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Abstract

Background: Logistic random effects models are a popular tool to analyze multilevel also called hierarchical data
with a binary or ordinal outcome. Here, we aim to compare different statistical software implementations of these
models.

Methods: We used individual patient data from 8509 patients in 231 centers with moderate and severe Traumatic
Brain Injury (TBI) enrolled in eight Randomized Controlled Trials (RCTs) and three observational studies. We fitted
logistic random effects regression models with the 5-point Glasgow Outcome Scale (GOS) as outcome, both
dichotomized as well as ordinal, with center and/or trial as random effects, and as covariates age, motor score,
pupil reactivity or trial. We then compared the implementations of frequentist and Bayesian methods to estimate
the fixed and random effects. Frequentist approaches included R (lme4), Stata (GLLAMM), SAS (GLIMMIX and
NLMIXED), MLwiN ([R]IGLS) and MIXOR, Bayesian approaches included WinBUGS, MLwiN (MCMC), R package
MCMCglmm and SAS experimental procedure MCMC.
Three data sets (the full data set and two sub-datasets) were analysed using basically two logistic random effects
models with either one random effect for the center or two random effects for center and trial. For the ordinal
outcome in the full data set also a proportional odds model with a random center effect was fitted.

Results: The packages gave similar parameter estimates for both the fixed and random effects and for the binary
(and ordinal) models for the main study and when based on a relatively large number of level-1 (patient level)
data compared to the number of level-2 (hospital level) data. However, when based on relatively sparse data set, i.
e. when the numbers of level-1 and level-2 data units were about the same, the frequentist and Bayesian
approaches showed somewhat different results. The software implementations differ considerably in flexibility,
computation time, and usability. There are also differences in the availability of additional tools for model
evaluation, such as diagnostic plots. The experimental SAS (version 9.2) procedure MCMC appeared to be
inefficient.

Conclusions: On relatively large data sets, the different software implementations of logistic random effects
regression models produced similar results. Thus, for a large data set there seems to be no explicit preference (of
course if there is no preference from a philosophical point of view) for either a frequentist or Bayesian approach (if
based on vague priors). The choice for a particular implementation may largely depend on the desired flexibility,
and the usability of the package. For small data sets the random effects variances are difficult to estimate. In the
frequentist approaches the MLE of this variance was often estimated zero with a standard error that is either zero
or could not be determined, while for Bayesian methods the estimates could depend on the chosen “non-
informative” prior of the variance parameter. The starting value for the variance parameter may be also critical for
the convergence of the Markov chain.
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Background
Hierarchical, multilevel, or clustered data structures are
often seen in medical, psychological and social research.
Examples are: (1) individuals in households and house-
holds nested in geographical areas, (2) surfaces on teeth,
teeth within mouths, (3) children in classes, classes in
schools, (4) multicenter clinical trials, in which indivi-
duals are treated in centers, (5) meta-analyses with indi-
viduals nested in studies. Multilevel data structures also
arise in longitudinal studies where measurements are
clustered within individuals.
The multilevel structure induces correlation among

observations within a cluster, e.g. between patients from
the same center. An approach to analyze clustered data
is the use of a multilevel or random effects regression
analysis. There are several reasons to prefer a random
effects model over a traditional fixed effects regression
model [1]. First, we may wish to estimate the effect of
covariates at the group level, e.g. type of center (univer-
sity versus peripheral center). With a fixed effects model
it is not possible to separate out group effects from the
effect of covariates at the group level. Secondly, random
effects models treat the groups as a random sample
from a population of groups. Using a fixed effects
model, inferences cannot be made beyond the groups in
the sample. Thirdly, statistical inference may be wrong.
Indeed, traditional regression techniques do not recog-
nize the multilevel structure and will cause the standard
errors of regression coefficients to be wrongly estimated,
leading to an overstatement or understatement of statis-
tical significance for the coefficients of both the higher-
and lower-level covariates.
All this is common knowledge in the statistical litera-

ture [2], but in the medical literature still multilevel data
are often analyzed using fixed effects models [3].
In this paper we use a multilevel dataset with an ordi-

nal outcome, which we analysed as such but also in a
dichotomized manner as a binary outcome. Relating
patient and cluster characteristics to the outcome
requires some special techniques like a logistic (or pro-
bit, cloglog, etc) random effects model. Such models are
implemented in many different statistical packages, all
with different features and using different computational
approaches. Packages that use the same numerical tech-
niques are expected to yield the same results, but results
can differ if different numerical techniques are used. In
this study we aim to compare different statistical soft-
ware implementations, with regard to estimation results,
their usability, flexibility and computing time. The
implementations include both frequentist and Bayesian
approaches. Statistical software for hierarchical models
has been compared already by Zhou et al [4], Guo et al
[5] about ten years ago, and by the Centre for Multilevel

Modelling (CMM) website [6]. Our paper is different
from previous reviews in that we have concentrated on
partly different packages and on more commonly used
numerical techniques nowadays. Moreover, we consid-
ered a binary as well as an ordinal outcome.

