note that when
some of the variables are fully observed, it is unneces-
sary to model their distribution and the imputation
model can be a model for the conditional distribution of
the remaining variables given these.
This article is concerned with the use of MI when the

analysis model includes as covariates more than one
function of the same variable and this variable can be
missing. Such situations arise when the analysis model
includes both linear and higher-order terms of the same
variable or when the model includes an interaction term.
This is the case, for example, when non-linear associa-
tions are explored using fractional polynomials or splines
[2]. In such situations, the imputation is complicated by
the functional relationship between the covariates in the
analysis model. In this article we focus on two particular
simple settings: where the analysis model is 1) linear
regression of an outcome Y on covariates X and X2, and
2) linear regression of Y on covariates X, Z and XZ.
These are the two settings considered by Von Hippel
(2009) [3], who also investigated methods for imputing
variables in the presence of higher-order or interaction
effects. Unless stated otherwise, we suppose that Y and Z
are fully observed and X can be missing. We investigate
three methods of MI that can be easily implemented in
standard software.
In ‘passive imputation’, an imputation model is speci-

fied for the distribution of X given Y (or X given Y and
Z). Missing values of X are imputed from this model
and the corresponding values of the function(s) (X2 or
XZ) of X calculated. Von Hippel (2009) [3] called this
method ‘impute then transform’. In principle, there is
nothing wrong with this method. However, in practice,
the existence of the higher-order or interaction effects
makes commonly used imputation models misspecified.
The conditional distribution of X given Y (and Z)
depends on the distribution of X (and Z) and the condi-
tional distribution of Y given X (and Z). In the case of a
linear regression analysis model, if X (and Z) are
(jointly) normally distributed and the true coefficient of
the higher-order or interaction term in the analysis
model is zero, the conditional distribution of X given Y

(and Z) is given by the linear regression of X on Y (and
Z). If the coefficient is not zero, this is no longer so.
Nevertheless, such a linear regression model would
commonly be used in practice as an imputation model
for X.
It is possible that passive imputation might be

improved by using predictive mean matching (PMM)
[4]. In this approach, rather than using the imputation
model to generate missing X values directly, it is used to
match subjects who have missing X with subjects with
observed X. Each incomplete case’s missing X is then
imputed as the matching subject’s value of X. The moti-
vation for PMM is that it may be more robust to mis-
specification of the imputation model and that grossly
unrealistic imputed values are avoided, since every
imputed value has actually been realised at least once in
the dataset.
Passive imputation and PMM ensure that the imputed

values conform to the known functional relation between
the covariates, e.g. that the imputed value of X2 is equal
to the square of the imputed value of X. The third
method of MI that we examine was recently proposed by
Von Hippel (2009) [3]. This ignores the functional rela-
tion between covariates and treats a higher-order or
interaction term as just another variable. Von Hippel
called this approach ‘transform then impute’; following
White et al. (2011) [5], we call it JAV (’Just Another Vari-
able’). In this method, missing X and X2 (or XZ) are
imputed under the assumption that Y, X and X2 (or Y, X,
Z and XZ) are jointly normally distributed. Correspond-
ing imputed values of X and X2 will not, in general, be
consistent with one another, e.g. X may be imputed as 2
while X2 is imputed as 5. However, Von Hippel argued
that this does not matter for estimation of the parameters
of the analysis model. We shall examine Von Hippel’s
argument in detail in the Results section.
In the present article we investigate, using simulation,

the performance of three methods easily implemented in
standard software – passive imputation, PMM and JAV –
in the two settings described above. We look at bias of
parameter estimators and coverage of confidence inter-
vals. In addition to considering linear regression analysis
models, we also look at the logistic regression of binary Y
on X and X2. Von Hippel justified the use of JAV for a
linear regression analysis model, but suggested that it
might also work well in the setting of logistic regression,
because the logistic link function is fairly linear except in
regions where the fitted probability is near to zero and
one. In the Methods section, we formally describe the
three approaches and the simulations we performed to
assess the performance of these approaches. We also
describe a dataset from the EPIC study on which we illus-
trate the methods. In the Results, we present a theoretical
investigation of the properties of JAV, showing that
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although JAV gives consistent estimation for linear
regression under MCAR, it will not, in general, under
MAR. Results from the simulations and from applying
the methods to the EPIC dataset are also described there.
These results are followed by a discussion and
conclusions.

Methods
Three imputation methods
We begin by describing passive imputation, PMM and
JAV for the setting of linear regression of Y on X and
X2. We then describe the modifications necessary for
regression of Y on X, Z and XZ.
Let Xi and Yi denote the values of X and Y, respec-

tively, for subject i (i = 1,...,n). Assume that (X1, Y1),...,
(Xn, Yn) are independently identically distributed. Let
Ri = 1 if Xi is observed (i.e. if subject i is a complete
case), with Ri = 0 otherwise. Let n1 denote the number
of complete cases, and q denote the number of reg-
ression parameters in the imputation model. Let
X̄ = (X1, . . . ,Xn)

T, Wi=Ri (1, Yi)
T (so W = (0, 0)T whenever

X is missing), W̄ = (W1, . . . ,Wn)
T, andψ = (W̄

T
W̄)−1.

