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Abstract

compared) across studies.

based on the constant hazard ratio.

Background: Pairwise meta-analysis, indirect treatment comparisons and network meta-analysis for aggregate level
survival data are often based on the reported hazard ratio, which relies on the proportional hazards assumption.
This assumption is implausible when hazard functions intersect, and can have a huge impact on decisions based
on comparisons of expected survival, such as cost-effectiveness analysis.

Methods: As an alternative to network meta-analysis of survival data in which the treatment effect is represented
by the constant hazard ratio, a multi-dimensional treatment effect approach is presented. With fractional
polynomials the hazard functions of interventions compared in a randomized controlled trial are modeled, and the
difference between the parameters of these fractional polynomials within a trial are synthesized (and indirectly

Results: The proposed models are illustrated with an analysis of survival data in non-small-cell lung cancer. Fixed
and random effects first and second order fractional polynomials were evaluated.

Conclusion: (Network) meta-analysis of survival data with models where the treatment effect is represented with
several parameters using fractional polynomials can be more closely fitted to the available data than meta-analysis

Background

Healthcare decision-making requires comparisons of all
relevant competing interventions. If the available evi-
dence consists of a network of multiple randomized
controlled trials (RCTs) involving treatments compared
directly or indirectly or both, it can be synthesized by
means of network meta-analysis [1-4]. Network meta-
analysis of survival data is often based on the reported
hazard ratio, which relies on the proportional hazards
assumption.

The proportional hazards assumption that underlies
current approaches of evidence synthesis of survival out-
comes is not only often implausible, but can have a
huge impact on decisions based on cost-effectiveness
analysis. In extreme cases survival curves intersect and
the hazard ratio is not constant. Furthermore, even if
survival functions do not intersect, the hazard functions
might and the assumption is violated. For cost-effective-
ness evaluations of competing interventions that aim to
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improve survival, differences in expected survival
between the competing interventions are of interest.
Common practice is to assume a certain parametric sur-
vival function for the baseline intervention (e.g. Weibull)
and apply the treatment specific constant hazard ratio
obtained with the (network) meta-analysis to calculate a
corresponding survival function enabling comparisons of
expected survival. Since the tail of the survival function
has a great impact on the expected survival, violations
of the constant hazard ratio can lead to severely biased
estimates. Hence, the proportional hazards assumption
has become a source of concern in drug reimbursement
based on cost-effectiveness evidence.

As an alternative to a network meta-analysis of survi-
val data in which the treatment effect is represented by
a single parameter, i.e. the hazard ratio, a multi-dimen-
sional treatment effect approach is presented. With frac-
tional polynomials the hazard over time is modeled by
which the treatment effect is represented with multiple
parameters [5]. With this approach a network meta-ana-
lysis of survival can be performed with models that can
be fitted more closely to the data. With these parametric
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hazard functions, expected survival can be calculated to
facilitate cost-effectiveness analysis. The method is illu-
strated with an example.

Methods
Fractional polynomials and the hazard function
Royston and Altman introduced fractional polynomials as
an extension of polynomial models for determining the
functional form of a continuous predictor [5]. These
models are well suited for nonlinear data. In contrast to
categorizing continuous predictors, the analysis is no
longer dependent on the number and choice of cut
points [6]. Fractional polynomials have been used in
many applications including survival and meta-regression
analysis [7-9].

By transforming ¢, a continuous variable, in a linear
model the first-order fractional polynomial model is
obtained:

y=Bo+ Bt (1)

The power p is chosen from the following set: -2. -1,
-0.5,0, 0.5, 1, 2, 3 with £° = log ¢
The second order fractional polynomial is defined as:

Y= Bo+ Bt + Bot” (2)

If p; = p> = p the model becomes a ‘repeated powers’
model:

Y =Bo + Bit? + Bot’ logt (3)

Royston and Altman showed that by varying p; and p,
and the parameters o, B; and 3, a wide range of curve
shapes can be obtained [5,6,8,10,11].

The first order fractional polynomial for the hazard at
time ¢ of a two arm treatment B versus A randomized
controlled trial can be presented as follows:

In () = Bok + Burt” with 1° = log(t)

Mo .
Bor) _ (M) itk =A (4)
) | (1) (%) 0o

M1 dy

where: /i, reflect the hazard with treatment k at time

t. The vector (Z(J) reflects the parameters 8y and 3, of
1

the ‘baseline’ treatment A, whereas the vector (j?)
reflects the difference in By and B; of the log hazard
curve for treatment B relative to A. The parameter d,
corresponds to the treatment effect with a proportional
hazard model. Under the proportional hazards assump-
tion d; equals 0. If d; = 0, d; reflects the change in the
log hazard ratio over time. Hence, by incorporating d;
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in addition to d, a multi-dimensional relative treatment
effect is used rather than single parameter for the rela-
tive treatment effect.

Hazard functions can have different shapes, including
a constant hazard over time, a linear increasing or
decreasing hazard over time, and bathtub shaped. If in
equation 4 f3; equals 0, a constant log hazard function is
obtained, reflecting exponentially distributed survival
times. If B, # 0 and p = 1 a linear hazard function is
obtained which corresponds to a Gompertz survival
function. If B; = 0 and p = 0 a Weibull hazard function
is obtained, and (3(1)) reflects the difference in respec-
tively the scale and shape of the Weibull log hazard
curve for treatment B relative to A. Extending the first-
order fractional polynomial hazard function to a sec-
ond-order fractional polynomial increases the possible
(differences in) shapes even further. Hence, modeling
the hazard function of competing interventions with
fractional polynomials provides a general framework
that includes some of the commonly used parametric
survival functions and does not rely on the constant
hazard ratio assumption.