Methods
Data
The dataset we used here is the IMPACT (International
Mission on Prognosis and Clinical Trial design in TBI)
database. This dataset contains individual patient data
from 9,205 patients with moderate and severe Trau-
matic Brain Injury (TBI) enrolled in eight Randomized
Controlled Trials (RCTs) and three observational stu-
dies. The patients were treated in different centers, giv-
ing the data a multilevel structure. For more details on
this study, we refer to Marmarou et al [7], and Maas et
al [8]. The permission to access the patient data used in
this study was obtained from the principle investigators
of the original studies.
The outcome in our analyses is the Glasgow Outcome

Scale (GOS), the commonly used outcome scale in TBI
studies. GOS has an ordinal five point scale, with cate-
gories respectively dead, vegetative state, severe disabil-
ity, moderate disability and good recovery. We analyzed
GOS on the original ordinal scale but also as a binary
outcome, dichotomized into “unfavourable” (dead, vege-
tative and severe disability) versus “favourable” (good
recovery and moderate disability).
At patient level, we included age, pupil reactivity and

motor score at admission as predictors in the model,
their inclusion is motivated by previous studies [9]. Age
was treated as a continuous variable. Motor score and
pupil reactivity were treated as categorical variables
(motor score: 1 = none or extension, 2 = abnormal flex-
ion, 3 = normal flexion, 4 = localises or obeys, 5 =
untestable, and pupil reactivity: 1 = both sides positive,
2 = one side positive, 3 = both sides negative). Note that
treatment was not included in our analysis because of
absence of a treatment effect in any of the trials. For
further details, see McHugh et al [10].
We did include the variable trial since 11 studies were

involved and the overall outcome may vary across stu-
dies. The trial effect was modelled as a fixed effect in
the first analyses and as a random effect in the subse-
quent analyses. The 231 centers were treated as a ran-
dom effect (random intercept).
Two sub-datasets were generated in order to examine

the performance of the software packages when dealing
with logistic random effects regression models on a
smaller data set. Sample 1 (cases 2 and 5) consists of a
simple random sample from the full data set and con-
tains 500 patients. Sample 2 (cases 3 and 6) was
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obtained from stratified random sampling the full data
set with the centers as strata. It includes 262 patients,
representing about 3% of the patients in each hospital.

Random effects models
In random effects models, the residual variance is split
up into components that pertain to the different levels
in the data [11]. A two-level model with grouping of
patients within centers would include residuals at the
patient and center levels. Thus the residual variance is
partitioned into a between-center component (the var-
iance of the center-level residuals) and a within-center
component (the variance of the patient-level residuals).
The center residuals, often called “center effects”, repre-
sent unobserved center characteristics that affect
patients’ outcomes. For the cross-classified random
effects model (cases 4-6, see below for a description of
the model), data are cross-classified by trial and center
because some trials were conducted in more than one
center and some centers were involved in more than
one trial. Therefore, both trial and center were taken as
random effects such that the residual variance is parti-
tioned into three parts: a between-trial component, a
between-center component and the residual. Note that
for the logistic random effects model the level-1 var-
iance is not identifiable from the likelihood; the classi-
cally reported fixed variance of pertains to the latent
continuous scale and is the variance of π2/3 a standard
logistic density, see Snijders et al [12] and Rodriguez et
al [13].
Case 1: logistic random effects model on full data set
A dichotomous or binary logistic random effects model
has a binary outcome (Y = 0 or 1) and regresses the log
odds of the outcome probability on various predictors
to estimate the probability that Y = 1 happens, given the
random effects. The simplest dichotomous 2-level model
is given by

ln
(
P(Yij = 1|xij, uj)
P(Yij = 0|xij, uj)

)
= α1 +

K∑
k=1

βkxkij + uj

uj ∼ N(0, σ 2) j = 1, 2, ..., J i = 1, 2, ...,nj

(1:1)

with Yij the dichotomized GOS (with Yij = 1 if GOS =
1,2,3 and Yij = 0 otherwise) of the i th subject in the j
th center. Further, xij = (x1ij,...,xkij represents the (first
and second level) covariates, a1 is the intercept and bk
is the k th regression coefficient. Furthermore, uj is the
random effect representing the effect of the j th center.
It is assumed that uj follows a normal distribution with
mean 0 and variance s2. Here xkij represents the covari-
ates age, motor score, pupil reactivity and trial. The
coefficient bk measures the effect of increasing xkij by
one unit on the log odds ratio.

For an ordinal logistic multilevel model, we adopt the
proportional odds assumption and hence we assume
that:

ln
(
P(Yij � m|xij, uj)
P(Yij > m|xij, uj)

)
= αm +

K∑
k=1

βkxkij + uj (m = 1, 2, 3, 4)

uj ∼ N(0, σ 2) j = 1, 2, ..., J i = 1, 2, ..., nj

(1:2)

In model (1.2), Yij is the GOS of the i th subject in the
j th center. This equation can be seen as a combination
of 4 sub-equations. The difference of the four sub-equa-
tions is only in the intercept, and the effect of the cov-
ariates is assumed to be the same for all outcome levels
(proportional odds assumption). So the coefficient bk is
the log odds ratio of a higher GOS versus a lower GOS
when the predictor xkij increases with one unit control-
ling for the other predictors and the random effect in
the model.
In our basic models we assumed a logit link function

and a normal distribution for both the binary and the
ordinal analysis, but we checked also whether different
link functions and other random effect distributions are
available in the packages.
Cases 2 and 3
Case 2 is based on sample 1 (500 patients), while case 3
is based on sample 2 (262 patients). For both cases only
the binary logistic random effects model (1.1) was fitted
to the data.
Case 4: cross-classified logistic random effects model on full
data set
For this case we treated trial (describing 11 studies) as a
second random effect. Since trial is not nested in center,
we obtained the following cross-classified random effects
model:

ln
(
P(Yijl = 1|xij, uj, vl)
P(Yijl = 0|xij, uj, vl)