Passive imputation
In the approach we call ‘linear imputation model with
passive imputation of X2’ (or just ‘passive imputation’)
the linear regression model X ∼ N

(
γ0 + γ1Y, σ 2

)
is

fitted to the complete cases. So, q = 2. Let

γ̂ =
(
γ̂0, γ̂1

)
= ψ W̄

T
X̄ denote the resulting maximum

likelihood estimate (MLE) of γ = (γ0, γ1), and let

σ̂
2 =

∑n

i=1
Ri

(
Xi − γ̂

T Wi

)2
/
(
n1 − q

)
denote the

unbiased estimator of s2. If γ and s2 are treated as a
priori independent with joint density proportional to s-

2, then the posterior distribution of
{(
n1 − q

)
σ̂
2
}
/σ 2 is

χ2
n1−q and that of γ given s2 is N

(
γ̂ , ψσ 2)[6]. So, to

create a single imputed dataset, σ ∗2 is drawn from(
n1 − q

)
σ̂
2 /χ2

n1−q and γ ∗ from N
(
γ̂ , ψσ ∗2) . Then

missing X values are imputed as Xi = γ ∗TWi + σ ∗Bi,
where the Bi’s are independently distributed N(0, 1).

PMM
The approach we call ‘linear imputation model with pre-
dictive mean matching’ (or just ‘PMM’) is the same as
passive imputation up to the generation of σ ∗2 and γ ∗.
Thereafter, instead of generating γ ∗TWi + σ ∗Bi, a fitted

value X̂
∗
i = γ ∗TWi is calculated for each subject. For

each subject i with missing X, the K subjects with

observed Xj and the closest X̂
∗
j values to his or her X̂

∗
i

value are identified. One of these K subjects is chosen at

random and his or her Xj value becomes the imputed
value of Xi. The square of the imputed value of Xi

becomes the imputed value of X2
i . The value of K is

chosen to balance bias in parameter and variance esti-
mation. If K is very large, matching is very loose, leading
to bias in parameter estimates of the analysis model. If
K is very small, uncertainty in the imputed data will not
be fully represented, leading to underestimation of stan-
dard errors when Rubin’s Rules are applied. For our
simulations we used K = 5. Notice that if, as in this
case, the imputation model is a simple linear regression

of X on Y, finding the subjects with the nearest X̂
∗
j

values to X̂
∗
i is equivalent to finding the subjects with

the nearest Yj values to Yi. If the imputation model con-
tains more than one predictor, PMM may be quite dif-
ferent from matching on the subjects with the nearest
Yj.

JAV
In the JAV approach, (Y, X, X2) is assumed to be jointly
normally distributed:

⎡
⎣ Y

X
X2

⎤
⎦ ∼ N

⎛
⎝

⎡
⎣μ1

μ2

μ3

⎤
⎦ ,

⎡
⎣ σ11 σ12 σ13

σ12 σ22 σ23
σ13 σ23 σ33

⎤
⎦

⎞
⎠ . (1)

Expression (1) can equivalently be written as

Y ∼ N (μ1, σ11) (2)

[
X

X2

]
| Y ∼ N

([
δ20 + δ21Y

δ30 + δ31Y

]
,

[
τ22 τ23

τ23 τ33

])
. (3)

where (for k = 2, 3) δk0 = μk − μ1σ12/σ11, δk1 = σ12/σ11,
τkk = σkk − σ 2

1k/σ11 and τ12 = σ23 − σ12σ13/σ11. Having

fitted model (1) to the observed data, a perturbation is
added to the maximum likelihood estimates, in a similar
way to that described above for the passive imputation
method. Missing values of X and X2 are then generated
from distribution (3) using the perturbed values of the
parameters. As Y is fully observed, an alternative to fit-
ting model (1) is just to fit model (3) directly.
The methods described above need only minor adap-

tion for the setting of linear regression of Y on X, Z and
XZ. In passive imputation and PMM, the imputation
model for X should include Z. Obvious choices
are X ∼ N

(
γ0 + γ1Y + γ2Z, σ 2

)
(so Wi = Ri(1,Yi,Zi)

T

and q = 3) or X ∼ N
(
γ0 + γ1Y + γ2Z + γ3YZ, σ 2

)
(so

Wi = Ri(1,Yi,Zi,YiZi)
T and q = 4). The imputed value of

X multiplied by the imputed individual’s value of Z
becomes the imputed value of XZ. In JAV, (Y, X, Z,
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XZ), rather than (Y, X, X2), is assumed to be multivari-
ate normally distributed.

Simulation studies
Linear regression with quadratic term
In all our linear regression simulation studies, a sample
size of 200 was assumed and 1000 simulated datasets
were created. For each simulated dataset, we generated
200 X values from one of four distributions with mean 2
and variance 1: normal, log normal, (shifted and scaled)
beta, and uniform. For the log normal distribution, logX

was generated from N
(
log

(√
3.2

)
, log

(
5/4

))
; X then

has a coefficient of skewness of 1.63. For the (shifted
and scaled) beta distribution, we generated Z ~ beta(1,
10) and X= 12.05(Z-1/11)+2; X then has a skewness of
1.51. The outcome Y was generated from N(2X+X2,j),
where j was chosen to make the coefficient of determi-
nation R2 equal to 0.1, 0.5 or 0.8. Although R2 values
greater than 0.5 are uncommon in medical studies, we
wanted also to investigate the performance of methods
in extreme situations. The top two rows of Figure 1
show, for normally and log-normally distributed X, a
typical set of data generated in this way.
Missingness was then imposed on these data. Let expit

(x) = {1+exp(-x)}-1. Y was fully observed; two missing
data mechanisms were assumed for X. For MCAR, each
X was observed with probability 0.7, regardless of the
values of X and Y. For MAR, the probability X was
observed was expit(a0 + a1Y), where a1=-1/SD(Y) and
a0 was chosen to make the marginal probability of
observing X equal to 0.7.
For the three methods, passive imputation (‘Passive’),

PMM and JAV, we used M = 5 imputations. We also
carried out the complete-case analysis (‘CCase’) and the
complete-data analysis (‘CData’), i.e. before data
deletion.
Finally, we instead generated Y from N ((X-2)2,j), with

j chosen to make R2 = 0.1, 0.5 or 0.8. As the mean of X
is 2, the quadratic relation between Y and X is now
more obvious in such data (see Figure 1).