Network meta-analysis model for survival data using
fractional polynomials

Network meta-analysis has been presented as an exten-
sion of traditional meta-analysis by including multiple
different pairwise comparisons across a range of differ-
ent interventions. Meta-analysis models for the compari-
son of treatment B versus A can be extended to models
allowing simultaneous comparisons of B versus A as
well as C versus A [1-4]. To appreciate the randomiza-
tion of the different studies in the evidence synthesis, a
study of a certain pairwise comparison has to be ‘linked’
to any of the other studies in the network. When the
network consists of AB-trials, AC-trials, as well as BC
trials, we have a mixture of direct and indirect compari-
sons and these analyses have been called mixed treat-
ment comparisons (MTC) [3].

For a network meta-analysis, the similarity and consis-
tency relation needs to hold regarding the estimated
model parameters [3,12,13]. If AB trials and AC trials
are comparable on effect modifiers (i.e. covariates that
affect the relative treatment effect), then an indirect esti-
mate for the relative effect of C versus B (dgc) can be
obtained from the estimates of the effect of B versus
A (dyp) and the effect of C versus A (dac): dpc = dac -
dp. In essence, this implies that the same dpc is
obtained as would have been estimated in a three arm
randomized ABC trial. In general, for a model described
by the function f,(£) where x = A, B, or C, we have:
(Fe(®- f() = (Feld- fa(®)-(fs(0)- £a(8)). For a network
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meta-analysis of survival data, the comparison can be
performed on the log hazard ratio, and this relation
needs to apply to every timepoint ¢: In(HRpc(t))- In
(HR4c(2))- In(HR4p(2)) with HRpc(t) reflecting the
hazard ratio of C relative to B at time ¢. Based on equa-
tion 4 it follows that:

In (HRpc (1)) =

((Boc + Brct?) - (Boa + Brat’)) —
((Boc = Boa) + (Brc — Bra) 1) —
(Boc — Bos) + (Bic — Bip) ¥

((Bos + B18t") - (Boa + B1al’)) =
(5)
((Bos — Boa) + (Bis — ra) ') =

Hence, the differences in the model parameters 3, and
B of the first order fractional polynomials are indepen-
dent of time. Furthermore, according to equation 5 the
difference in 8y and 3; of the BC comparison can be
described by the difference in these parameters for the
AC comparison and AB comparison. Given this relation,
a network meta-analysis can be performed based on the
differences in By and B; of log hazard curves across
studies. Similarly, the transitivity assumption holds for
fractional polynomials of any order.

Using a similar notation as Cooper et al. [13], the ran-
dom effects model for a network meta-analysis of survi-
val data based on a fractional polynomial of order M for
k treatments labeled A, B, C, etc can be described as:
with (° = logt

M
Bojle + 2 Bmjit’™ ifp1 #..#pum
m=1

M
m—1
Bojie + Bret” + Y- Byt (log 1)
m=2

In (he) =
Mo;‘b
ﬂo;k
MK Mjb
/'L()ﬂ.? Sojble
ﬁM,k N (6)
: if k 'alphabetically’ after b.
NM]b Smjbk
50,bk doar doap
~ Normal : - : i)
6M,w, dyak dpav
©t 000MPOM
s
O00OMPOM * ** 01\2,1

where /1, reflects the underlying hazard rate in trial
Mojb

ifM>1,p1=..=pum

ifk=b, b=ABC,..

j for intervention k at time point z. The vectors
HMijb
are trial-specific and reflect the parameters Bo, B1,..., By
of the comparator treatment, whereas the vectors
Sojvk
: reflect the study specific difference in Bo, Bi,...,
SMjbk
B of the log hazard curve for treatment k relative to

comparator treatment b. and are drawn from a multi-
variate normal distribution with the pooled estimates

Page 3 of 14

expressed in terms of the overall reference treatment A

doaa 0 dosc doac doas
with | : |=|: | For example, | : |= : |-| : |
dyian 0 dnpe dmac dmap

dosp doap doas
= : — © |} etc. X is the between

dmpp dmap dmas
study covariance matrix to reflect heterogeneity which is
assumed constant for all treatment comparisons where
G,, represent the variance for d,, (i.e. the difference in
B,.) and po1, Po2s--» Par-1,.0is the correlation between
these parameters. Of key interest from the analyses are
the pooled estimates of d,,4; and estimates for the het-
erogeneity. Please note that the HR is changing over
time once d,,>; is different from 0.

Under a fixed effects model the multivariate normal
distribution with the pooled estimates will be replaced

Sojbe doak doab

with = — : and as a result the
Smjbk dmar dpmab

between study covariance matrix does not need to be

estimated. When only for d4; heterogeneity is assumed,

and the other effect parameters dja,..., dyax are fixed,

Sojble doar doap
then : ~ Normal : — : , X | is
Bujble dpak dpmab
replaced with dgjpx~Normal(doax-doap, ©°) and
S1jbk diar diap
Smjbie dpmar Apmap

A random effects model with only a heterogeneity
parameter for douy implies that the between study var-
iance of the log hazard ratios remains constant over
time. Random effects models with (additional) heteroge-
neity parameters for dy ..., dpax have the flexibility to
capture between study variance regarding changes in the
log hazard ratios over time.