)
= α1 +

K∑
k=1

βkxkijl + uj + vl

uj ∼ N(0, σu
2), vl ∼ N(0, σv2)

j = 1, 2, ..., J i = 1, 2, ...,nj l = 1, 2, ...L

(1:3)

with Yij1 is the GOS of the i th subject in the j th cen-
ter and the l th trial, and xij = (x1ij1,...,xkijL). Note that
equations (1.3) and (1.1) differ only in the additional
part vl which represents the random effect of the l th
trial. We assumed that both random effects are indepen-
dently normally distributed.
Cases 5 and 6
Case 5 is based on sample 1 and case 6 on sample 2.
For both cases model (1.3) was fitted to the data.
For more background on models for hierarchical

(clustered) data and also for other types of models, such
as marginal Generalized Estimating Equations models
the reader is referred to the review of Pendergast et al
[14].
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Software packages
We compared ten different implementations of logistic
random effects models. The software packages can be
classified according to the statistical approach upon
which they are based, i.e.: frequentist or Bayesian. See
Additional file 1 for the different philosophy upon
which frequentist and Bayesian approaches are based.
We first note that both approaches involve the compu-
tation of the likelihood or quasi-likelihood. In the fre-
quentist approach parameter estimation is based on the
marginal likelihood obtained from expression (1.2) and
(1.3) by integrating out the random effects. In the Baye-
sian approach all parameters are estimated via MCMC
sampling methods.
The frequentist approach is included in the R package

lme4, in the GLLAMM package of Stata, in the SAS
procedures GLIMMIX and NLMIXED (SAS version
9.2), in the package MLwiN ([R]IGLS version 2.13) and
in the program MIXOR (the first program launched for
the analysis of a logistic random effects model).
The frequentist approaches differ mainly in the way

the integrated likelihood is computed in order to obtain
the parameter estimates called maximum likelihood esti-
mate (MLE) or restricted maximum likelihood estimate
(REML) depending on the way the variances are esti-
mated. Performing the integration is computationally
demanding, especially in the presence of multivariate
random effects. As a result, many approximation meth-
ods have been suggested to compute the integrated (also
called marginal) likelihood. The R package lme4 is
based on the Laplace technique, which is the simplest
Adaptive Gaussian Quadrature (AGQ) technique based
on the evaluation of the function in a well chosen quad-
rature point per random effect. In the general case,
AGQ is a numerical approximation to the integral over
the whole support of the likelihood using Q quadrature
points adapted to the data [15]. We used the “adapt”
option in GLLAMM in Stata to specify the AGQ
method [16]. The SAS procedure GLIMMIX allows for
several integration approaches and we used AGQ if
available [17]. The same holds for the SAS procedure
NLMIXED [18]. The package MLwiN ([R]IGLS) adopts
Marginal Quasi-Likelihood (MQL) or Penalised quasi-
Likelihood (PQL) to achieve the approximation. Both
methods can be computed up to the 2nd order [19],
here we chose the 2nd order PQL procedure. Finally, in
MIXOR, only Gauss-Hermite quadrature, also known as
a non-AGQ method, is available. Again the number of
quadrature points Q determines the desired accuracy
[20]. However Lesaffre and Spiessens indicated that this
method can give a poor approximation to the integrated
likelihood when the number of quadrature points is low
(say 5, which is the default in MIXOR) [21]. Therefore
in our analyses we have taken 50 quadrature points but

we also applied MIXOR with 5 quadrature points to
indicate the sensitivity of the estimation procedure to
the choice of Q.
With regard to the optimization technique to obtain

the (R)MLE, a variety of techniques are available. R
package lme4 uses the NLMINB method which is a
local minimiser for the smooth nonlinear function sub-
ject to bound-constrained parameters. Newton-Raphson
is the only optimization technique in the GLLAMM
package. SAS procedures GLIMMIX and NLMIXED
have a large number of optimization techniques. We
chose the default Quasi-Newton approach for GLIM-
MIX and the Newton-Raphson algorithm for
NLMIXED. The package MLwiN ([R]IGLS) adopts itera-
tive generalised least squares (IGLS) or restricted IGLS
(RIGLS) optimization methods. We used IGLS although
it has been shown that RIGLS yields less biased esti-
mates than IGLS [22], we will return to this below.
Finally, in MIXOR, the Fisher-scoring algorithm was
used.
It has been documented that quasi-likelihood approxi-

mations such as those implemented in MLwiN ([R]
IGLS) may produce estimates biased towards zero in
certain circumstances. The bias could be substantial
especially when data are sparse [23,24]. On the other
hand, (adaptive) quadrature methods with an adequate
number of quadrature points produce less biased esti-
mates [25].
Note that certain integration and optimization techni-

ques are not available in some software for a cross-clas-
sified logistic random effects model. This will be
discussed later.
The other four programs we studied are based on a