Linear regression with interaction
We focussed on normally and log-normally distributed
covariates. Four bivariate distributions were assumed for
the two covariates X and Z. In the first, X and Z were
both independently distributed N(2, 1). In the second,
they were generated from a bivariate normal distribution
so that they both had marginal distribution N(2, 1) but
Cor(X, Y) = 0.5. In the third, logX and logZ were inde-

pendently distributed N
(
log

(√
3.2

)
, log

(
5/4

))
, so

that X and Z were independently log-normal each with
mean 2 and variance 1. In the fourth, logX and logZ

were generated from a bivariate normal distribution
so that they both had marginal distribution

N
(
log

(√
3.2

)
, log

(
5/4

))
but Cor((log X, log Z) = 0.5.

Outcome Y was generated from N (X+Z+XZ, j), where
j was chosen so that R2 = 0.1 or 0.5.
Y and Z were fully observed; the same two missing

data mechanisms were assumed for X as in ‘Linear
regression with Quadratic Term’. Two variations of pas-
sive imputation were used: in the first (‘Passive1’), the
imputation model contained just Y and Z; in the second
(’Passive2’), the imputation also contained the interac-
tion YZ. For PMM the imputation model also included
YZ. Von Hippel [3] considered only Passive1.

Logistic regression with quadratic term
A sample size of 2000 was assumed and 1000 simulated
datasets were created. This larger sample size was used
because binary outcomes provide less information for esti-
mating parameter values than do continuous outcomes.
We used the same normal and log normal distributions
for X as in ‘Linear regression with Quadratic Term’. Binary
outcomes Y were generated from the model P(Y = 1|X) =
expit(b0+2b2X+b2X2). The value of b2 was chosen to make
the log odds ratio of Y for X = 3 versus X = 1 equal to
either 1 (b2 = 1/12) or 2 (b2 = 1/6). When X is normally
distributed, this is the log odds ratio for the mean of X
plus one standard deviation relative to the mean of X
minus one standard deviation. The value of b0 was chosen
so that the marginal probability of Y = 1 was either p = 0.1
or p = 0.5.
Y was fully observed; X was MCAR or MAR, with

probability expit(a0 + a1Y) of being observed. For
MCAR a1 = 0; for MAR a1 = - 2. In both cases a0 was
chosen to give a marginal probability of observing Y of
0.7. For passive imputation and PMM the imputation
model was the linear regression of X on Y.

Analysis of vitamin C data from EPIC Study
EPIC-Norfolk is a cohort of 25,639 men and women
recruited during 1993-97 from the population of indivi-
duals aged 45-75 in Norfolk, UK [7]. Shortly after recruit-
ment, study participants were invited to attend a health
check at which a 7-day diet diary was provided for comple-
tion over the next week. Blood samples were provided and
have been stored. A measure of average daily intake of vita-
min C has been derived from the 7-day diet diary and
plasma vitamin C (μmol/l) was measured within a few days
of the blood sample being provided. The dietary assess-
ment methods have been described in detail elsewhere [8].
There is evidence of a non-linear association between

vitamin C intake and plasma vitamin C [9]. Here, we
look at this association in the EPIC-Norfolk data: in par-
ticular, whether this relation is linear or has a quadratic
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element. Plasma vitamin C is also affected by sex, age,
smoking status, and body size [9-12], so these possible
confounders are adjusted for in our analysis. The analy-
sis presented in this article illustrates the methods

described here and is not intended as a definitive analy-
sis of the EPIC data.
Of the 25639 subjects, 10224 had incomplete data:

3165 had missing plasma vitamin C; 8100 missing
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Figure 1 Typical datasets for normally or log-normally distributed X (each with mean 2 and variance 1), normally distributed Y with
mean 2X + X2 or (X - 2)2, and R2 = 0.1, 0.5 or 0.8. Dotted line shows expected value of Y given X.
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dietary vitamin C; 32 missing weight; 220 missing smok-
ing status (age and sex were fully observed). If the data
are not MCAR, estimators from a complete-case analysis
may be biased. When logistic regression was used on
the set of subjects with observed plasma vitamin C,
higher values of log plasma vitamin C were associated
with a lower probability of being a complete case (p =
0.03). This suggests the data are not MCAR. Further-
more, the complete-case analysis ignores information on
individuals with observed outcome plasma vitamin C
but one or more missing covariates. For these two rea-
sons, we applied MI to these data.
Three forms of MI were used. In the first and second