The random effects fractional polynomial model in
equation 6 treats multiple-arm trials (>2 treatments)
without taking account of the correlations between the
trial-specific ds that they estimate. Bayesian random
effects fractional polynomials models with only a hetero-
geneity parameter for dosx can be easily extended
to fit trials with 3 or more treatment arms by decom-
position of a multivariate normal distribution as a
series of conditional univariate distributions [13]. If

7 Ty

dopr. 2
N R

~ Normal : ,

Sojble

Sojb, dobr,

“é/z /2 o’
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then the conditional univariate distributions for arm
i given the previous 1,....(i-1) arms are:

Bojok, i1

5 o). 3

j=1

Sojble; ~ Normal (dobk, +

Sojbk;_q

Different values for the powers p; and p, of the frac-
tional polynomials correspond to different models. The
best fitting model can be selected based on goodness-of-
fit comparisons. The goodness of fit can be computed as
the difference between the deviance for the fitted model
and the deviance for the saturated model (which fits the
data perfectly). Within a frequentist framework the
Akaike information criterion (AIC) can be used for
model selection [14]. In a Bayesian framework the Baye-
sian information criterion (BIC) or deviance information
criterion (DIC) can be used [15,16].

lllustrative example

To understand how the analytical approach proposed
can be applied in practice, an example is presented for
oncology where trials are typically focused on overall
(and progression free) survival.

Lung cancer is a leading cause of cancer mortality in
both men as well as women, with non-small cell lung
carcinoma (NSCLC) accounting for 80% of all cases
[17]. Second line treatment for advanced NSCLC
includes docetaxel and pemetrexed [18]. Gefitinib has
been studied as second line treatment as well.

A literature search identified seven RCTs comparing
docetaxel with best-supportive care (1 study), gefitinib
with best-supportive care (1 study), docetaxel with gefi-
tinib (4 studies), and docetaxel with pemetrexed (1
study) [19-25]. The network of RCTs is presented in
Figure 1 and shows that for the comparisons of BSC,
docetaxel and gefitinib both direct and indirect evidence
is available. For each treatment arm in each study
reported Kaplan-Meier curves were digitized (Engauge
Digitaliser v4.1) In Figure 2 the scanned survival

Chang, 2006 e

BSC Gefitinib

Lee, 2010
Shepherd, 2000 Kim, 2008
Maruyama, 2008
Cufer, 2006
Hanna, 2004
Pemetrexed Docetaxel
Figure 1 Network of randomized controlled trials.
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Figure 2 Survival as observed in individual studies.

proportions are presented. This aggregate data was ana-
lyzed with fractional polynomial network meta-analysis
models.

Whilst network meta-analysis can be performed with a
frequentist or a Bayesian approach, for this manuscript
the focus is on the Bayesian approach. Within the Baye-
sian framework, analyses consist of data, likelihood,
parameters, a model, and prior distributions. More spe-
cifically, Bayesian analysis involves the formal combina-
tion of a prior probability distribution that reflects a
prior belief of the possible values of the parameters of
the model with a likelihood distribution of the model
parameters based on the observed data in the different
studies to obtain a posterior probability distribution of
these [26-28].

The scanned survival curves can be divided into multi-
ple consecutive intervals over the follow-up period.
Extracted survival proportions were used to calculate
the incident number of deaths for each interval and
patients at risk at the beginning of that interval. A bino-
mial likelihood distribution of the incident number of
deaths for every interval [t¢+At] (At is the time from ¢
to t+1) of the Kaplan-Meier curves can be described
according to:

Tiier ~ bin(Pjie, Nje) (7)

Where rj, is the observed number of incident deaths
in the interval [£t+A¢f] for study j and treatment k. 7,
Is the number of subjects alive at ¢, adjusted for the sub-
jects censored in the interval [£,t+At]. pj is the observed
cumulative incidence of deaths in the interval [ft+A¢t].
In the appendix more detail is provided how a dataset
for nj, and rj, can be obtained from the Kaplan-Meier
curve taking into account censoring in the interval [zt
+At]. In Table 1 the incident deaths and patients at risk
for every 2-month period of the individual studies are
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presented. When the time interval is relatively short, the
hazard rate can be assumed constant within the time
interval, and the hazard rate /1, is:

hjkt =—In (1 — pjkt) /At (8)

In this example fixed and random effects first and sec-
ond order fractional polynomial models were used with
powers chosen from the following set: -2. -1, -0.5, 0, 0.5,
1, 2, 3 with £° = log t according to eq. 6. Two different
random effects second order fractional polynomial mod-
els were compared: one model with a heterogeneity
parameter for dy, and one model with heterogeneity
parameters for all three treatment parameters (d, d; or
d»). Although random effects models with a heterogene-
ity parameter for only d; or d, can be estimated as well,
these were considered less appropriate because these
models assume that heterogeneity in treatment effects
only develop over time, and is not present at treatment
initiation. In other words: heterogeneity is only a func-
tion of time, and not (also) a function of differences in
patient characteristics across studies. If only one hetero-
geneity parameter is (to be) used, it should be for d
because it assumes constant variance for the complete
follow-up period.

The non-informative prior distributions as used for
the parameters of the random effects second-order frac-
tional polynomial model with heterogeneity correspond-
ing to dy d; and d, are presented (according to

equation 6):
10" 0 0
T,=| 0 10* 0
0 0 10*

Ry
wmijp | ~ Normal 0
L25b 0
doar 0 104 0 0
diae | ~Normal|{ |0 ], Ty Ts=] 0 10* © 9)
doa 0 0 0 104
102 0 0
Q=| 0 102 0
0 0 10%

¥ ~ Wishart (2, 3)

For a first order fractional polynomial model these 3-
dimensional multivariate prior distributions are reduced
to bivariate normal distributions. With a random effects
model, where only for d, a heterogeneity parameter is
used, the corresponding prior distribution can be
defined as 6 ~ uniform(0,2). When all relative effects
parameters are assumed fixed, there is no heterogeneity
to be estimated, and no such prior distribution needs to
be defined.