Bayesian approach. The program most often used for
Bayesian analysis is WinBUGS (latest and final version
is 1.4.3). WinBUGS is based on the Gibbs Sampler,
which is one of the MCMC methods [26]. The package
MLwiN (using MCMC) allows for a multilevel Bayesian
analysis, it is based on a combination of Gibbs sampling
and Metropolis-Hastings sampling [27], both examples
of MCMC sampling. The R package MCMCglmm is
designed for fitting generalised linear mixed models and
makes use of MCMC techniques that are a combination
of Gibbs sampling, slice sampling and Metropolis-Hast-
ings sampling [28]. Finally, the recent experimental SAS
9.2 procedure MCMC is a general purpose Markov
Chain Monte Carlo simulation procedure that is
designed to fit many Bayesian models using the Metro-
polis-Hastings approach [29].
In all Bayesian packages we used “non-informative”

priors for all the regression coefficients, i.e. a normal
distribution with zero mean and a large variance (104).
Note that, the adjective “non-informative” prior used in
this paper is the classical wording but does not
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necessarily mean the prior is truly non-informative, as
will be seen below. The random effect is assumed to fol-
low a normal distribution and the standard deviation of
the random effects is given a uniform prior distribution
between 0 and 100. MLwiN, however, uses the Inverse
Gamma distribution for the variance as default. Since
the choice of the non-informative prior for the standard
deviation can seriously affect the estimation of all para-
meters, other priors for the standard deviation were also
used. The total number of iterations for binary models
in all cases (except for cases 3 and 6) was 10,000 with a
burn-in of 3,000. More iterations (106) were used in
cases 3 and 6 in order to get convergence for the small
data set. For the ordinal model in case 1, the total num-
ber of iterations was 100,000 and the size of the burn-in
part was 30,000.
We checked convergence of the MCMC chain using

the Brooks-Gelman-Rubin (BGR) method [30] in Win-
BUGS. This method compares within-chain and
between-chain variability for multiple chains starting at
over-dispersed initial values. Convergence of the chain is
indicated by a ratio close to 1. In MLwiN (MCMC) the
Raftery-Lewis method was used [27]. For MCMCglmm,
we used the BGR method by making use of the R-pack-
age CODA. The SAS procedure MCMC offers many
convergence diagnostic tests, we used the Geweke
diagnostic.
The specification of starting values for parameters is a

bit different across packages.
Among the six frequentist packages, lme4, NLMIXED

and MIXOR allow manual specification of the starting
values, while in the other packages default starting
values are chosen automatically. NLMIXED uses 1 as
starting value for all parameters for which no starting
values have been specified. For lme4 and MIXOR the
choice of the starting values is not clear, while GLIM-
MIX and GLLAMM base their default starting values on
the estimates from a generalized linear model fit. In
MLwiN ([R]IGLS) the 2nd order PQL method uses MQL
estimates as starting values. Note that for most Bayesian
implementations the starting values should be specified
by the user. Often the choices of starting values, if not
taken too extreme, do not play a great role in the con-
vergence of the MCMC chain but care needs to be exer-
cised for the variance parameters, as seen below.

Analysis
As outlined above, binary and ordinal logistic random
effects regression models were fitted to the IMPACT
data. All packages are able to deal with the binary logis-
tic random effects model. Furthermore, the packages
GLLAMM, GLIMMIX, NLMIXED, MLwiN ([R]IGLS),
MIXOR, WinBUGS, MLwiN (MCMC) and SAS MCMC
are able to analyze ordinal multilevel data. MCMCglmm

only supports the probit model for an ordinal outcome,
so that program was not used for the ordinal case. The
packages R, GLIMMIX, MLwiN ([R]IGLS), WinBUGS,
MLwiN (MCMC) and MCMCglmm can handle the
cross-classified random effects model. Syntax codes for
the analysis of the IMPACT data with the different
packages are provided in Additional file 2.
We compared the packages with respect to the esti-

mates of the parameters and the time needed to arrive
at the final estimates. Further, we compared extra facil-
ities, output and easy handling of the programs. Finally,
we looked at the flexibility of the software, i.e. whether
it is possible to vary the model assumptions made in
(1.1) and (1.2), e.g. replacing the logit link by other link
functions such as probit and log(-log) link functions or
relaxing the assumption of normality for the random
effects.

Results
Descriptive statistics
From the 9,205 patients in the original database, we
excluded the patients with a missing GOS at 6 months
(n = 484) or when there was only partial information
available on GOS (n = 35), or when the age was missing
(n = 2) or if the patient was younger than 14 (n = 175).
This resulted in 8,509 patients in 231 centers in the ana-
lysis, of whom 2,396 (28%) died and 4,082 (48%) had an
unfavourable outcome six months after injury (see Addi-
tional file 3). The median age was 30 (interquartile
range 21-45) years, 3522 patients (41%) had a motor
score of 3 or lower (none, extension or abnormal flex-
ion), and 1,989 patients (23%) had bilateral non-reactive
pupils. The median number of patients per center was
19, ranging from 1 to 425.