forms, the full-conditional specification (FCS: also known
as ‘chained-equations’) approach was used [13]. This
involves cycling through the variables, imputing missing
values in each variable in turn using a model for the dis-
tribution of that variable given all the other variables
except vitamin C-squared. In the first form of MI, a lin-
ear regression model was used to impute each variable
except dietary vitamin C-squared and smoking status.
Multinomial logistic regression was used for smoking sta-
tus and dietary vitamin C-squared was passively imputed
from dietary vitamin C. If all variables except dietary vita-
min C had been observed, this approach would be the
same as what we called ‘linear imputation model with
passive imputation of X2’ in the simulations. The second
form of MI was identical to the first except that PMM
was used to impute dietary vitamin C. The third form of
MI was JAV, i.e. imputation under a multivariate normal
distribution. For JAV, smoking status was represented by
two binary indicator variables, one of which was equal to
1 for former smokers, the other of which equalled 1 for
never smokers. Imputed values for these binary variables
were not rounded. This method of handling categorical
variables was advocated by Ake [14] and, in view of the
small proportion of missing values in the smoking vari-
able, should be adequate. For all three MI methods, the
3165 subjects with missing plasma vitamin C were used
for imputation but were deleted from the dataset before
fitting the analysis model. When, as in this case, the same
set of variables are used in the imputation as in the analy-
sis, subjects with missing responses can provide informa-
tion about the joint distribution of the covariates and
hence about missing covariate values in subjects with
observed responses, but do not otherwise carry informa-
tion about the parameters of the analysis model [15].
Deletion of such subjects after imputation reduces the
Monte Carlo error caused by having a finite number of
imputed datasets. Standard errors were estimated for
each imputed dataset using the robust variance estimator
[16], as there was evidence of heteroskedacity (see
Results).

We also applied a variant of JAV in which FCS was
used. This variant was identical to the first form of MI
except that the dietary vitamin C-squared variable was
imputed using a linear regression model involving all
the other variables (including dietary vitamin C) as cov-
ariates. This is equivalent to imputing dietary vitamin C
and dietary vitamin C-squared from a bivariate normal
distribution conditional on all the other variables.
In all our analyses smoking status was categorised as

current smoker (baseline), former smoker or never smo-
ker. The first and second forms of MI and the variant
JAV method were implemented using ice in STATA.
The original JAV method was implemented using mi
impute mvn in STATA.

Results
Properties of JAV under MCAR and MAR
In this section, we summarise the argument of Von Hippel
(2009) for why the JAV approach will give consistent esti-
mation of the parameters of the analysis model when the
data are MAR, and then explain why JAV actually requires
the stronger condition of MCAR for consistency.
Assume that the analysis model is the regression of Y on

X and X2 (the argument is analogous for the interaction
model). Model (1), or equivalently (2)-(3), is misspecified,
since (Y, X, X2) is not joint normally distributed. The
values of μ1, s11, etc. that minimise the Kullback-Leibler
distance between the true distribution of (Y, X, X2) and
the multivariate normal distribution are called their ‘least
false’ values [17]. The least false values of μ1, μ2 and μ3 are
just the population means of Y, X and X2; those of s11,...,
s33 are the population variances and covariances. If the
missing X and X2 values are imputed from distribution (3)
with Δ = (δ20,δ21, δ30, δ31, τ22, τ23, τ33,) equal to its least
false value, then the mean and variance of (Y, X, X2) in the
imputed dataset will consistently estimate the mean and
variance in the population. The true parameter values of
the analysis model are functions of this population mean

and variance: they are
{
E

(
U1UT

1

)}−1
E (U1Y1) , where

U1 =
(
1,X1,X2

1

)T . Therefore, if missing X and X2 values

are imputed using the least false values, the parameters of
the analysis model will be consistently estimated.
Von Hippel argues that, when X is MAR, the least false

values of Δ can be consistently estimated from the
observed data. Von Hippel proposes that therefore the
missing data can be imputed using the assumption that
(Y, X, X2) is jointly normally distributed (model (1)). He
does this using PROC MI in SAS.
When the data are MCAR, the above argument is

valid. However, when the data are MAR, the observed-
data MLEs of Δ are not necessarily consistent for the
least false value, because model (1) is misspecified.
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Consequently, the analysis model parameters will not, in
general, be consistently estimated unless X is MCAR. In
more detail, the argument is as follows.
It can be seen from expressions (2) and (3) that the

MLEs of μ1 and s11 are functions only of the Y values of
everyone in the sample and do not depend on X, while
the MLE of Δ is a function of the Y, X and X2 values of
subjects for whom X is observed. As Y is fully-observed,
the MLEs of μ1 and s11 consistently estimate their least
false values. If X is MCAR, the set of individuals for
whom X is observed is a simple random subsample from
the sample, and hence also a simple random sample from
the population. So, Δ is also consistently estimated by its
MLE. The rest of Von Hippel’s argument now applies.
On the other hand, if X is MAR, the individuals with
observed X are not a simple random subsample of the
sample, and hence represent a random sample from
another population different from that from which the
actual sample was drawn. In this other population, the
least false value of Δ will generally be different [17,18].
The maximum likelihood estimator of Δ will consistently
estimate the least false value in this other population. It
follows that, in general, JAV will give inconsistent estima-
tion of the parameters in the analysis model.
The argument that JAV will give consistent estimation

when X is MCAR can be straightforwardly extended to
allow for a vector of additional variables, S say. In this
case, the normal distribution for (Y, X, X2) in equation
(1) is extended to a normal distribution for (Y, X, X2, S).

S may include both variables that are additional covari-
ates in the analysis model and variables that are not in
the analysis model (i.e. auxiliary variables). If (X, S) are
MCAR, JAV will give consistent estimation of the para-
meters of the analysis model.
So far, we have been concerned with parameter estima-

tion. Now consider variance estimation. Von Hippel uses
Rubin’s Rules to estimate variances and hence confidence
intervals. However, there is no particular reason to assume
that Rubin’s Rules will give a consistent variance estimator,
because derivations of Rubin’s Rules assume a correctly
specified parametric imputation model [19-21] and the
multivariate normal model is misspecified. In our simula-
tions, we investigate both the bias in parameter estimators
and the coverage of confidence intervals calculated using
Rubin’s Rules.