The parameters of the different models were estimated
using a Markov Chain Monte Carlo (MCMC) method as
implemented in the WinBUGS software package [29].
(See appendix for the code.) The WinBUGs sampler,
using two chains, was run for 30000 iterations for the
models and these were discarded as ‘burn-in’ and the

T,
d

’
’

Page 6 of 14

model was run for a further 50 000 iterations on which
inferences were based. Convergence of the chains was
confirmed by the Gelman-Rubin statistic.

The DIC was used to compare the goodness-of-fit of
different fixed and random effects models with first and
second order fractional polynomials with different powers.
DIC provides a measure of model fit that penalizes model
complexity according to DIC = D + pD, pD = D — D[16].
D is the posterior mean residual deviance [15], pD is the
‘effective number of parameters’ and ) is the deviance
evaluated at the posterior mean of the model para-
meters. The model with the lowest DIC, is the model
providing the ‘best’ fit to the data. For every combina-
tion of pI and p2 the DIC was determined. The powers
pl and p2 corresponding to the best fitted fixed effects
models were also used to evaluate corresponding ran-
dom effects models.

Results

lllustrative example

The model fit statistics for the different models are pre-
sented in Table 2. The fixed effects Weibull model
(p1 = 0) was one of the worst regarding goodness-of-fit.
Of the first order fractional polynomial models, the
model with power pl = -2 was the best fit. Adding a
second time- related effect to this first order fractional
polynomial model dramatically improved the model fit.
Although the model with pI = -2 and p2 = 1 has the
lowest DIC of all the fixed effects models evaluated, the
model with pI = -2 and p2 = 2 and the model with p1
= -2 and p2 = 3 deserve consideration as well because
these are within 1-2 points of the “best” model [16].
However, the modeled hazard function with p2 =1 is
not as sensitive to small sample fluctuations near the
end of the follow-up of each study as the models with
p2 =2 or p2 = 3. To facilitate the extrapolation of the
survival curves beyond the trial period, the model with
pl= -2 and p2 = 1 was considered the most appropriate
fixed effects model. The corresponding random effects
models showed similar values for the DIC, and as such
the random effects models were considered more appro-
priate. The model with a heterogeneity parameter for d,
only showed more stable parameter estimates than the
random effects model with heterogeneity parameters for
dy, d; and d,. Given the similar fit of these random
effect models, the model with one heterogeneity para-
meter was used.

Table 3 provides parameter estimates for the fixed
effects first and second order fractional polynomial
models with p1 = -2 and p2 = 1, as well as the corre-
sponding random effects model with a heterogeneity
parameter for d, . Based on the pooled relative treat-
ment effects regarding Sy, B; and 3, of each intervention
relative to docetaxel (doar, diaw and dygy with k = B,C,D
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Table 2 Goodness-of-fit estimates for fixed and random
effects fractional polynomial models for different powers
p1 and p2.

Power p1 Power p2 Dbar Dhat pD DIC
Fixed effects models

-2 - 904.5 884.6 199 9244
-1 - 916.2 896.3 19.8 936.0
-05 - 925.5 905.6 199 9453
0° - 9346 915.2 193 953.9
05 - 942.8 9235 194 962.2
1° - 948.7 929.2 194 968.1
2 - 9573 937.5 199 977.2
3 - 964.5 9443 20.2 984.7
-2 -2 865.5 8358 29.8 895.3
-2 -1 857.2 827.0 30.2 8874
-2 -05 8509 8212 29.7 880.6
-2 0 8444 815.2 29.1 8735
-2 05 840.2 810.6 29.7 869.9
-2 1 837.1 807.1 30.1 867.2
-2 2 8373 807.2 30.1 8674
-2 3 837.8 808.2 296 8674
-1 -1 8484 819.8 286 877.0
-1 -0.5 849.0 820.1 289 8779
-1 0 840.9 8126 283 869.2
-1 05 840.2 8114 288 869.0
-1 1 839.8 809.8 300 869.8
-1 2 8443 814.0 30.2 874.5
-1 3 8504 8204 300 880.5
-0.5 -0.5 840.5 811.6 289 8694
-0.5 0 842.2 813.6 286 870.8
-0.5 05 8424 8123 30.1 8725
-0.5 1 843.6 8139 29.7 8733
-05 2 8519 8229 29.1 881.0
-0.5 3 8614 8314 30.0 891.5
0 0 8458 817.2 286 8744
0 05 849.8 8216 282 8780
0 1 854.6 8234 312 8858
0 2 862.5 8333 29.1 891.6
0 3 874.2 844.6 29.6 903.9
0.5 0.5 854.3 830.6 238 878.1
0.5 1 860.0 8318 282 888.1
0.5 2 8764 846.7 29.7 906.1
0.5 3 888.3 858.8 294 917.7
1 1 8714 8420 294 900.8
1 2 887.2 858.3 289 916.2
1 3 902.3 871.7 306 9329
2 2 907.8 880.0 279 935.7
2 3 9212 8922 290 950.2
3 3 934.6 906.9 27.7 9624
Random effects models

-2 - 9044 883.2 213 925.7
0° - 9344 9114 230 9574
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Table 2 Goodness-of-fit estimates for fixed and random
effects fractional polynomial models for different powers
p1 and p2. (Continued)