Case 1: binary and ordinal logistic random effects model
on full data set
Binary model
Fitting the dichotomous model in the different packages
gave similar results (see Additional file 4). For the fre-
quentist approaches the R package lme4, the Stata pack-
age GLLAMM, the SAS procedures GLIMMIX and
NLMIXED, and the programs MLwiN ([R]IGLS) and
MIXOR provided almost the same results for the fixed
effects and the variance of the random effects. One
example is age, with estimated coefficients of 0.623,
0.623, 0.618, 0.623, 0.623 and 0.623, respectively for the
different programs and all estimated SDs close to 0.028.
Estimates for the variance of the random effects were
also similar: 0.101, 0.102, 0.107, 0.102, 0.101 and 0.102,
respectively. As can be noticed from Additional file 4,
lme4 did not give an estimate for the SD of the variance
of the random effects. The reason was provided by the
developer of the package in his book (Bates D: lme4:
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Mixed-effects modelling with R, submitted) stating that
the sampling distribution of the variance is highly
skewed which makes the standard error nonsensical.
The Bayesian programs WinBUGS, MLwiN (MCMC),

MCMCglmm and the SAS procedure MCMC gave simi-
lar posterior means and these were also close to the
MLEs obtained from the frequentist software. For exam-
ple, the posterior mean (SD) of the regression coefficient
of age was 0.626 (0.028), 0.625 (0.029), 0.636 (0.028) and
0.630 (0.025) for WinBUGS, MLwiN (MCMC),
MCMCglmm and SAS procedure MCMC, respectively.
The posterior mean of the variance of the random
effects was estimated as 0.119, 0.113, 0.110 and 0.160,
respectively with SD close to 0.30.
The random effects estimates of the 231 centers could

easily be derived from all packages except for MIXOR
and were quite similar. For example the Pearson correla-
tion for the estimated random effects from WinBUGS
and R was 0.9999.
Ordinal model-proportional odds model
Fitting the proportional odds model in the different
packages also gave similar results (see Additional file 5).
For the frequentist approach, the Stata package
GLLAMM, the two SAS procedures GLIMMIX and
NLMIXED, the packages MLwiN ([R]IGLS) and MIXOR
gave very similar estimates for the fixed effects para-
meters and the variance of the random effects. The esti-
mate (SD) of e.g. the regression coefficient of age was
0.591 (0.023), 0.588 (0.023), 0.591(0.023), 0.592 (0.023)
and 0.591 (0.027), respectively. The estimate of the var-
iance (SD) of the random effects were 0.085 (0.020),
0.090 (0.021), 0.085 (0.020), 0.085 (0.019), and 0.085
(0.024), respectively. The MIXOR results were some-
what different from those of the other packages when
based on 5 quadrature points, but this difference largely
disappeared when 50 quadrature points were used, see
Additional file 5. However, the SDs did not change
much by increasing Q from 5 to 50 and we are not sure
about the reason behind.
For the Bayesian approaches, WinBUGS and MLwiN

(MCMC) produced similar results as the frequentist
approaches. The posterior mean of the regression coeffi-
cient of age in WinBUGS was 0.551 and 0.592 in MLwiN
(MCMC), with SD = 0.023 in both cases (same as the
SAS frequentist result). The posterior mean of the var-
iance of the random effects was 0.096 in WinBUGS and
0.093 in MLwiN (MCMC) and for both SD = 0.022, very
close to the frequentist estimates. We stopped running
the SAS MCMC procedure after 2,000 iterations because
this already took 19 hours and the chains based on the
last 1,000 iterations were far from being converged.
Finally, the estimated random effects for the 231 cen-

ters were quite the same across the different packages
(except for MIXOR) with correlation again practically 1.

Cases 2 and 3: binary logistic random effects models on
samples 1 and 2
The conclusions for case 2 are the same as for case 1
(see Additional file 6), but not for case 3 (see Additional
file 7). The results for the Bayesian analyses are rather
different from the results of the frequentist implementa-
tions but similar to each other, in particular with regard
to the posterior standard errors. For the frequentist
approaches, the variance of the random effects was esti-
mated zero and the standard error was estimated as
zero or could not be estimated. What is more important
in case 3 is that the posterior means depended much on
the choice of the non-informative priors for the variance
component, i.e. uniform (0,1) and Inverse Gamma
(0.001,0.001), but we have tried more priors and elabo-
rated on this in the discussion section of the paper.

Case 4: cross-classified binary logistic random effects
model based on full data set
Only lme4 in R, GLIMMIX, MLwiN ([R]IGLS), Win-
BUGS, MLwiN (MCMC) and MCMCglmm could han-
dle this analysis. The results for these packages were
quite similar, as shown in Additional file 8. For example
for age the estimates (SD) were 0.623 (0.028), 0.617
(0.028), 0.623 (0.028), 0.624 (0.028), 0.624 (0.027) and
0.635 (0.028), for lme4, GLIMMIX, MLwiN ([R]IGLS),
WinBUGS, MLwiN (MCMC) and MCMCglmm, respec-
tively. The variances for the random effect of center
were 0.116, 0.113, 0.116, 0.119, 0.120 and 0.106, respec-
tively and for the random effect of trial they were 0.067,
0.075, 0.067, 0.114, 0.095 and 0.094, respectively.