Simulation studies
Linear regression with quadratic term
We focus on the quadratic term, whose true value is 1.
The first block of five rows of Table 1 shows the bias and
95% coverage for the five methods when X is normally dis-
tributed and MCAR. Also shown is the relative precision,
i.e. the ratio of the empirical variance of CData to those of
the other estimators. When both estimators contributing
to this ratio are unbiased, it is the relative efficiency. The
maximum (over the five methods) Monte Carlo standard
errors (MCSE) associated with the estimated biases are
reported in the table legend. The estimated biases of

Table 1 Linear regression with Y ~ N (2X+X2, j)
R2 = 0.1 R2 = 0.5 R2 = 0.8

bias cover r.prec. bias cover r.prec. bias cover r.prec.

MCAR, X ~ normal

CData -3 95 100 -1 95 100 0 95 100

CCase -2 95 64 -1 95 64 0 95 64

Passive -32 99 124 -21 95 104 -20 87 86

PMM -3 92 59 0 93 65 2 92 64

JAV -4 94 61 -1 95 61 0 95 62

MAR, X ~ normal

CData -6 95 100 -1 96 100 -2 95 100

CCase -23 95 72 -13 95 59 -8 94 48

Passive -45 99 144 -27 95 120 -42 50 122

PMM -36 89 50 -13 93 49 8 91 36

JAV -12 94 52 -1 95 42 0 93 38

MAR, X ~ log normal

CData -6 96 100 0 95 100 -1 95 100

CCase -21 94 42 -19 94 24 -7 94 20

Passive -72 98 70 24 93 21 -3 88 31

PMM -46 88 29 -19 90 15 47 86 6

JAV -7 92 28 7 91 12 18 91 10

Table 1 Percentage bias, coverage and relative precision for quadratic term in linear regression when Y ~ N (2X+X2, j). The true value of the quadratic term is 1.
For MCAR, X ~ normal, the maximum MCSEs among the five methods are 4, 1 and 1% for R2 = 0.1, 0.5 and 0.8, respectively. For MAR, X ~ normal, they are 5, 2
and 1%. For MAR, X ~ log normal, they are 7, 4 and 3%
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CData (-3%, -1%, 0%; MCSEs 3%, 1% and 1%) and CCase
(-2%, -1%, 0%; MCSEs 4%, 1%, 1%) are consistent with
these estimators being unbiased, as is expected. CData and
CCase both have estimated coverage 95%, again as
expected. Due to Monte Carlo variation, the variance of
CData is slightly less than the expected 0.7 times that of
CCase. JAV is unbiased, as expected; its coverage is
approximately correct. JAV is, however, slightly less effi-
cient than CCase. This difference in efficiency narrowed to
1% when the number of imputations was increased to M =
30 (data not shown). Note that if other non-fully observed
variables, V say, were included as covariates in the analysis
model along with X and X2, JAV might well be more effi-
cient than CCase, because CCase would not use data on
individuals with observed X but missing V, whereas JAV
would. Passive underestimates the quadratic effect by
20-30%; coverage is too high when R = 0.1 and too low
when R = 0.8. PMM is approximately unbiased, but may
have slight under-coverage. The underestimation by
Passive of the quadratic effect accords with the finding of
Von Hippel (2009), who applied Passive and JAV to a real
dataset. He found that the estimate of the quadratic effect
from Passive was closer to zero than that from JAV.
The above observations remain broadly true when X is

log-normal, beta or uniform (data not shown).
The second block of five rows of Table 1 shows bias,

coverage and relative precision when X is normally distrib-
uted and MAR. Unlike in the MCAR case, CCase, PMM
and JAV are now biased. Of the (non-complete data)
methods, JAV has the smallest bias, and in no case is it
greater than 12% (MCSE 4%); its coverage is approxi-
mately correct. We do not discuss relative precisions: they
are not very meaningful in the presence of bias. The bias
in PMM probably arises because the largest missing value
(or values) of X tends to be larger than the largest
observed value of X, because the probability that X is
observed decreases as Y increases and individuals with lar-
ger Y values tend to have larger X values. This means that
the imputed values of X tend to be lower than their corre-
sponding missing true values.
The third block of five rows of Table 1 shows the

results when X is log-normally distributed and MAR.
When R2 = 0.1, CCase is biased and JAV approximately
unbiased. However, when R2 = 0.8, JAV is considerably
more biased than CCase. There is some evidence of slight
undercoverage of JAV. When X is beta distributed, JAV is
approximately unbiased when R2 = 0.1, but biased (bias =
20%) when R2 = 0.8. JAV is approximately unbiased with
coverage 93% when X is uniformly distributed (data not
shown). PMM had large bias for all three values of R2.
Increasing the sample size to N = 5000 reduces the

bias (to < 4%) of PMM when X is normally distributed
and MAR (data not shown). This is probably because a
larger sample size enables closer matches to be found

for individuals with missing X. However, there was no
consistent improvement when X was log-normally dis-
tributed. Although the bias reduced from -46% to -12%
when R2 = 0.1, it stayed the same when R2 = 0.8 and
increased from -19% to 38% when R2 = 0.5. The biases
of Passive and JAV are not improved. Coverage of
PMM, Passive and JAV worsen, especially when R2 =
0.8 or X is log-normally distributed: when X is normally
distributed and R2 = 0.8, coverages were 0%, 67% and
88%, respectively. We also investigated whether the bias
of PMM that was still evident for a sample size of N =
5000 when X was log normally distributed was reduced
by increasing N to 50000. We found that, although this
did happen, the bias was still 15% when R2 = 0.5 and
26% when R2 = 0.8. This is probably because the differ-
ence between the largest missing value (or values) of X
and the largest observed value of X could continue to
be quite large, even with a very large sample size, when
X is log normally distributed and the missingness
mechanism means that very large values of X are very
likely to be missing.
Table 2 shows the results when Y ~ N ((X-2)2, j). JAV is