2° 1
24 1

8359
836.1

8039 320
805.1 31.0

8679
867.1

2 Corresponding to Weibull distribution for hazard over time; ® Corresponding
to Gompertz distribution for hazard over time; © Random effects model with
heterogeneity for all three effect parameters; ¢ Random effects model with
heterogeneity for dy

corresponding to respectively gefitinib, BSC, and peme-
trexed) the corresponding hazards ratios as a function of
time were obtained: In(HRAx) = doax + diax - £2 + doay -
t. The hazard ratios over time obtained with the random
effects model are presented in Figure 3. It is obvious that
the assumption of constant hazards ratio does not apply
to any comparison with BSC involved. Although for the
comparison of gefitinib relative to docetaxel a constant
hazard ratio over time might be defended, the additional
indirect evidence via BSC for this comparison clearly
does not allow this assumption. Based on this observa-
tion, one can argue that d; and d, for gefitinib and
pemetrexed relative to docetaxel can be set to zero, and
that d; and d, only need to be estimated for BSC versus
docetaxel. However, it has to be realized that by making
that assumption the uncertainty regarding the propor-
tional hazards assumption for gefitinib and pemetrexed is
no longer taken into consideration.

In the example there is both direct evidence (i.e. head-
to-head studies) and indirect evidence (via BSC) for the
comparison of gefitinib versus docetaxel. As such, the
network meta-analysis combining both direct and indir-
ect comparisons uses more information than a pairwise
meta-analysis of the 4 gefitinib versus docetaxel studies.
In Figure 4, the hazard ratio over time is presented for
the pairwise meta-analysis of gefitinib versus docetaxel
based on 4 studies, as well as the mixed treatment com-
parison. The estimates of the two analyses are compar-
able (at least from month 3 onwards) suggesting that
inconsistency between direct and indirect estimates is
not an issue of concern. However, the uncertainty of the
hazard ratio over time is greater with the pairwise meta-
analysis of 4 studies than the network meta-analysis of 6
studies. By incorporating indirect evidence the para-
meters of the fractional polynomial can be estimated
more precisely in this example.

By using the average of study specific estimates for S,
B and B, with docetaxel as the reference, the expected
Bo, B1 and B, for the other interventions were calculated
using the relative treatment effects doax, diar and doax.
(See Table 4) The corresponding hazard and survival
functions for each of the four interventions are pre-
sented in Figure 5 and 6A. With these parametric survi-
val curves it is now possible to calculate the expected
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Table 3 Model parameter estimates for different fractional polynomial network meta-analysis models.

Fixed effects model, first order
fractional polynomial

Fixed effects model, second
order fractional polynomial

Random effects model (do),
second order fractional

polynomial
Median of 95% Credible Median of 95% Credible Median of 95% Credible
posterior Interval posterior Interval posterior Interval
distribution distribution distribution
pl  power 1 -2 -2 -2
p2  power 2 1 1
Pooled estimate for difference in B,
doas  gefitinib vs. docetaxel -0.003 (-0.111; 0.112) 0.158 (-0.065; 0.409) 0.144 (-0.156; 0411)
doac BSC vs. docetaxel 0.770 (0.598; 0.939) 1674 (1.108; 2.193) 1.653 (1.039; 2.167)
doap pPemetrexed vs. docetaxel 0.020 (-0.189; 0.243)  0.141 (-0483; 0.744)  0.142 (-0.540; 0.761)
Pooled estimate for difference in f3;
dias  gefitinib vs. docetaxel 0.634 (-0.429; 1.726) -0.003 (-1.470; 1.362) 0.070 (-1.330; 1.542)
diac BSC vs. docetaxel -2.507 (-4.281;-0.783)  -5.858 (-8.503; -3.228)  -5.839 (-8.265; -3.131)
diap pemetrexed vs. docetaxel -0.995 (-3.344; 1.381) -1.359 (-4.604; 1.885) -1.368 (-4.511; 1.814)
Pooled estimate for difference in 8,
dyus  gefitinib vs. docetaxel -0.007 (-0.016; 0.002) -0.006 (-0.015; 0.003)
doac BSC vs. docetaxel -0.053 (-0.082; -0.023)  -0.052 (-0.079; -0.023)
doup pemetrexed vs. docetaxel -0.005 (-0.032; 0.023) -0.005 (-0.031; 0.022)
o4 Standard deviation of dj ; 0.060 (0.002; 0.406)

heterogeneity in difference of S,
across comparisons

survival (i.e. the area under the curve) which is pre-
sented in Table 4 as well.

When, as is common practice for cost-effectiveness
analysis, a constant hazards ratio in combination with a
Weibull distribution was assumed, the DIC of the model
was 959.1. The fitted survival curves for docetaxel,

gefitinib, BSC, and pemetrexed are presented in Figure
6B. The expected survival was respectively 15.1, 14.5,
8.0, and 15.2 months, and shows the overestimate rela-
tive to the random effects second order fractional poly-
nomial model. The greatest difference is observed for
the BSC survival curve, and the tails of the active

Hazard Ratio

Pemetrexed
Gefitinib
~——BSC

In(hr (1))=0.142-1.368-1> 0,005 ¢

‘pemetrexed ~docetaxel

10037 s specner () = 0.144 +0.070 172 —0.006 -1
(775 v (1)) = 1.653=5.839 -2 —0.052 ¢

diAk« dZAk)

Months

Figure 3 Hazard ratio over time for each of the interventions relative to docetaxel as obtained with random effects second order
fractional polynomial (p1 = -2, p2 = 1) network meta-analysis model. (Corresponding parameter estimates are presented in Table 3: dya,
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—— Gefitinib vs. Docetaxel MTC 6 studies