Cases 5 and 6: cross-classified binary logistic random
effects models on samples 1 and 2
As for case 2, we obtained in case 5 essentially the same
results with all packages. For case 6, the frequentist
results were similar but the Bayesian results were differ-
ent and were much affected by the prior of the variance
parameter as in case 3 (tables for cases 5 and 6 are not
shown).
Usability, flexibility and speed
The packages greatly differed in their usability, by which
we mean the availability of diagnostic tools/plots; ease
of displaying/extracting parameter estimates and export-
ing results, etc. But it must be stated that all packages
require a sound statistical knowledge in multilevel mod-
elling in order to analyze such data in a reliable manner.
SAS is based on procedures for which certain options

can be turned on and off. Understanding the different
options in the statistical SAS procedures often requires
a great deal of statistical background since the proce-
dures are based on the most advanced and computa-
tionally powerful methods. Also SAS data management
is quite powerful but is also associated with a steep
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learning curve. The SAS procedures NLMIXED and
MCMC offer some programming facilities.
The package R has gained a lot of attention in the last

decade and is becoming increasingly popular among sta-
tisticians and non-statisticians. It requires programming
skills and has many basic functions. In addition, R offers
great graphics to the user. For the MCMCglmm package
in R, we experienced difficulties in understanding the
syntax for specifying the prior of the variance para-
meters as explained in the manual.
Stata is very handy for analyzing simple as well as

complicated problems. It has a command-line interface
and also includes a graphical user interface since version
8.0. The software allows user-written packages just as in
R and provides some programming facilities. The pack-
age GLLAMM is powerful in dealing with a large range
of complex problems.
WinBUGS is the most popular general purpose pack-

age for Bayesian analysis with now more than 30,000
registered users. The package allows for a great variety
of analyses using a programming language that resem-
bles to some extent that of R. WinBUGS requires about
the same programming skills as R.
MIXOR needs no programming but provides very lim-

ited output. Furthermore, MLwiN has a clear and intui-
tive interface to specify a random effects model, but
lacks a simple syntax file structure.
The packages also differ in what they offer as standard

output besides the parameter estimates. WinBUGS
allows for the most extensive output, including diagnos-
tic plots for model evaluation and plots of the individual
random center effects. All packages except MIXOR can
provide estimates of the random effects. In Figure 1 we
show the box plots of the sampled random effects in
WinBUGS for the first 10 centers of the binary logistic
random effects model applied to the IMPACT data. Of
course with packages like SAS and R the output of the
statistical procedures can be saved and then processed
by some other procedure or function to deliver the
required graph or additional diagnostic analysis. For
example, Figure 2 is produced with R and shows the
histogram of the random effects of the binary IMPACT
logistic random effects model.
Flexibility differs somewhat in the packages. All

packages could handle a probit model and a log(-log)
model except lme4 and MCMCglmm (MCMCglmm
allows for logit or probit link functions for a binary
model but only the probit link function for the ordinal
model). But, only WinBUGS allows for changing the dis-
tribution of the random effects. Table 1 shows that
WinBUGS has the greatest flexibility in adapting the
model assumptions.
The speed of the computations varied widely. All

computations were done on an Intel Core(TM) 2 Duo

E8400 processor with 3.0 GHz CPU and 3.21 GB inter-
nal memory. For case 1, only a few seconds were needed
to provide the estimates with the frequentist approaches
to fit the binary logistic random effects, except for SAS
NLMIXED and Stata GLLAMM which needed 15 min-
utes and 7 minutes, respectively. The MLwiN ([R]IGLS)
procedure (using 2nd order PQL) was the fastest, and
GLIMMIX was almost as fast followed by lme4 and
MIXOR. The Bayesian approaches were considerably
slower, which is not surprising since MCMC sampling is
time consuming. However, a major handicap to perform
an honest comparison with regard computational speed
is that the checking for convergence of MCMC methods

Figure 1 IMPACT study: Box plot of a sample of the random
effects (for center 1 to 10). Each box represents a center with its
random effects estimate and confidence interval.

Figure 2 IMPACT study: Histogram of the random effects in
the binary model in R.
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is far more difficult than in a frequentist sense [31] and
not standardized. Nevertheless, MCMCglmm was the
winner this time, but we considered all computation
times as acceptable, except for the SAS MCMC proce-
dure which took 37 hours for the binary model. Similar
findings were obtained for the ordinal logistic random
effects model, but compared to the binary model, the
time to converge increased considerably for some soft-
ware. Now the winner in the frequentist software was
GLIMMIX closely followed up by MIXOR. For the
Bayesian software, MLwiN (MCMC) was the winner,
much faster than WinBUGS. The SAS procedure
MCMC never got to convergence (we stopped it) and as
mentioned above, the MCMCglmm program does not
allow the ordinal logistic random effects model.

Discussion
Performance of each package
Although the parameter estimates were very similar
between the ten software implementations, we found
considerable variations in computing time, usability and
flexibility.
Speed
Most of the frequentist approaches were very fast, taking
only seconds, with the SAS NLMIXED procedure and the
Stata package GLLAMM as exceptions. Overall, the SAS
procedure GLIMMIX, the program MIXOR and the pack-
age MLwiN ([R]IGLS) were the winners. The fact that
NLMIXED and GLLAMM took much longer time has
much to do with that they are general purpose programs
suitable for fitting a variety of complex random effects
models and that they both use the AGQ method. The
Bayesian approaches were invariably slower than the fre-
quentist approaches, which is due to the computational
intensive MCMC approach and that convergence is much