approximately unbiased when X is MCAR. Estimated cov-
erage is at least 92% when X is normally or uniformly dis-
tributed. However, when R2 = 0.8 and X is MCAR and
log-normally or beta distributed, coverage is only 83%
(data not shown). The coverage deteriorates as the sample
size increases: 62%, 71% and 62% when N = 5000 and X is
log-normally distributed and R2 = 0.1, 0.5 or 0.8, respec-
tively. When X is MAR and normally distributed, the bias
of JAV is 18% (coverage 68%) when R2 = 0.5 and 22%
(coverage 19%) when R2 = 0.8. The bias is 41% or 71%
when X is MAR and log-normally distributed with R2 =
0.5 or 0.8, respectively. These biases do not improve as
sample size increased. The performances of JAV and
PMM are similar when X is MCAR; JAV can be better or
worse than PMM when X is MAR. When the sample size
is increased and X is normally distributed, the bias of
PMM diminishes (the maximum bias of PMM when N =
5000 is 6%), but that of JAV does not; when X is log-
normally distributed, neither bias diminishes for all values
of R2.

Linear regression with interaction
We focus on the interaction term, whose true value is 1.
Table 3 shows the results when X and Z are independent.
It can be seen that Passive1 is heavily biased even when
X is MCAR. Including the YZ term in the imputation
model (Passive2) usually, but not always reduces the bias,
but it remains substantial. PMM offers little or no
improvement over Passive 2. JAV performs much better,
being approximately unbiased. Coverage of JAV is good,
although there is evidence of slight undercoverage: its
coverage is consistently less than that of CCase when X is
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Table 2 Linear regression with Y ~ N ((X-2)2, j)
R2 = 0.1 R2 = 0.5 R2 = 0.8

bias cover r.prec. bias cover r.prec. bias cover r.prec.

MCAR, X ~ normal

CData -1 95 100 0 95 100 0 95 100

CCase 0 95 64 0 95 64 0 95 64

Passive -31 86 110 -31 48 55 -30 32 21

PMM -2 93 62 1 93 61 2 90 47

JAV -1 94 64 0 93 63 0 92 52

MAR, X ~ normal

CData 0 94 100 0 95 100 0 94 100

CCase -14 92 54 -9 88 37 -4 91 30

Passive -41 80 108 -38 45 52 -32 48 18

PMM -10 88 42 4 88 26 16 51 10

JAV 0 93 41 18 68 21 22 19 10

MAR, X ~ log normal

CData 2 94 100 0 95 100 0 95 100

CCase -12 94 44 -8 94 27 -4 94 20

Passive -41 96 81 -25 87 18 -9 90 4

PMM -10 88 29 8 91 12 35 70 3

JAV 7 92 27 41 70 6 71 20 2

Table 2 Percentage bias, coverage and relative precision for quadratic term in linear regression when Y ~ N ((X-2)2, j). For MCAR, X ~ normal, the maximum
MCSEs among the five methods are 1, 0 and 0% for R2 = 0.1, 0.5 and 0.8, respectively. For MAR, X ~ normal, they are 1, 1 and 1%. For MAR, X ~ log normal, they
are 2, 2 and 2%

Table 3 Linear regression with interaction

R2 = 0.1 R2 = 0.5 R2 = 0.8

bias cover r.prec. bias cover r.prec. bias cover r.prec.

MCAR, X, Z ~ normal

CData 3 93 100 1 93 100 0 93 100

CCase -3 95 71 -1 95 71 0 95 71

Passive1 -31 97 136 -19 94 116 -18 88 106

Passive2 -11 95 86 -17 94 115 -17 89 103

PMM -12 96 86 -15 96 106 -13 91 93

JAV -2 93 66 -1 94 65 0 94 65

MAR, X, Z ~ normal

CData -1 94 100 -2 95 100 0 95 100

CCase -15 96 82 -12 94 69 -5 95 62

Passive1 -36 99 147 -24 94 112 -25 79 110

Passive2 -14 96 75 -26 94 111 -25 82 89

PMM -19 97 84 -23 94 94 -17 90 85

JAV -3 94 60 -4 92 54 1 94 53

MAR, X, Z ~ log normal

CData -1 96 100 2 95 100 1 96 100

CCase -17 94 57 -9 95 38 -4 96 30

Passive1 -43 98 129 -20 96 76 -34 68 65

Passive2 -40 96 71 -42 89 58 -45 73 27

PMM -40 96 79 -38 92 66 -27 85 30

JAV -3 93 41 8 92 26 14 92 20

Table 3 Percentage bias, coverage and relative precision for interaction term in linear regression. The true value of the interaction term is 1. For MCAR, X, Z ~
normal, the maximum MCSEs are 4, 1 and 1% for R2 = 0.1, 0.5 and 0.8, respectively. For MAR, X, Z ~ normal, they are 4, 2 and 1%. For MAR, X, Z ~ log normal,
they are 6, 3 and 1%
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MAR. The underestimation by Passive of the interaction
effect accords with the finding of Von Hippel (2009) in a
real dataset that the estimate from Passive was closer to
zero than that from JAV.
When X and Z are correlated (results not shown), the

biases of passive imputation and PMM change, but
remain larger than those of JAV, whose biases (and cov-
erages) change little. PMM is still less biased than passive
imputation when X is MCAR, but not necessarily when X
is MAR. For example, when X and Z are (marginally)
normally distributed and R2 = 0.1, the biases of Passive1,
Passive2 and PMM are 24%, -16% and 24%, respectively;
when X and Z are log normally distributed and R2 = 0.1,
they are -29%, -37% and -64%.