—— Gefitinib vs. Docetaxel MA 4 studies

Hazard Ratio

050 4 - :

0 5 10 15 20 25 30 35 40 45 50 55
Months

Figure 4 Estimation of hazard ratio over time for gefitinib
versus docetaxel as obtained with mixed treatment
comparison model (4 gefitinib-docetaxel studies, 1 BSC-
docetaxel study, 1 gefitinib-BSC study) is associated with less
uncertainty than obtained with a meta-analysis model (4
Gefitinib-Docetaxel studies).

interventions. To illustrate that the fractional polyno-
mials produce a visibly better fit to the data than a sim-
ple model like the Weibull with a proportional hazards
assumption, these models are presented for 3 studies in
Figure 7. For the other 4 studies, the difference between
the fractional polynomial curves and Weibull curves was
not as great.

Discussion

In this paper a method for (network) meta-analysis of
survival data using a multi-dimensional treatment effect
is presented as an alternative to synthesis of the con-
stant hazards ratio. With first or second order fractional
polynomials the hazard functions of the interventions
compared in a trial are modeled and the difference in
the parameters of these fractional polynomials within a
trial are considered the multidimensional treatment
effect and synthesized (and indirectly compared) across
studies. In essence, with this approach the treatment
effects are represented with multiple parameters rather
than a single parameter or outcome.

Meta-analysis of survival data using the constant
hazards ratio can be considered a special case of the
model presented here. When in equation 6 dy4x doap -
dpak equal 0, only the time independent parameters B
can be different across treatments within a trial and
accordingly doa reflect the constant log hazard ratio of
treatment k relative to A. (Please note that the baseline
hazard can still be modelled with multiple By, Bajis --.s
Bagx that can be different from 0, but these are constant
across all interventions within a trial. With a Cox pro-
portional hazards model the baseline hazard is uncon-
strained and not described by parametric distribution or
function.) The advantage of the approach presented

Page 9 of 14

here is that it does not rely on the proportional hazards
assumption and as a result the model used can be more
closely fitted to available survival data. In a situation,
where the violation of the proportional hazard ratio is
less clear due to limitations of the data, it still can be
considered useful modeling a multi-dimensional treat-
ment effect to express the uncertainty in the violation of
the assumption of proportional hazards.

For network meta-analysis it is important that for the
relative effect measure of interest the transitivity
assumption holds [3,12,13]. Although the transitivity
assumption holds for the constant (log) hazards ratio,
violations of the proportional hazards assumption within
or across trials, can result in biased indirect and mixed
treatment comparisons of relative survival over time. By
incorporating additional parameters for the treatment
effect, the proportional hazards assumption is relaxed
and therefore indirect and mixed treatment comparisons
are arguably less likely to result in biased indirect
estimates.

With a (network) meta-analysis the value of randomi-
zation only holds within a trial, and not across trials
[3,12,13]. In other words, patients are randomly assigned
to treatments within a trial, but patients are not ran-
domly assigned to different trials. As a result there is
the risk that patients assigned to the different trials are
not comparable. If the distribution of patient and study
level characteristics that modify the relative treatment
effects is not similar across trials indirectly compared
results will be affected by confounding bias [13]. In the
models presented in this paper, treatment effect esti-
mates will be biased if there is an imbalance in the dis-
tribution of treatment*covariate interactions across
studies regarding the multidimensional treatment effect.
Hence, it is suggested to expand the current models by
incorporating treatment*covariate interactions. An addi-
tional advantage is that it can explain heterogeneity and
facilitates the prediction of expected survival for sub-
groups [13].

In the example analysis, aggregate level data, i.e.
scanned Kaplan-Meier curves, were used for all inter-
ventions compared. However, the models can also be
used in combination with individual patient level data,
using a different likelihood. Patient-level analyses have
the advantage that no (conservative) assumption has to
be made regarding the censoring process. Furthermore,
patient-level network meta-analyses have greater power
to estimate meta-regression models thereby reducing
inconsistency and providing the opportunity to explore
differences in effect among subgroups. However, obtain-
ing patient-level data for all RCTs in the network may
be considered infeasible. As an alternative one could use
patient-level data when available, and aggregate level
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Table 4 Functions of parameter estimates for different fractional polynomials