harder to judge than in a classical frequentist sense. The
speed of the Bayesian procedures appears to depend also
more on the sample size than the frequentist approaches.
As a result, long processing times as in WinBUGS (14
minutes for binary and 8 hours for ordinal model, respec-
tively) may prevent the user to do much on exploratory
statistical research. The R package MCMCglmm and
MLwiN (MCMC) were much faster than WinBUGS, tak-
ing only a few minutes for both binary and ordinal cases.
Hence, from a computational point of view, MCMCglmm
and MLwiN (MCMC) are our software of choice for
multilevel modeling.
In our experience, the SAS procedure MCMC was

inefficient in dealing with mixed models. It was far too
time consuming (37 hours for the binary model) and it
did converge neither for the regression coefficients nor
for the variance of the random effects. At this moment,
we cannot recommend this SAS procedure for fitting
logistic random effects regression models.
Usability and flexibility
The packages differ much in nature, like working inter-
face and data management. MLwiN and MIXOR are
menu-driven although writing syntax is also allowed in
both packages. SAS is supposed to work in batch mode
with some procedures and macros. The others, Win-
BUGS, R and STATA, are embedded in a programming
language. Which package to prefer from the usability
viewpoint is difficult to say since it very much depends
on the user but also on whether the logistic random
effects model fitting is a stand-alone exercise. We know
that in practice this is often not the case since we would
like to process output of such an analysis to produce e.
g. nice graphs. From this viewpoint MIXOR and Win-
BUGS score lower since they require the user to switch
to other software, such as R, to produce additional

Table 1 Extra abilities of different packages

Package Program/
function/
option

Link function Obtaining the
random effects

Handling ordinal
proportional odds model

Modeling cross-
classified model

Other than normal
random effects

Probit
model

Log
(-log)
model

R LME4 X X

MCMCglmm X X X* X

Stata GLLAMM X X X X

MIXOR MIXOR X X X

SAS NLMIXED X X X X

GLIMMIX X X X X X

MCMC X X X

MLwiN [R]IGLS or
MCMC

X X X X X

WinBUGS MCMC X X X X X X

*: only probit model is available in MCMCglmm for ordinal model.

Li et al. BMC Medical Research Methodology 2011, 11:77
http://www.biomedcentral.com/1471-2288/11/77

Page 8 of 11



output or better quality graphs. However, in recent years
some packages, like R2WinBUGS in R, can combine
WinBUGS and R (or other software) nicely. See the
BUGS website [32] to get more information.
For the cross-classified random effects model and the

sub-dataset analysis, some integration methods and opti-
mization techniques were not available in some software.
For example, in GLIMMIX, AGQ is not available for the
cross-classified random effects model and we had to
change to Residual Subject-specific Pseudo-Likelihood.
In the R package MCMCglmm, by default the residual

variance should be explicitly specified for random effects
models. But, as this variance parameter is not identifi-
able for the logistic random effects model, as seen
above, it has to be fixed at a particular value.
MCMCglmm uses arbitrary values larger than zero,
while the other packages ignore the residual variance
since it does not play a role in the estimation process.
In order to make the results comparable, the posteriors
had to be rescaled which worked most often. But one
should be aware that the prior specification will be dif-
ferent after rescaling the posteriors, so there will be dif-
ferences between MCMCglmm and other Bayesian
packages if the prior considerably influences the poster-
ior which happened here for cases 3 and 6.
RIGLS is the restricted version of IGLS in a similar way

as REML is a restricted maximum likelihood procedure,
with RIGLS less biased especially in linear models, as men-
tioned before. In logistic random effects models, IGLS was
chosen for MLwiN ([R]IGLS) in our study as all other fre-
quentist packages allow for the ML method but not all
allow for REML estimation. An additional MLwiN analysis
using RIGLS did show somewhat different results. For
case 1, the results from RIGLS and IGLS were basically
identical, only the variance estimator was 10% higher with
RIGLS. For case 3, the regression estimates differed more
and the RIGLS estimator of variance was not zero any-
more. For more information on ML, REML, etc in differ-
ent multilevel models, see Browne and Draper [33].
WinBUGS demonstrates much flexibility. Different

distributions for the random effects (e.g. gamma, uni-
form, t-distribution) and different link functions such as
probit and log(-log) model are possible. Different link
functions are also possible in the SAS procedures
GLIMMIX and NLMIXED, but none of these two
packages allow for other than normal distributions for
the random effects. Note that in our study the binary
logistic random effects model was superior to the probit
and log(-log) models according to Akaike Information
Criterion (using GLIMMIX).

Problems with small data sets
When the data set is small and the variance of the ran-
dom effects is near zero, or the ICC (intra-class

correlation) is very small as in cases 3 and 6, both fre-
quentist and Bayesian methods can give quite different
estimates especially for the variance. The MLE approach
might have difficulties estimating small but non-zero
variance estimates. The variance was estimated zero
with lme4 in R. GLLAMM also estimated the variance
as well as its standard error as quite small. GLIMMIX
and NLMIXED produced very small estimates for the
variance but no output for the standard error. MLwiN
([R]IGLS) estimated the variance and the standard error
as zero. Finally, MIXOR gave no output for either the
variance or the standard error.
For the Bayesian methods, the posterior means