Logistic regression with quadratic term
We focus on the quadratic term, whose true value is b2 =
1/12 or 1/6. Table 4 shows the results. Consider first the
results when X is MCAR. Passive has large bias. PMM is
approximately unbiased, but slightly less efficient than
CCase. In fact, because Y is binary, and so each missing
X value is replaced by an observed X from a randomly
chosen individual with the same value of Y, PMM is

equivalent to CCase but with each complete case receiv-
ing a random weight. As these weights are (over repeated
samples) uncorrelated with Y and X, they do not cause
bias, but do introduce stochastic variation that is not pre-
sent in CCase. When p = 0.5, b2 = 1/2 and X is normally
distributed, JAV performs well. This is in conformity
with the hypothesis of Von Hippel: P(Y = 1|X) is fairly
close to 0.5 over most of the distribution of X, and so the
logistic function is an approximately linear function of
the linear predictor over most of the distribution of X.
When p = 0.1, b2 = 1/6 or X is log normally distributed,
however, JAV performs much worse and in one case
changes direction: now P(Y = 1|X) is closer to zero or
one for more individuals in the population.
Now consider the results when X is MAR. When p =

0.5, the CCase is approximately unbiased with correct
coverage. This is because the complete cases can be
regarded as a sample from a case-control study: the prob-
abilities that individuals are sampled depends on their
outcomes (Y) but not their exposures (X). As is well
known, valid inference can be obtained from case-control
study data using ordinary logistic regression and treating
Y as the outcome [22]. PMM is approximately unbiased

Table 4 Logistic regression with quadratic term

(p, b2) (0.5, 1/12) (0.5, 1/6) (0.1, 1/12)

bias cover r.prec. bias cover r.prec. bias cover r.prec.

MCAR, X ~ normal

CData 1 95 100 -1 95 100 -6 94 100

CCase 1 96 70 -1 95 73 -8 95 67

Passive -30 97 137 -30 92 136 -34 99 119

PMM 0 94 67 -1 94 70 -10 93 63

JAV -7 96 76 -23 92 102 27 91 72

MCAR, X ~ log normal

CData 6 95 100 4 94 100 4 94 100

CCase 7 94 69 4 95 73 4 96 71

Passive -36 96 222 -45 90 308 -40 93 127

PMM 8 93 67 6 92 68 5 95 68

JAV -66 71 178 -118 3 398 55 85 56

MAR, X ~ normal

CData 0 96 100 1 95 100 -8 96 100

CCase -1 97 67 0 95 63 -28 96 28

Passive 33 97 125 -30 92 115 -71 99 171

PMM -2 94 65 -1 92 59 -33 85 27

JAV 37 89 59 56 62 79 51 82 26

MAR, X ~ log normal

CData 5 93 100 5 96 100 5 94 100

CCase 7 93 70 7 95 69 7 95 38

Passive -8 98 100 2 99 106 -202 16 81

PMM 8 91 67 7 93 64 5 84 34

JAV 22 92 81 -30 80 105 333 25 7

Table 4 Percentage bias, coverage and relative precision for quadratic term in logistic regression. For MCAR, X ~ normal, the maximum MCSEs are 2, 1 and 3%
for (p, b2)=(0.5,1/12), (0.5, 1/6) and (0.1, 1/12), respectively. For MCAR, X ~ log normal, they are 2, 2 and 2%. For MAR, X ~ normal, they are 2, 1 and 4%. For MAR,
X ~ log normal, they are 2, 2 and 6%
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with correct coverage for the same reason. Note that
when p = 0.1, b2 = 1/12 and X is normally distributed,
even CCase and PMM are subject to finite sample bias.
This is because although the sample size is 2000, and so
the expected number of cases is 200, the expected num-
ber with observed X is only 47 under this MAR mechan-
ism. This would seem to be too few to unbiasedly
estimate the quadratic effect. The bias of JAV can be very
large: up to 56% when X is normally distributed and
333% when X is log normally distributed. Unsurprisingly,
its coverage can also be very poor.

Analysis of vitamin C data from EPIC study
Figure 2 is a plot of log plasma vitamin C (μmol/l)
against log dietary vitamin C (mg/day). There is a sug-
gestion of a quadratic effect: the gradient appears
to diminish as the dietary vitamin C value increases.
Table 5 shows the estimates from a linear regression in
the complete cases of log plasma vitamin C on log diet-
ary vitamin C and the confounders. Smoking status is
categorised as current smoker (baseline), former smoker
or never smoker. As Figure 2 shows, there is evidence of
heteroskedasticity. The quadratic effect is highly signifi-
cant and negative, according with the apparent dimin-
ishing gradient.
Table 5 shows the estimates for three of the four MI

methods. The results from the variant JAV method are
almost identical to those from JAV, and so are not
reported here. It can be seen that the point estimates
from JAV are very similar to those from the complete-
case analysis. The estimates from the FCS with passive
imputation method are quite different from those of JAV:
estimated quadratic and linear effects of log dietary vita-
min C are stronger. This difference is much reduced
when PMM is used instead of passive imputation, sug-
gesting that the linear model used to impute missing
dietary vitamin C values in the passive method may have
induced a bias which PMM has reduced. Alternatively, it
is possible that passive imputation is giving less biased
estimates than JAV and the complete-case analysis, but
this seems unlikely in view of the simulation results pre-
sented earlier. It is perhaps surprising that the passive
approach has yielded a larger estimated quadratic effect
than the complete-case analysis; in the simulations the
converse was true. This shows that the conclusions from
our simulation studies may not apply when there is
heteroskedasticity.
The SEs when using MI are somewhat smaller than

those from the complete-case analysis, indicating that
MI has made use of information from the subjects with
missing data. This gain in efficiency is greater for JAV
than for PMM. Had there been more missing values in
the confounders, we would have expected a greater effi-
ciency gain from using MI.