Fixed effects model, first order
fractional polynomial

Fixed effects model, second order
fractional polynomial

Random effects model (do), second
order fractional polynomial

Median of posterior 95% Credible

Median of posterior

95% Credible Median of posterior 95% Credible

distribution Interval distribution Interval distribution Interval
Docetaxel *
Boa -2422 (-2.502; -2.348) -2.689 (-2.882; -2476) -2.694 (-2.895; -2.513)
Bia -2.174 (-2.988; -1.401) -1.224 (-2.324; -0.198) -1.193 (-2.267; -0.206)
Boa 0.013 (0.004; 0.022) 0014 (0.006; 0.022)
Gefitinib
Bos Boa +doas) -2425 (-2.515; -2.325) -2.531 (-2.776; -2.322) -2.550 (-2.777; -2.273)
Bis Bra +diap) -1.540 (-2527;-0631) -1.227 (-2407;,0082) -1.124 (-2433; 0.010)
Bos Boa +doup) 0.007 (-0.002; 0.018)  0.008 (-0.002; 0.016)
BSC
B oc Boa +doad) -1.652 (-1818;-1461) -1015 (-1.600; -0.480) -1.041 (-1.554; -0.462)
Bic Bia +dia0) -4.681 (-6.564; -3.010) -7.082 (-9.677, -4.320) -7.032 (-9.700; -4.622)
Bac Boa +doa0) -0.040 (-0.071, -0.008) -0.039 (-0.069; -0.010)
Pemetrexed
Boo Bo A +doap) -2402 (-2.616; -2.188) -2.548 (-3.101; -1.954) -2552 (-3.093; -1.978)
Bio Bia +diap) -3.169 (-5445; -0673) -2.583 (-5.634; 0.308)  -2.561 (-5.329; 0.167)
Boo Baa +doap) 0.009 (-0.018; 0.033)  0.009 (-0.014; 0.028)
Expected survival (in
months)
docetaxel 125 (11.9; 133) 13.0 (12.2; 13.8) 130 (12.2; 13.9)
gefitinib 121 (11.3;13.0) 12.2 (113, 13.2) 12.2 (10.6; 14.0)
BSC 7.2 6.5; 8.1) 6.2 (5.1, 7.6) 6.2 (4.8, 7.9)
pemetrexed 12.7 (109, 14.7) 12.7 (105 15.0) 129 (95, 174)
Difference in expected
survival (in months)
gefitinib vs docetaxel  -04 (-1.4; 0.6) -0.8 (-1.9; 0.3) -0.8 (-26; 1.1)
BSC vs docetaxel 53 (-6.2; -4.3) -6.8 (-8.0; -54) -6.8 (-84; -5.0)
pemetrexed vs 0.1 (-1.8;2.2) -03 (-2.5; 2.0) -0.2 (-3.6; 44)
docetaxel
BSC vs gefitinib -49 (-6.0; -3.8) -6.0 (-74; -4.5) -6.0 (-8.1;-3.9)
pemetrexed vs 0.5 (-16; 2.8) 04 (-2.0; 3.0) 0.6 (-3.2; 5.3)
gefitinib
pemetrexed vs. BSC 54 (34;76) 6.4 (39;9.1) 6.7 (3.0, 11.4)

* (calculated as average from docetaxel study specific estimates: po, M1, H2)

data for studies in the network for which such data is
not available thereby improving parameter estimation
over aggregate-data-only models.

Drug coverage decision-making is often informed by
cost-effectiveness analysis where expected costs and
expected outcomes are compared. When the main
objective of the competing interventions is to improve
survival, the primary outcome of interest is expected
survival or for-quality-of-life adjusted expected survival.
Unfortunately, given the available follow-up in the clini-
cal trials, survival data is often censored and therefore
the expected survival cannot be obtained without extra-
polation of the data over time. Standard practice is to
extrapolate the available survival data for the reference
treatment using a parametric survival function (e.g.

Weibull, lognormal or log-logistic). This baseline hazard
function is multiplied with the constant hazard ratio for
each of the competing interventions relative to this
baseline to obtain hazard functions for the interventions
of interest. The assumption of a constant hazards func-
tion implies that only the scale of these parametric func-
tions is affected by treatment, and accordingly all the
competing interventions have the same shape. Since the
tail of the survival function has a great impact on the
expected survival this assumption may lead to biased or
at least highly uncertain estimates regarding differences
in expected survival and therefore cost-effectiveness esti-
mates. Given the multi-dimensional treatment effect of
the approach presented in this paper, the parametric
hazards functions of the competing interventions can be
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Figure 5 Hazard over time for each of the interventions as obtained with random effects second order fractional polynomial (p1 = -2,
p2 = 1) network meta-analysis model. Docetaxel hazard curve used as ‘anchor".
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Figure 7 Three representative studies that illustrate that a

constant hazard ratio in combination with a Weibull reference

curve does not fit the data as closely as the fractional

polynomial models.

different regarding all of their parameters. As a result
the extrapolated survival functions for all the interven-
tions are more closely fitted to the available data and
expected survival is less likely to be over or underesti-
mated. An additional advantage of the use of fractional
polynomials is that models can be fitted that go to
asymptotes, and are therefore far more stable at the
ends than, say, standard polynomials or splines.
Although the proposed models constitute a substantial

Page 12 of 14

liberalization for evidence synthesis of survival curves
from RCTs, there is still a danger of under-stating the
uncertainty in extrapolating the curves because the
choice of fractional polynomials is based on model
fit criteria. In order to reflect model uncertainty, it
might be of interest to estimate the powers of the frac-
tional polynomials as well.

Conclusions

(Network) meta-analysis of survival data is commonly
performed with models represented with one parameter
for the relative treatment effect: the constant hazard
ratio. When the proportional hazards assumption does
not hold, models in which the treatment effect is repre-
sented by several parameters using fractional polyno-
mials can be more closely fitted to the available data.
The models allow straightforward estimation of
expected survival to facilitate cost-effectiveness analysis.

Appendix

Extraction of data from survival curves to use in the
network meta-analysis model

According to the Kaplan-Meier curve, the proportion of
people alive at time point ¢ S, that die between time
point ¢ and time point ¢ + 1 is equal to (S; - Si1)/S; and
can be described by binomial likelihood distribution: r,
~ bin(p;, n;). Where is the number of deaths r, in the
interval [tt+1]. n, is the number of subjects at risk in
that interval, and p; is the underlying risk.

In the absence of censoring for the interval [t,¢+1], 1, is
the number at risk at the beginning of the interval and r,
can be obtained by multiplying #, with (S; - S;,1)/S,.

The number at risk for a particular interval might be
provided below the Kaplan-Meier graph; if not reported,

it can be obtained according to "t = n”l/(sm/st) start-

ing at the time point where #, is provided below the
graph.