depended much on the choice of prior for the variance
component. In order to check their impact, we offered
WinBUGS the following three priors for the standard
deviation of the random effects: uniform (0,1), uniform
(0,10), uniform (0,100), and a uniform (0, 106) as well as
an inverse Gamma distribution (0.001,0.001) for the var-
iance. We also offered two priors for the variance in
MLwiN (MCMC): inverse Gamma distribution
(0.001,0.001) and uniform (0, + ∞). This uniform distri-
bution is actually an improper prior which might lead to
an improper posterior. Further, it is not the default
choice in MLwiN. However, when the default procedure
was taken for the improper uniform prior, i.e. starting
values are taken from an initial IGLS run, the starting
value for the variance parameter was taken too small
and remained so until the MCMC sampling was stopped
thereby affecting severely all parameters. For this reason
we restarted this MLwiN run with 1 as the starting
value which solved this problem. The total number of
iterations was 1,100,000 with a burn-in of 100,000 itera-
tions with thinning applied every 10 iterations. Conver-
gence was checked and obtained using the criteria
offered in each software package. The results are shown
in Additional file 9. We can see that most of the Baye-
sian estimates are larger than the frequentist MLE from
Additional file 7, especially for the variance parameter.
The reason is that the posterior distribution is highly
skewed for the variance therefore the posterior mean is
much larger than the posterior mode whose frequentist
counterpart is the MLE. We also notice in Additional
file 9 that the variance estimates in MLwiN and Win-
BUGS using a uniform prior on the variance are greater
than the WinBUGS results with uniform priors on the
standard deviation, which was mentioned by Gelman
[34]. To conclude, for small data sets the choice of the
prior matters for the posterior estimates of the para-
meters, as was also shown by e.g. Spiegelhalter et al [35].

Comparison with previous studies
Zhou et al (1999) compared 5 packages for generalized
linear multilevel models. They compared the estimates,
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the computing time and the features of the packages. In
our study, we compared 10 (popular) packages on simi-
lar features. Also Bayesian methods were included. Guo
and Zhao (2000) compared statistical software for multi-
level modelling of binary data, and they put much
emphasis on PQL and MQL. Furthermore, the SAS
macro GLIMMIX as well as MLn, the DOS predecessor
of MLwiN, were included in their comparison. The lat-
ter packages are not in use anymore which makes this
comparison now outdated.
The CMM website published an online report (multile-

vel modelling software reviews) which compared almost 20
packages for the normal linear model, the binary response
model, the ordered category model and the cross-classified
model [6]. But the packages lme4, MCMCglmm and the
SAS procedures GLIMMIX and MCMC were not consid-
ered in this review. In addition, we evaluated here also the
usability and flexibility of the packages.

Conclusions
We conclude from our study that for relatively large
data sets, the parameter estimates from logistic random
effects regression models will probably not be much
influenced by the choice of the statistical package. In
that case the choice of the statistical implementation
should depend on other factors, such as speed and
desired flexibility. Based on our study, we conclude that
if there is no prior acquaintance with a certain package
and preference is given to a frequentist approach, the
following packages are to be recommended: MLwiN ([R]
IGLS), the R package lme4 and the SAS procedure
GLIMMIX. For a Bayesian implementation, we would
recommend MLwiN (MCMC) because of its efficiency.
If the user is also interested in (perhaps more compli-
cated) statistical analyses other than multilevel model-
ling then he/she could choose WinBUGS.
Finally, a cautionary remark is necessary, i.e. a “large

data set” can still be sparse and hence “large” should be
interpreted with some caution. For example, a large data
set with many lowest-level units nested within nearly as
many higher-level units will act as a “small” data set
when a multilevel model is fit. For such data sets the
result of the fitting exercise might very much depend on
the chosen approach: frequentist or Bayesian. In case a
Bayesian package is chosen, the parameter estimates
might be much influenced by the priors for the variance
of the random effects. Since some packages offer only a
quite restricted set of priors (such as MLwiN) for this
parameter, the choice of the Bayesian package may have
a large impact on the posterior estimates of all para-
meters for “small” data sets. Finally, also the perfor-
mance of a Bayesian analysis might very much depend
on the chosen starting value for the variance parameter,
e.g. when chosen (close to) zero the MCMC might be

stuck around zero for a very long time (which happened
with MLwiN) and thus affect severely the convergence
of the Markov chain.

Additional material

Additional file 1: Frequentist and Bayesian approaches.

Additional file 2: Programmes.

Additional file 3: IMPACT study: Descriptive statistics of the study
population.

Additional file 4: IMPACT study: Results of the binary model in case
1 (full data set). * The variance of the random effects with its standard
error is given.

Additional file 5: IMPACT study: Results from the ordinal model in
case 1 (full data set). * The variance of the random effects with its
standard error is given

Additional file 6: IMPACT study: Results from the binary model in
case 2 (sample 1). * The variance of the random effects with its
standard error is given

Additional file 7: IMPACT study: Results from the binary model in
case 3 (sample 2). * The variance of the random effects with its
standard error is given

Additional file 8: IMPACT study: Results from the cross-classified
model in case 4 (full data set). * The variance of the random effects
with its standard error is given

Additional file 9: Impact of variance component priors on the
posterior means in WinBUGS and MLwiN in case 3 (sample 2). * The
variance of the random effects with its standard error is given. * The first
three uniform distributions in WinBUGS are for the standard deviation of
the random effects and the rest four prior distributions are for the
variance of the random effect
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