Discussion
In this article, we have investigated imputation of an
incomplete variable when the model of interest includes
as covariates more than one function of that variable. We
have focused on linear regression with a quadratic or
interaction term, and have examined three imputation
methods that can be easily implemented in standard soft-
ware. In STATA, for example, the ice command can be
used for passive imputation and PMM, and the mi
impute mvn command for JAV; in R the mice function
can be used for passive imputation and PMM, and the
mix library for JAV. Note that although ice and mice use
chained equations and hence, in general, involve itera-
tion, when the data are monotone missing, as is the case
in our simulation studies, no iteration is required.
In the JAV approach, each function of the incomplete

variable is treated as an unrelated variable and a multi-
variate normal imputation model is used. Von Hippel
(2009) claimed that this would give consistent estimation
for linear regression when the data were MAR. In this
paper we have shown that the consistency actually
requires MCAR; when data are MAR, bias is to be
expected. None of the three MI methods we investigated
worked well in all the MAR scenarios considered. In gen-
eral, JAV performed better than passive imputation or
PMM for linear regression with a quadratic or interaction
effect. We have shown, however, that there are circum-
stances in which JAV can have large bias for the quadra-
tic effect of a linear regression model. JAV was found to
perform very badly when the analysis model is a logistic
regression, unless the outcome is common and covariates
only have small effects on its probability. In view of this,
we recommend that, given the current state of available
software, JAV is the best of a set of imperfect imputation
methods for linear regression with a quadratic or interac-
tion effect, but should not be used for logistic regression.
For logistic regression, the best performing imputation
method was PMM. However, when X (and X2) are the
only covariates in the model and are MAR, the complete-
case analysis is unbiased, and hence we recommend its
use in that case.
In our simulations, we found that using PMM was

nearly always better than using passive imputation with-
out PMM. However, for linear regression analysis mod-
els, its performance was usually worse than JAV.
In the scenarios we considered in our simulations, the

analysis model only involves one variable (X) and its
square, or two variables (X and Z) and their interaction.
We have not considered additional covariates. We lim-
ited our investigation to these simple cases, because it is
important to understand the performance of the meth-
ods in these scenarios before moving on to more com-
plicated scenarios. Further research is needed into the
performance of the methods when additional covariates
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are involved. In the scenarios we considered, the com-
plete-case analysis is unbiased when the data are MCAR
and is actually more efficient than all of the imputation
methods considered. However, MI will be more efficient
than just using complete cases when the analysis model
involves additional non-fully observed covariates,
because individuals with observed X and Y but missing
other covariates will be excluded from the complete-
case analysis but do contribute information when MI is

used. Furthermore, the complete-case analysis may be
biased when the data are not MCAR.
We (like Von Hippel, 2009) have presented JAV as a

method using a multivariate normal imputation model.
If the data are MCAR, JAV with this imputation model
will give consistent point estimation in linear regression.
The principle of JAV, i.e. that functions of the same
variable are treated as separate and the functional rela-
tion between them ignored, is not tied to the normal
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Figure 2 Log plasma vitamin C and log dietary vitamin C in 15415 individuals for whom both variables are observed.

Table 5 Analysis of vitamin-C data

Complete FCS FCS JAV

Cases with Passive with PMM

Est SE Est SE Est SE Est SE

intercept 0.990 0.201 0.570 0.177 0.903 0.181 1.030 0.163

log diet C 1.141 0.090 1.322 0.079 1.163 0.081 1.106 0.075

log diet C sqrd -0.090 0.010 -0.113 0.009 -0.094 0.009 -0.088 0.008

sex 0.169 0.008 0.173 0.007 0.172 0.007 0.172 0.007

weight (per 10 Kg) -0.042 0.003 -0.041 0.003 -0.040 0.003 -0.041 0.003

age (per 10 yrs) -0.052 0.004 -0.043 0.003 -0.043 0.003 -0.043 0.003

former smoker 0.212 0.015 0.213 0.012 0.213 0.012 0.212 0.012

never smoker 0.216 0.014 0.218 0.012 0.218 0.012 0.219 0.012

Table 5 Point estimates and SEs from complete-case analysis and three MI methods (full conditional specification with and without predictive mean matching,
and JAV) for the regression of log plasma vitamin C on log dietary vitamin C (’log diet C’), its square (’log diet C sqrd’) and a set of confounders
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distribution. However, the properties of a method using
the JAV principle with another imputation model are
thus far unknown.

Conclusions
JAV gives consistent estimation for linear regression
with a quadratic or interaction term when data are
MCAR, but may be biased when data are MAR. The
bias of JAV can be severe when used for logistic regres-
sion. JAV is the best of a set of imperfect methods for
linear regression with a quadratic or interaction effect,
but should not be used for logistic regression.
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