In the case of censoring, the overlap of the sequence
of censoring and deaths within the time interval [t,t+1]
is unclear, and it is not possible to derive the exact
number of deaths and censoring in the interval. As
extreme cases we can assume that, on the one hand,
censoring occurs after the deaths within the interval, or,
on the other hand, all censoring occurs before the
deaths. In the first scenario n, is the number at risk at
the beginning of the interval, whereas in the second sce-
nario n, is the number at risk at the beginning of the
interval minus the number of censored subjects. With
the second scenario it is clear that #, and r, are smaller
given (S, - S;11)/S; resulting in more uncertainty regard-
ing the estimate p,. To not underestimate the uncer-
tainty we opted for the second scenario. Under the
assumption that all censoring occurs before the deaths
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occur, n, can again be obtained by " = n”l/(Sm/St)

with n,,; reported below the graph, or based on the
same calculation for the interval [t+1, t+2], etc.

Winbugs code for second order fractional polynomial
random effects network meta-analysis model
Model{
for (i in 1:N){  # N number of datapoints in dataset
# time is expressed in months and transformed
according powers of fractional polynomial P1 and P2
time_transfl[i]<-(equals(P1,0)*log(timeli]) + (1-equals
(P1,0))*pow(timeli],P1))
time_transf2[i]<-((1-equals(P2,P1))*(equals(P2,0)*log
(time[i]) + (1-equals(P2,0))*pow(time[i],P2)) + equals(P2,
P1)*(equals(P2,0)*log(time[i])*log(timel[i]) + (1-equals
(P2,0))*pow(timel[i],P2) *log(timel[i])))

# likelihood

# hazard over interval [t,t+dt] expressed as deaths per
person-month

# r is deaths in interval, n is number at risk, h is hazard

r[i]~ dbin(p[i],ni])

plil<-1-exp(-h[i]*dt) # cumulative hazard over interval
[t,t+dt] expressed as deaths per person-month

# random effects model

# loop over datapoints

# s refers to study, k is intervention k, b is comparator

log(h[i])<-Betali,1]+ Betali,2]*time_transfl[i]+ Beta[i,3]
* time_transf2[i]

Beta[i,1]<-mu[s[i],1]+delta[s[i],1]*(1-equals(k[i],b[i]))

Beta[i,2]<-mu[s[i],2]+delta[s[i],2]*(1-equals(k[i],b[i]))

Betal[i,3]<-mu(s[i],3] +delta[s[i],3]*(1-equals(k[i],b[i]))

}

# loop over studies

# NS is number of studies

# ks is intervention k, bs is comparator
for(m in 1:NS){
delta[m,1:3]~dmnorm(md[k,1:3
md[m,1]<-d[ks[m],1]-d[bs[m],1
md[m,2]<-d[ks[m],2]-d[bs[m],2
md[m,3]<-d[ks[m],3]-d[bs[m],3
}

# priors

# NT is number of treatments
d[1,1]<-0

d[1,2]<-0

d[1,3]<-0

for(j in 2:NT){

d[j,1:3] ~ dmnorm(mean[1:3],prec2,])
}

for(k in 1:NS){

—

,omega[1:3,1:3])

[ B R
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mul[k,1:3] ~ dmnorm(mean[1:3],prec2,])

}
omega[1:3, 1:3] ~ dwish(R[1:3,1:3],3)

# output SD and correlation based on estimated covar-
iance matrix

sigma.theta[1:3,1:3] <- inverse(omega[1:3,1:3])

rho[1,2] <-sigma.theta[1,2]/sqrt(sigma.theta[1,1]*sigma.
theta[2,2])

rho[1,3] <-sigma.theta[1,3]/sqrt(sigma.theta[1,1]*sigma.
theta[3,3])

rho[3] <-sigma.theta[3]/sqrt(sigma.theta[2,2]*sigma.
theta[3,3])

sd[1]<-sqrt(sigma.theta[1,1])
sd[2]<-sqrt(sigma.theta[2,2])
sd[3]<-sqrt(sigma.theta[3,3])

# output hazard ratio for month 1 to 60

# NT is number of treatments, c is reference treat-
ment, k is treatment of interest, | is month

for (c in 1:(NT-1)) {

for (j in (c+1):NT) {

for (1 in 1:60) {

t1[l]<-(equals(P1,0)*log(l) + (1-equals(P1,0))*pow(l,P1))

t2[1]<-((1-equals(P2,P1))*(equals(P2,0)*log(l) + (1-
equals(P2,0))*pow(1,P2)) + equals(P2,P1)*(equals(P2,0)
*log(l)*log(l) + (1-equals(P2,0))*pow(1,P2) *log(l)))

log(hazard_ratio[c,j,1])<-d[j,1]-d[c,1]+(d[j,2]-d[c,2])*t1[1]
+(d[j,3]-d[c,3])*t2(1]

1

}

Winbugs data structure
s[] study identifier
r[] incident cases in interval
n[] at risk at beginning of interval
k[] treatment
b[] comparator
time[] interval number/time point

(I rll nf] Kk[J bf]
81 2
74 2
2
2

time[]

69

1
1
1
62 1

[© ) NN BN TN
=W N =

53 134 3
70 160 3
12
22
END

NN N N

N O

o O

W W

— =
—

N Ul
=W
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# comparison by study (only used for random effects
model)

k(] bs[]

W N NN WN
— = = = N

END

Abbreviations

AIC: Akaike information criterion; BSC: best-supportive care; DIC: deviance
information criterion; NSCLC: non-small cell lung carcinoma; RCT:
randomized controlled trial
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